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Abstract. Safe primes and safe RSA moduli are used in several cryptographic schemes.

The most common notion is that of a prime p, where (p − 1)/2 is also prime. The latter

is then a Sophie Germain prime. Under appropriate heuristics, they exist in abundance

and can be generated efficiently. But the modern methods of analytic number theory have

– so far – not even allowed to prove that there are infinitely many of them. Also for

other notions of safe primes, there is no algorithm in the literature that is unconditionally

proven to terminate, let alone to be efficient. This paper considers a different notion of

safe primes and moduli. They can be generated in polynomial time, without any unproven

assumptions, and are good enough for the cryptographic applications that we are aware of.
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1 Introduction

There are various notions of safe primes p and safe RSA moduli N = pq, where p
and q are safe primes, in the cryptographic literature. Two standard conditions on

an integer (greater than 1) are y-smooth (with all prime factors at most y) and y-

rough (with all prime factors greater than y). The condition “y-rough” implies “not

y-smooth”, but not conversely. A Sophie Germain prime ℓ is such that p = 2ℓ+ 1

is also prime, and we call its “elder sister” p a Marie Germain prime1. More

generally, we call p = 2ℓ+1 a Marie Germaini prime if ℓ is the product of exactly

i distinct primes. Our safe primes will be in the set MG≤2 = MG1 ∪ MG2 of

primes p with (p − 1)/2 having either one or two prime factors. The set MG1

appears in several cryptographic protocols, but it is still unknown whether it is
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infinite – although there is no reason to doubt this. It seems unlikely that this

long-standing open problem will be resolved in the near future.

The purpose of this paper is to show that the safe primes in MG≤2

• exist in abundance,

• can be effectively generated,

• can be successfully used instead of MG1 primes in many protocols.

In order to place this in context, we assemble four properties of primes p from

the literature in the following table, where ℓ = (p− 1)/2.

Marie Germain ℓ prime

Marie Germain≤2 ℓ is prime or product of two primes

rough ℓ is a product of large primes

not smooth ℓ has a large prime divisor

We have not quantified the four notions, and at this point have the implications

Marie Germain =⇒ Marie Germain≤2 =⇒ rough =⇒ not smooth.

We now add more detail. The most stringent notion asks for ℓ to be a Sophie

Germain prime. This is also the most common one in the cryptographic literature.

It is put forth by Menezes, van Oorschot and Vanstone [25, Section 4.6.1] and by

Galbraith [11], and used in Shoup [30] and Hofheinz, Kiltz and Shoup [18] (and

even in the Wikipedia entry on “safe primes”). Furthermore, Naccache [26] also

uses this notion, but assumes incorrect heuristics for the probability of random

p and (p − 1)/2 to be prime. The work of Damgård and Koprowski [7] first

appeals to this notion, but says, correctly, on [7, p. 153] that “we do not even

know if there are infinitely many safe primes”. Indeed, it is conjectured that there

are about c x/ ln2 x Sophie Germain primes up to x, for some explicit constant

c; see Conjecture 6.1 below. If the conjecture is true, then one can efficiently

generate such primes. This works quite well in practice. However, the currently

available methods of analytic number theory have not even allowed to show that

there are infinitely many Sophie Germain primes. Thus no cryptosystem assuming

an infinite supply of them can be proven unconditionally to work.

As usual, we assume a security parameter n. Then “large” usually means values

which are exponential in n, for example primes with about n/2 bits, and moduli

with about n bits. “Small” means polynomial in n, that is, with O(logn) bits.

MG2 primes have not been used in cryptography, but we show in this paper that

they provide a useful concept: it can be efficiently sampled, and is good enough

for the cryptographic applications that we are aware of.
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In the third condition, y-rough is used with a small y, in the sense above. The

signature scheme of Gennaro, Halevi and Rabin [13] works with this notion, as

does the distributed moduli generation of Damgård and Koprowski [7] and of

Fouque and Stern [10]; they assume in the proof of their Theorem 2 that primes

are uniformly distributed. The roughness condition is also employed in [7,22,27],

where y is the number of players in a certain multiparty computation, and [28,

Section 3.5] says that “safe primes are unfortunately less dense than unrestricted

primes”, but no lower bound is attempted in this experimental paper. The work

of Joye and Paillier [22] gives a heuristic improvement for this task by sieving

modulo the product of small primes greater than 2 and making sure that (p− 1)/2

has no small factor by p being a nonsquare modulo each small prime. Clearly the

second notion implies this one, even with a value for y that may be as “large” as is

allowed in the second one.

The fourth notion requires that k have at least one “large” prime factor. This

used to be required for RSA moduli in some scenarios, in order to resist certain

factorization methods. It follows from the third notion when the smoothness and

roughness parameters are chosen identically, but is now considered obsolete. A

result of Baker and Harman [1] implies that the set of primes p for which p− 1 is

not p0.677-smooth is of positive relative density in the set of all primes.

Now take some p ∈ MG≤2 with only large prime factors in (p − 1)/2, and a

different prime q with the same property. Then the modulus N = pq enjoys the

following properties:

• N is a Blum integer,

• ϕ(N)/4 has only large prime factors,

• the square of a random element in the residue ring ZN is a generator of

the subgroup of squares in the unit group Z×
N with probability exponentially

close to 1.

For the Marie Germain≤2 primes, the topic of this paper, a quantified version of

these properties is proven in Theorem 5.2 and Corollary 5.3. Algorithmically, the

crux is to show that a certain rejection sampling process producing such integers

works in polynomial time, that is, the primes we generate form an inverse polyno-

mial fraction of all integers up to some bound. Our main technical tool is a result

of Heath-Brown [16].

Our interest in this theme has been spawned by the cryptosystem of Hofheinz,

Kiltz and Shoup [18], whose breaking (in the sense of IND-CCA2 security) is

equivalent to factoring the modulus N . This reduction is free of any unproved

hypotheses. They present two versions. One of them uses the Goldreich–Levin

predicate. The other one, simpler and more natural, takes the modulus as N =
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pq, where p and q are two distinct Marie Germain primes. As noted above, this

works well heuristically, but no proof for it is in sight. We show here that modern

analytic number theory is still powerful enough to close this gap in the argument

of Hofheinz, Kiltz and Shoup [18].

In the following, the letters ℓ, p, and q with or without subscripts denote prime

numbers, and for real x < y, we use [x . . y] and [x . . y]R to denote the sets of

integers and reals between x and y, respectively. We also use (x . . y] and (x . . y]R
in similar meanings. All our random choices are made uniformly from finite sets,

unless explicitly stated otherwise. We use the big-Oh notation and its relatives as

sets, so that

O(g) =
{

f : ∃c |f(x)| ≤ c · g(x) for sufficiently large x
}

,

where f and g are real functions, and pointwise operators, so that, for example,

g +O(h) = {g + f : f ∈ O(h)}.

Section 2 through 5 build up the required algorithmic machinery in several

steps. Just after Algorithm 3.1, we explain why a naive sampling method fails

and something like the approach of Section 2 is needed; see the end of Section 7

for a simpler but less efficient version. Sections 6 and 7 present extensions and

variations of our method, heuristics for the number of Marie Germain≤2 primes,

and, assuming these heuristics, more precise information about the runtime of our

algorithms.

2 Sampling the harmonic distribution

Our goal in this section is to sample the harmonic distribution which gives to an

integer k in some finite interval a probability proportional to 1/k. This yields an

approximately uniform sampling of integer points under a hyperbola in Algorithm

2.3, which in turn leads to the random unbalanced moduli in Algorithm 3.1.

We first recall the inversion method for the continuous version D∗ of this dis-

tribution; see [23, Section 3.4.1] and [9, Section III.2.2 B]. We have two positive

real numbers A < B, set

a∗ =
1

ln(B/A)
,

and take the continuous distribution D∗ on (A . .B]R with (cumulative) density

function

F ∗(x) =











0 if x < A,

a∗ ln(x/A) if A ≤ x ≤ B,

1 if x > B.
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Thus, choosing x according to D∗ is equivalent to prob(x ≤ y) = F ∗(y) for all

y ∈ (A . .B]R. On (A . .B]R, F ∗ takes values between 0 and 1, increases strictly

monotonically, and its functional inverse is

G∗(x) = Aex/a
∗

.

In particular, G∗(x) ∈ (A . .B] for x ∈ (0 . . 1]R.

The inversion method takes a sample u from the uniform real distribution on

(0 . . 1]R and sets x = G∗(u). Then for any y ∈ (A . .B]R, we have

prob(x ≤ y) = prob(G∗(u) ≤ y) = prob(u ≤ F ∗(y)) = F ∗(y).

Thus x samples D∗.

In several steps, we now transform this method into a discrete algorithm that

approximately samples the harmonic distribution. In a first step, we take positive

real numbers A < B, the harmonic number

Hn =
∑

1≤k≤n

1/k

for an integer n, set

a =
1

H⌊B⌋ −H⌊A⌋
(2.1)

and consider the discrete harmonic distribution D with

probD(k) =
a

k

on the integers k ∈ (A . .B]. We use the Euler–Mascheroni constant γ ≈ 0.57721

and the bounds

0 < Hn − (lnn+ γ) <
1

2n
; (2.2)

see [14] for sharper estimates which imply (2.2).

The value HA has a standard definition also for non-integral A. In order to avoid

confusion, we write H(A) for H⌊A⌋ in the following. For our rounded arguments,

we use |ln(1 + z)− z| ≤ z2 if |z| ≤ 1/2, and for A ≥ 4

|H(A)− (lnA+ γ)| = |H⌊A⌋ − lnA+ γ|

≤
∣

∣H⌊A⌋ − (ln⌊A⌋+ γ)
∣

∣+
∣

∣

∣
ln

⌊A⌋

A

∣

∣

∣

≤
1

2⌊A⌋
+

∣

∣

∣
ln
(

1 −
A− ⌊A⌋

A

)∣

∣

∣
≤

1

2⌊A⌋
+

1

A2
<

1

A
.
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For 4 ≤ A < B, we have

|H(B)−H(A)− ln(B/A)| =
∣

∣H(B)− (lnB + γ)− (H(A)− (lnA+ γ))
∣

∣

< B−1 + A−1 < 2A−1.

If also

ln(B/A) ≥ A−1 + (1 + A−2)1/2, (2.3)

then (ln(B/A)− 2A−1) · ln(B/A) ≥ 1 and

|a− a∗| =
∣

∣

∣

1

H(B)−H(A)
−

1

ln(B/A)

∣

∣

∣

=
|ln(B/A)− (H(B)−H(A))|

|H(B)−H(A)| · ln(B/A)

<
2A−1

|ln(B/A)− 2A−1| · ln(B/A)
≤ 2A−1. (2.4)

One can check that the densities of D∗ on integers and D agree closely, but we

do not need this here.

We now consider the inversion method, where u ∈ (0 . . 1]R is chosen uniformly

at random and the integer

t∗(u) = ⌊G∗(u)⌋ = ⌊Aeu/a
∗

⌋

is produced. Then A ≤ t∗(u) ≤ B. One can check that any k ∈ [A . .B] is

returned with probability a∗ ln(1 + 1/k) ∼ a∗/k · (1 +O(A−1)).

In the next step, we replace u by a discrete approximation and again round

G∗(u) down. So we have a (large) positive integer M , choose an integer v ∈
(0 . .M ] uniformly at random, so that v/M is an approximation of u as above, and

produce

t(v) = ⌊G∗(v/M)⌋ = ⌊Aev/a
∗M⌋. (2.5)

For k ∈ (A . .B], we let

V =
{

v ∈ (0 . .M ] : t(v) = k
}

= t−1(k),

so that b1(k) = #V/M is the probability with which k = t(v). We now claim that

b1(k) is close to a∗/k, and provide an error estimate for the approximation quality.

For real x < y, the number of integers in (x . . y] satisfies

∣

∣#(x . . y]− (x− y)
∣

∣ ≤ 1. (2.6)
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Using F ∗(k + 1) − F ∗(k) = a∗ ln(1 + k−1), we have

v ∈ V ⇐⇒ k ≤ G∗
( v

M

)

< k + 1

⇐⇒ F ∗(k) ≤
v

M
< F ∗(k + 1)

⇐⇒ MF ∗(k) ≤ v < MF ∗(k + 1).

Therefore
∣

∣#V − a∗M ln(1 + k−1)
∣

∣ ≤ 1.

For k ≥ 2 we find

∣

∣

∣
b1(k)−

a∗

k

∣

∣

∣
=

∣

∣

∣

#V

M
−

a∗

k

∣

∣

∣

≤
∣

∣

∣

#V

M
− a∗ ln

(

1 +
1

k

)∣

∣

∣
+

∣

∣

∣
a∗ ln

(

1 +
1

k

)

−
a∗

k

∣

∣

∣

≤
1

M
+

a∗

k2
=

a∗

k

(1

k
+

k

a∗M

)

≤
a∗

k

( 1

A
+

B

a∗M

)

. (2.7)

None of the methods sketched so far can be literally implemented on a com-

puter, since we cannot compute a real number like ev/aM exactly. So we now

consider floating-point computations with real numbers using m0 bits of preci-

sion. We take some n so that all quantities in the algorithm are absolutely at most

2n. We assume m0 > n and set m = m0 − n. Then if a real value r is to be

computed, the algorithm computes some r̃ with |r− r̃| < 2−m = ε, which we call

an m-bit approximation (which in standard parlance is an m0-bit approximation).

We assume some standard representation where ⌊r̃⌋ can be computed exactly, by

truncating after the decimal (or binary) point. This leads to the following algo-

rithm.

Algorithm 2.1 (Sampling the harmonic distribution).

INPUT: Positive real numbers A and B with 4 ≤ A < B, and positive integers

M and m.

OUTPUT: An integer in [A . .B].

(1) Choose an integer v ∈ [1 . .M ] uniformly at random.

(2) Calculate an m-bit approximation s̃ to Aev ln(B/A)/M .

(3) Return ⌊s̃⌋.
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Theorem 2.2. We assume that B < M < 2n and

m ≥ log2

( M

A ln(B/A)

)

, (2.8)

and we calculate numerically with precision m+ n.

(i) Let k ∈ (A . .B] and

δ1 =
a∗ + 2

a∗A
+

3B

a∗M
+

1

2m−2
, (2.9)

and assume that (2.3) holds. Then the probability b2(k) that k is returned by

the algorithm satisfies
∣

∣

∣
b2(k)−

a

k

∣

∣

∣
≤

a∗δ1

k
.

(ii) Any output of Algorithm 2.1 is in [A . .B] and the algorithm uses time poly-

nomial in m+ n.

Proof. For 1 ≤ v ≤ M , we write s(v) = A(B/A)v/M = Aev/a
∗M = G∗(v/c),

t(v) = ⌊s(v)⌋ as in (2.5), and s̃(v) for the approximation to s(v) calculated in

step (2). Since rounding down is exact, t̃(v) = ⌊s̃(v)⌋ is returned in step (3).

(ii): By assumption, we have A/a∗M ≥ ε = 2−m. For any v ≥ 1, we have

s̃(v) ≥ s(v)− ε ≥ s(1)− ε = Ae1/a∗M − ε ≥ A
(

1 +
1

a∗M

)

− ε ≥ A

and t̃(v) ≥ A. For any v ≤ M , we have

s̃(v) ≤ s(v) + ε ≤ s(M) + ε = Aeln(B/A) + ε = B + ε

and t̃(v) ≤ B. It is well known how to compute numerically the required approx-

imations to ln(B/A), ev ln(B/A)/M = (B/A)v/M , and s(v) in time polynomial in

m+ n; see [5, Sections 4.2.5, 4.4] for some details.

(i): We take some k ∈ (A . .B] and want to show that b2(k) is close to a/k. We

define the five real intervals

S = [k . . k + 1)R,

S0,+ = [k . . k + ε)R,

S0,− = [k − ε . . k)R,

S1,+ = [k + 1 . . k + 1 + ε)R

S1,− = [k + 1 − ε . . k + 1)R.
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We take t−1(k) = {v ∈ [1 . .M ]: t(v) = k}, and similarly for t̃. Then

t−1(k) = s−1(S),

s−1(S r (S0,+ ∪ S1,−)) ⊆ t̃−1(k) ⊆ s−1(S ∪ S0,− ∪ S1,+).
(2.10)

We start by considering the case s(v) ∈ S0,+. Then s(v) = k + γ0 with

0 ≤ γ0 < ε. Setting γ1 = γ0/k, we have 0 ≤ γ1 < ε/k < 1/2 and G∗(v/M) =
s(v) = k(1 + γ1). Furthermore,

v

M
= F ∗ ◦G∗

( v

M

)

= F ∗(k(1 + γ1)) = F ∗(k) + a∗ ln(1 + γ1)

and

0 ≤ ln(1 + γ1) ≤ 2γ1 <
2ε

k
.

Therefore

v = MF ∗(k) + a∗M ln(1 + γ1) ∈
[

MF ∗(k) . .MF ∗(k) +
2εa∗M

k

)

which in turn implies that

#s−1(S0,+) ≤
2εa∗M

k
+ 1.

One finds the same bound for #s−1(S1,−), #s−1(S0,−), and #s−1(S1,+). It now

follows that

#s−1(S0,+ ∪ S1,−), #s−1(S0,− ∪ S1,+) ≤
4εa∗M

k
+ 2.

Let A be the algorithm described by (2.5), which is just the exact version of

Algorithm 2.1, with s(v) in step (2) calculated exactly and output t(v). Now A
works well and returns k with probability b1(k) close to a∗/k, namely satisfying

(2.7). By (2.10), this happens if and only if s(v) ∈ S, so that

∣

∣

∣

#s−1(S)

M
−

a∗

k

∣

∣

∣
=

∣

∣

∣
b1(k)−

a∗

k

∣

∣

∣
≤

a∗

k

( 1

A
+

B

a∗M

)

,

Moreover,

#s−1(S)−
(4εa∗M

k
+ 2

)

≤ #s−1(S r (S0,+ ∪ S1,−)) ≤ #t̃−1(k)

≤ s−1(S ∪ S0,− ∪ S1,+)

≤ #s−1(S) +
4εa∗M

k
+ 2.
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Using (2.4), it follows that

∣

∣

∣
b2(k)−

a

k

∣

∣

∣
≤

∣

∣

∣

#t̃−1(k)

M
−

a∗

k

∣

∣

∣
+

∣

∣

∣

a∗ − a

k

∣

∣

∣

≤
∣

∣

∣

#t̃−1(k)− #s−1(S)

M

∣

∣

∣
+

∣

∣

∣

#s−1(S)

M
−

a∗

k

∣

∣

∣
+

2

Ak

≤
4εa∗

k
+

2

M
+

a∗

k

( 1

A
+

B

a∗M

)

+
2

Ak

≤
a∗

k

(

4ε+
2B

a∗M
+

1

A
+

B

a∗M
+

2

a∗A

)

=
a∗δ1

k
.

Using the penultimate rather than the last bound in (2.7), we can replace the

summand σ = 1/A + 3B/a∗M by σk = 1/k + 3k/a∗M . As a function of a real

variable k on (A . .B]R, σk is convex, and σ can be replaced by max{σA, σB}.

This equals σB if and only if a∗M ≥ 3AB.

We now present a method to generate almost uniformly random pairs of positive

integers under a hyperbola xy = D.

Algorithm 2.3 (Random integers under a hyperbola).

INPUT: Positive real numbers 8 ≤ A < B < C < D < 2n, and integers M
and m greater than 1.

OUTPUT: A pair (k1, k2) of integers with k1 ∈ [A . .B] and k1k2 ∈ [C . .D].

(1) Call Algorithm 2.1 with inputs A, B, M , and m, and output k1, calculating

numerically with precision m+ n.

(2) Choose a uniformly random integer k2 ∈ [C/k1 . .D/k1].

(3) Return (k1, k2).

For any pair (k1, k2) of integers, we let b3(k1, k2) be the probability with which

it is returned by the algorithm, and write

K =
{

(k1, k2) : k1 ∈ [A . .B], k1k2 ∈ [C . .D]
}

. (2.11)

For A = C = 1 and B = D, #K =
∑

k≤D τ (k) equals 2D times the average

value of Dirichlet’s divisor function τ on [1 . .D]. In our application, B ≈ D1/2 is

much smaller than D.

Theorem 2.4. We assume that (2.3) and (2.8) hold, a is as in (2.1), δ1 as in (2.9),

and set

δ2 =
(a+ 1)B + 2δ1(D − C + aB)

D − C −B
.
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(i) Any output of Algorithm 2.3 satisfies the output specification and for any

(k1, k2) ∈ K we have

∣

∣

∣
b3(k1, k2)−

1

#K

∣

∣

∣
<

δ2

#K
.

(ii) The algorithm uses time polynomial in m, n, and lnM .

Proof. For k1 ∈ [A . .B], the number d(k1) of choices in step (2) satisfies by (2.6)

∣

∣

∣
d(k1)−

D − C

k1

∣

∣

∣
≤ 1.

It follows that

d(k1) ≥
D − C

k1
− 1 ≥

D − C −B

k1
.

Hence

∣

∣

∣

1

d(k1)
−

k1

D − C

∣

∣

∣
=

∣

∣

∣

D − C − k1d(k1)

d(k1)(D − C)

∣

∣

∣

≤
k1

d(k1)(D − C)
≤

k2
1

(D − C)(D − C −B)
.

Furthermore,

∣

∣

∣
#K −

D − C

a

∣

∣

∣
=

∣

∣

∣

∑

A<k1≤B

d(k1)− (D − C)(H(B)−H(A))
∣

∣

∣

=
∣

∣

∣

∑

A<k1≤B

(

d(k1)−
D − C

k1

)
∣

∣

∣
≤

∑

A<k1≤B

1 < B. (2.12)

Since b3(k1, k2) = b2(k1)/d(k1), we have

#K · b3(k1, k2)− 1 = b2(k1) ·
#K

d(k1)
− 1

=
a

k1
·
D − C

a
·

k1

D − C
+

(b2(k1)− a/k1)#K

d(k1)
+

a(#K − (D − C)/a)

k1d(k1)

+
(D − C)(d(k1)

−1 − k1/(D − C))

k1
− 1

=
(k1b(k1)− a)#K

k1d(k1)
+

a#K − (D − C)

k1d(k1)
+

(D − C)− k1d(k1)

k1d(k1)
.
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Therefore,

k1d(k1) · |#K · b3(k1, k2)− 1|

≤ a∗δ1#K + aB + (D − C)d(k1) ·
k2

1

(D − C)(D − C +B)
.

Finally, we derive

#K ·
∣

∣

∣
b3(k1, k2)−

1

#K

∣

∣

∣
≤

a∗δ1#K + aB + k2
1d(k1)/(D − C +B)

k1d(k1)

=
aB + a∗δ1#K

k1d(k1)
+

k1

D − C +B

≤
aB + (a+ 2A−1)δ1((D − C)/a+B)

k1 · (D − C −B)/k1

+
B

D − C +B

<
(a+ 1)B + 2δ1(D − C + aB)

D − C −B
= δ2.

The time bound claimed in (ii) follows from Theorem 2.2.

3 Uniform unbalanced moduli

As a next step, we present an efficient algorithm to generate (almost) uniformly

random unbalanced RSA moduli, where one prime factor is allowed to be consid-

erably smaller than the other one. The natural rejection sampling process cannot

be proved to be efficient in this situation, as explained after stating the algorithm.

This is used to generate safe primes in Section 4, which in turn leads to the safe

moduli of Section 5, the ultimate goal of this paper.

Algorithm 3.1 (Random unbalanced moduli).

INPUT: Positive real numbers 8 ≤ A < B < C < D.

OUTPUT: Primes ℓ1 6= ℓ2 so that A ≤ ℓ1 ≤ B and C ≤ ℓ1ℓ2 ≤ D.

(1) Compute M = ⌈6AB⌉ and m = ⌈log2 6B⌉.

(2) Repeat steps (2a) and (2b) until primes ℓ1 and ℓ2 are found.

a. Call Algorithm 2.3 with the input values as above and output (k1, k2).

b. If k1 and k2 are distinct primes, set ℓ1 = k1 and ℓ2 = k2.

(3) Return (ℓ1, ℓ2).
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Figure 1. Distribution of 1 000 000 prime pairs (ℓ0, ℓ1) obtained from different sam-

pling algorithms for x = 216.

For simplicity, the algorithm does not return the unbalanced modulus N = ℓ1ℓ2

explicitly.

As an alternative one might consider the naive approach of generating uniformly

randomly first ℓ1 ∈ [A . .B] and then ℓ2 ∈ [C/ℓ1 . .D/ℓ1].
This naive approach fails for the following reason. Assume that C = o(D),

A and B are of different orders of magnitude, smaller than that of D, and let

π(x) denote the number of primes up to x. Then there are about π(D/ℓ1) ∼
D/ℓ1 ln(D/ℓ1) ∼ D/ℓ1 lnD possibilities for ℓ2, and a particular ℓ2 is chosen with

probability proportional to ℓ1. The same holds for any particular (ℓ1, ℓ2). This

value is exponentially smaller for small values of ℓ1 (close to A) than for large ones

(close to B). Thus the distribution on (ℓ1, ℓ2) is highly nonuniform, as illustrated

by the left heat diagram in Figure 1 which is taken from the work of Ziegler and

Zollmann [35]. In Algorithm 4.1 below we need (approximately) uniform (ℓ1, ℓ2),
and this is actually delivered by Algorithm 3.1 as shown on the right of Figure 1.

In the usual RSA key generation, one typically uses primes from dyadic inter-

vals, that is with B = 2A, and then this nonuniformity is not much of a problem.

We recall the set K of integer pairs from (2.11), and δ2 from Theorem 2.4. For

our values of A, B, C, and D, we set

X =
{

(ℓ1, ℓ2) : ℓ1 and ℓ2 distinct primes,

ℓ1 ∈ [A . .B], ℓ1ℓ2 ∈ [C . .D]
}

⊆ K, (3.1)

a1 =
1

ln lnB − ln lnA
=

1

ln(logA(B))
. (3.2)

We have the following bounds on a1 and the size of X .
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Lemma 3.2. Let 8 ≤ A < B < C < D be real numbers with

2a1 ≤ ln2 A, (3.3)

82A lnA ≤ 41B ≤ D, (3.4)

234 ≤ D. (3.5)

Then
∣

∣

∣
a−1

1 −
∑

A≤ℓ≤B

1

ℓ

∣

∣

∣
≤

1

ln2 A
(3.6)

and
D

5a1 lnD
≤

D

5a1 ln(D/A)
≤ #X ≤

2D

a1 ln(D/B)
. (3.7)

Proof. Mertens’ theorem, see [29, Theorem 5], implies that

ln lnB + c−
1

2 ln2 B
≤

∑

ℓ≤B

1

ℓ
≤ ln lnB + c+

1

2 ln2 B

for some constant c, from which (3.6) follows. An explicit formula and the ap-

proximation 0.26150 for c are given in [32, § I.1.6]. There are at most D1/2 pairs

(k1, k2) with k1 = k2 and k2
1 ≤ D. We first bound from below the size of X as

#X ≥
∑

A≤ℓ1≤B

(

π(D/ℓ1)− π(C/ℓ1)
)

−D1/2

≥
∑

A≤ℓ1≤B

(

π(D/ℓ1)− π(D/2ℓ1)
)

−D1/2. (3.8)

The asymptotic value of #X is given in Theorem 6.2 below. Now since D/2ℓ1 ≥
D/2B ≥ 20.5 by (3.4), we see that [29, Corollary 3] implies that

π(D/ℓ1)− π(D/2ℓ1) ≥
3D

5ℓ1 ln(D/ℓ1)
>

D

2ℓ1 ln(D/A)
.

It follows that

D1/2 + #X ≥
D

2 ln(D/A)

∑

A≤ℓ1≤B

1

ℓ1
≥

D

2 ln(D/A)

( 1

a1
−

1

ln2 A

)

≥
D

2 ln(D/A)

( 1

a1
−

1

2a1

)

=
D

4a1 ln(D/A)
.

The assumptions (3.3) and (3.5) yield

20a1 ln(D/A) ≤ 10 ln2 A lnD < 10 ln3 D ≤ D1/2
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and
D

5a1 lnD
≤

D

5a1 ln(D/A)
≤

D

4a1 ln(D/A)
−D1/2 ≤ #X.

Furthermore, (3.3) and [29, Corollary 2] imply that

#X ≤
∑

A≤ℓ1≤B

π
(D

ℓ1

)

≤
∑

A≤ℓ1≤B

5D

4ℓ1 ln(D/ℓ1)
≤

5D

4 ln(D/B)

∑

A≤ℓ1≤B

1

ℓ1

≤
5D

4 ln(D/B)

(

a−1
1 +

1

ln2 A

)

<
2D

a1 ln(D/B)

which concludes the proof.

Theorem 3.3. Let 8 ≤ A < B < C < D ≤ 2n be real numbers, assume that

(3.3), (3.4), and (3.5) hold, and also

42 lnB ≤ A, AB + C ≤ D. (3.9)

Then the following hold.

(i) We have δ2 ≤ (14 lnB)/A ≤ 1/3 and Algorithm 3.1 returns an element of

X , and for any pair (ℓ1, ℓ2) ∈ X , the probability b4(ℓ1, ℓ2) with which it is

returned satisfies
∣

∣

∣
b4(ℓ1, ℓ2)−

1

#X

∣

∣

∣
≤

3δ2

#X
.

(ii) The algorithm performs an expected number in O(a1n
2) of repetitions of

steps (2a) and (2b), and has expected runtime polynomial in a1n.

Proof. We begin with numerical computations that verify some assumptions in

previous results. For starters, the condition (2.3) follows from

ln(B/A) ≥ ln 4 > 8−1 + (1 + 8−2)1/2 ≥ A−1 + (1 +A−2)1/2.

Next, we find an upper bound on δ1:

a∗ + 2

a∗A
=

1 + 2 ln(B/A)

A
<

2 lnB

A
,

1

2m−2
<

1

A
<

lnB

2A
,

3B

a∗M
<

lnB

2A
,

δ1 <
3 lnB

A
.
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For the upper bound on δ2, we have from (2.4) that

a ≤ a∗ + 2A−1 = (ln(B/A))−1 + 2A−1 ≤ 1/ln 4 + 1/4 < 1,

so that (a + 2)B < 3B ≤ D − C and (D − C + aB)/(D − C − B) ≤ 2.

Furthermore,

AB/(2 lnB) +B ≤ AB/4 +B < AB ≤ D − C

and

(a+ 1)B < 2B ≤ (2 lnB)(D − C −B)/A,

which, together with (3.9), implies the claimed bounds on δ2.

We also have

M

a ln(B/A)
<

7AB

a ln(B/A)
<

7B

ln 4
< 6B,

so that (2.8) is satisfied.

For the analysis of the algorithm we have, by the equation (2.12) and with a as

in (2.1), that

#K ≤
D − C + aB

a
.

Let (k1, k2) ∈ K. Since the inequality (2.3) holds, Theorem 2.4 says that the

probability b3(k1, k2) that (k1, k2) is returned by Algorithm 2.3 satisfies

∣

∣

∣
b3(k1, k2)−

1

#K

∣

∣

∣
≤

δ2

#K
.

Thus some element of X is returned in one execution of steps (2a) and (2b) with

probability at least

(1 − δ2)#X

#K
≥

(1 − δ2)aD

5a1(D − C + aB) lnD
≥

(1 − δ2)a

10a1 lnD
.

Since a−1 ∈ O(lnB), the expected number of executions until success is at most

10a1 lnD

(1 − δ2)a
∈ O(a1 lnD · lnB) ⊆ O(a1n

2).

Now let r = #X/#K and denote as t the random variable counting the number

of repetitions until success. For any k = (k1, k2) ∈ K, the probability for output

k satisfies

(1 − δ2)r ≤ prob(k ∈ X) ≤ (1 + δ2)r,

1 − (1 + δ2)r ≤ prob(k 6∈ X) ≤ 1 − (1 − δ2)r.
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Since the random choices in different repetitions are independent, we have for any

i ≥ 0

prob(t > i) = (prob(k 6∈ X))i ≥ (1 − (1 + δ2)r)
i.

Thus for any (ℓ1, ℓ2) ∈ X , we have

prob
(

t = i+ 1 and (ℓ1, ℓ2) is found
)

≥ (1 − (1 + δ2)r)
i 1 − δ2

#K
,

and

b4(ℓ1, ℓ2) ≥
1 − δ2

#K

∑

i≥0

(1 − (1 + δ2)r)
i =

1 − δ2

(1 + δ2)#X
≥

1 − 2δ2

#X
.

A similar calculation shows that

b4(ℓ1, ℓ2) ≤
1 + δ2

(1 − δ2)#X
≤

1 + 3δ2

#X
.

Primality of an integer can be tested in random polynomial time, see [6, § 3.4],

and the claimed cost bound follows.

4 Safe primes

We use the following notation, for any α with 0 ≤ α < 1/2.

P = set of primes,

MG1 =
{

p ∈ P : (p− 1)/2 prime
}

,

MG2,α =
{

p ∈ P : (p− 1)/2 = ℓ1ℓ2 with ℓ1 < ℓ2 primes and (ℓ1ℓ2)
α ≤ ℓ1

}

.

Furthermore, P (x), MG1(x), and MG2,α(x) are the corresponding subsets of

those p with p ≤ x, and π(x), π1(x), and π2,α(x) denote the respective cardi-

nalities. An integer ℓ is a Sophie Germain prime if and only if 2ℓ + 1 ∈ MG1 is a

Marie Germain prime, as defined in the Introduction, and MG2 = MG2,0. The last

condition in our definition of MG2,α is equivalent to ℓ2 ≤ ℓ
1/α−1
1 when α 6= 0.

Algorithm 4.1 (Generating a safe prime).

INPUT: Positive bounds x and α < 1/2.

OUTPUT: A prime p with x/ ln2 x < p ≤ x.

(1) Compute y0 = (x− ln2 x)/2 ln2 x and y1 = (x− 1)/2.
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(2) Repeat steps (3)–(6) until a prime is returned.

(3) Choose a random prime ℓ ∈ [y0 . . y1].

(4) If 2ℓ+ 1 is prime then return p = 2ℓ+ 1.

(5) Using Algorithm 3.1 with inputs (A,B,C,D) = (xα, x1/2, y0, y1), choose

an approximately uniformly random sample from the pairs (ℓ1, ℓ2) of primes

with ℓ1 ∈ [xα . . x1/2] and ℓ1ℓ2 ∈ [y0 . . y1].

(6) If 2ℓ1ℓ2 + 1 is prime then return p = 2ℓ1ℓ2 + 1.

The interesting question is how many repetitions we expect to perform.

Theorem 4.2. (i) Any p returned by the algorithm satisfies the output specifica-

tion, and p ≡ 3 mod 4. For any output p, (p − 1)/2 is squarefree with at

most two prime divisors, and each of them is at least xα.

(ii) Let 0.25 ≤ α < 0.276 and let n be sufficiently large. For an input x ∈
[2n−1 . . 2n]R, the expected number of repetitions made by Algorithm 4.1 until

an output is returned is O(n), and the expected runtime of the algorithm is

polynomial in n.

Proof. An ℓ leading to an output in step (4) satisfies ℓ ≥ y0 > xα. Suppose

that (ℓ1, ℓ2) is chosen in step (5) and that p = 2ℓ1ℓ2 + 1 is returned in step (6).

Then xα ≤ ℓ1 ≤ x1/2 and ℓ2 ≥ y0/ℓ1 ≥ (x − ln2 x)/2x1/2 ln2 x > xα. Also

ℓ1 6= ℓ2, since 3 divides 2ℓ2 + 1 for every prime ℓ 6= 3. Thus any output has the

stated properties. The primality tests can be performed in polynomial time. The

assumptions of Theorem 3.3 are easily checked, and thus also one execution of

step (5) uses polynomial time. It is sufficient to show the claim about the expected

number of repetitions.

Our main tool is a result of Heath-Brown [16, Lemma 1] taken with k = 1,

K = 2, any u ∈ {3, 7, 11, 15}, and v = 16, which implies that

π1(x) + π2,0.276(x) ≥
cx

ln2 x
(4.1)

for some constant c > 0. No explicit value for c is known.

By (4.1), at least one (possibly both) of the alternatives

π1(x) ≥
cx

2 ln2 x
(4.2)

and

π2,0.276(x) ≥
cx

2 ln2 x
(4.3)
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holds. In this and the next section, we make no attempt to optimize constants, and

even use the trivial form

x

2 ln x
≤ π(x) = #P (x) ≤

2x

lnx

of the Prime Number Theorem.

We consider the “shifted multiplication” map µ with µ((ℓ1, ℓ2)) = 2ℓ1ℓ2 + 1,

and

X1 =
{

2ℓ+ 1 :
x

ln2 x
< 2ℓ+ 1 ≤ x, ℓ prime

}

,

Y1 = X1 ∩ P,

X2 =
{

(ℓ1, ℓ2) : ℓ1 ∈ [xα . . x1/2] and ℓ2 ∈
[y0

ℓ1
. .
y1

ℓ1

]

primes
}

,

Y2 = µ(X2) ∩ P.

(4.4)

By the Prime Number Theorem, we have #X1 ≤ π(x/2) < 2x/ ln x. Since

2y0 + 1 = x/ ln2 x, we have MG1(x) ⊆ Y1 ∪ P (x/ ln2 x), the integers 2ℓ + 1

tested in step (4) are uniformly distributed in X1, and 2ℓ + 1 is returned if it is in

Y1. Since n is sufficiently large, we may assume n > 1 + 18/c and x > e12/c, so

that for

a2 =
1

c− 6/ ln x

we have 0 < a2 ≤ 2/c. If (4.2) holds, then with

#Y1 ≥ π1(x)− π
( x

ln2 x

)

≥
cx

2 ln2 x
−

2x

ln2 x · ln(x/ ln2 x)

≥
cx

2 ln2 x
−

3x

ln3 x
=

x

2a2 ln2 x
≥

cx

4 ln2 x
. (4.5)

Thus the expected number of repetitions of steps (3) and (4) is at most

#X1

#Y1
<

2x/ ln x

cx/4 ln2 x
=

8 ln x

c
∈ O(n).

The claim follows in this case.
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Now we assume that (4.2) does not hold, so that (4.3) does. We have

1.4 < a1 =
1

− ln 2α
< 1.7.

Now X2 is the set X defined in (3.1) for our input parameters (A,B,C,D) =
(xα, x1/2, y0, y1). By Lemma 3.2, we have

#X2 ≤
2x

a1 ln((x− 1)/2x1/2)
≤

2x

a1(0.5 ln x− 1)
≤

4x

lnx
.

An asymptotic formula for #X2 is provided in Theorem 6.2, but at this stage, the

above upper bound suffices.

Now let β = 0.276 and p = 2ℓ1ℓ2 + 1 ∈ MG2,β(x) with ℓ1 < ℓ2. Then

either ℓ1ℓ2 < y0 or (y0 ≤ ℓ1ℓ2 ≤ y1 and ℓ1 < ℓ2 ≤ ℓ
1/β−1
1 ). In the latter case,

we have ℓ2
1 < ℓ1ℓ2 ≤ y1 and ℓ1 ≤ y

1/2
1 < x1/2. Furthermore, α < β and

xα < yβ0 ≤ (ℓ1ℓ2)
β ≤ ℓ1, so that (ℓ1, ℓ2) ∈ X2. It follows that p ∈ Y2, and hence

MG2,β(x) ⊆ Y2 ∪ P (2y0 + 1) and, similar to (4.5),

#Y2 ≥ π2,β(x)− π(2y0 + 1) ≥
cx

2 ln2 x
− π

( x

ln2 x

)

≥
cx

4 ln2 x
.

Since Y2 ⊆ µ(X2), we have µ(µ−1(Y2)) = Y2 and #µ−1(Y2) ≥ #Y2. Success

occurs in step (6) if (ℓ1, ℓ2) ∈ µ−1(Y2), and any (ℓ1, ℓ2) is chosen in step (5) with

probability at least (1−3δ2)/#X2 by Theorem 3.3, whose assumptions are readily

checked. Then the probability of success is at least

1 − 3δ2

#X2
· #µ−1(Y2) ≥

(1 − 3δ2)#Y2

#X2
.

It follows that the expected number of repetitions of steps (5) and (6) until

success is at most

#X2

(1 − 3δ2)#Y2
≤

4x/ lnx

(1 − 3δ2) · cx/4 ln2 x
∈ O(n),

which concludes the proof.

More detailed calculations show that any n ≥ max{18/c, 155} is sufficiently

large for the conclusions to hold, for α = 1/4.

On the other hand, for an asymptotic result we can replace the lower bound in

the output specification by p ≥ a(y) · y/ ln y for any function a ∈ o(1).
An output p from step (4) is uniformly random in the set Y1 from (4.4), and

by Theorem 3.3 (i), an output from step (6) is approximately random in Y2. After

Conjecture 6.3 below, we address the question of how to make p in either case

uniformly random in Y1 ∪ Y2.
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5 Safe moduli

We generate a safe modulus N = pq from two executions of Algorithm 4.1.

Algorithm 5.1 (Generating a safe modulus).

INPUT: Positive bounds y and α with 1/4 ≤ α < 0.276.

OUTPUT: A modulus N with y/ ln2 y ≤ N ≤ y.

(1) Repeat steps (2)–(4) until a modulus is returned.

(2) Call Algorithm 4.1 with inputs x = y1/2 and α, and output p.

(3) Call Algorithm 4.1 with inputs x = y/p and α, and output q.

(4) If gcd((p− 1)/2, (q − 1)/2) = 1, then return N = pq.

A Blum integer is a product of two primes, both congruent to 3 modulo 4. These

have been introduced by Blum, Blum and Shub [4].

Theorem 5.2. (i) Any output N satisfies the output specification and is a Blum

integer. Furthermore, ϕ(N)/4 is squarefree with at most four prime factors,

and each of these is at least yα/2.

(ii) For n sufficiently large and y ∈ [2n−1 . . 2n]R, the expected number of repeti-

tions in Algorithm 5.1 until an output N is returned is at most 1+y−1/8 ln2 y
< 2, and the expected runtime of the algorithm is polynomial in n.

Proof. (i) The claims follow from Theorem 4.2, using the fact that y/p ≥ y1/2.

(ii) We write ℓ0 or (ℓ1, ℓ2) for the choice that leads to an output p in step (2),

depending on whether step (4) or step (6) of the call to Algorithm 4.1 is successful,

and similarly r0 or (r1, r2) for step (3). We denote as R0, R1, and R2 the sets of

possible values for r0, r1, and r2, respectively. Since ℓ1 6= ℓ2 and r1 6= r2, the gcd

condition in step (4) is violated only if one of r0, r1, r2 equals one of ℓ0, ℓ1, ℓ2. We

write b5 for the probability of this event, conditioned on some output p of step (2),

and distinguish two cases.

In the first case, the second call to Algorithm 4.1 returns from its step (4). Then

r0 has to avoid at most two values, so that b5 ≤ 2/#R0, since r0 is chosen uni-

formly in R0.

In the second case, Algorithm 4.1 returns from its step (6). Then Theorem 3.3

implies that (r1, r2) assumes any specific value with probability at most (1 +
3δ2)/#X < 2/#X with X from (3.1). There are at most two values that both



22 J. von zur Gathen and I. E. Shparlinski

r1 and r2 have to avoid. This makes for a total of at most 2#R1 + 2#R2 pairs to be

avoided by #R1 choices and

b5 ≤
4#R1 + 4#R2

#X
. (5.1)

We now prove upper bounds on the three #Ri. By Theorem 4.2, the output p of

step (2) satisfies

4y1/2

ln2 y
=

y1/2

ln2 y1/2
≤ p ≤ y1/2.

In step (2) of Algorithm 4.1, when called in step (3) of Algorithm 5.1, we have

y0 ≤ y1/2 and

y1 =
y/p− 1

2
,

#R0 = π(y1)− π(y0) ≥ π(y1)− π(y1/2)

≥
3 · y1/2

5 · ln(y1/2)
≥

y1/2

10 ln(y1/2/6)
>

y1/2

5 ln y
,

b5 <
10 ln y

y1/2
<

ln y

2y1/8
.

For the second case, we have in step (4) of the same call to Algorithm 4.1

(y/p)α ≤ r1 ≤ (y/p)1/2,

#R1 = π
(

(y/p)1/2
)

− π
(

(y/p)α/2
)

< π
(y1/4 ln y

2

)

< 4y1/4,

y/p− 1

2r1
<

y

2pr1
≤

y1−α

2p1−α
≤

y(1−α)/2(ln y)2−2α

5
≤

y3/8 ln3/2 y

5
.

Finally

#R2 = π
(y/p− 1

2r1

)

− π
(y/p− ln2(y/p)

2r1 ln2(y/p)

)

< π
(y3/8 ln3/2 y

5

)

≤ 2y3/8 ln1/2 y.

From (3.7) with the parameters B = (y/p)1/2 = A1/2α and D = y/p ≥ y1/2

we obtain

#X ≥
y1/2 · (− ln(2α))

5 · ln y1/2
>

y1/2

2 ln y
.
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It follows that in the second case we have in (5.1)

b5 ≤
4 · (4y1/4 + 2y3/8 ln1/2 y) · 2 ln y

y1/2
≤

ln2 y

2y1/8
.

The gcd condition holds in any case with probability at least 1 − b5, and the

number of iterations is at most (1 − b5)
−1 ≤ 1 + 2b5 ≤ 1 + y−1/8 ln2 y.

Section 7 presents more details on the runtime of Algorithms 4.1 and 5.1.

Corollary 5.3. Let N be an output of Algorithm 5.1. For uniformly random a ∈
Z×
N , a2 generates the group of squares in Z×

N with probability at least 1−4N−1/8.

Proof. We have

Z×
p
∼= Z2 × Z(p−1)/2,

Z×
N

∼= Z2
2 × Z(p−1)/2 × Z(q−1)/2

∼= Z2
2 × Zϕ(N)/4,

by the condition in step (4).

The set �N of squares in Z×
N is isomorphic to Zϕ(N)/4 and hence cyclic with

ϕ(ϕ(N)/4) generators. The squaring map from Z×
N to �N is 4-to-1, and for a

uniformly random a ∈ Z×
N we have

prob
{

a ∈ Z×
N : a2 generates �N

}

=
ϕ(ϕ(N)/4)

ϕ(N)/4
. (5.2)

We first consider the case where both p and q come from step (6) of the re-

spective call to Algorithm 4.1. We can then write ϕ(N)/4 = ℓ1ℓ2r1r2, with four

distinct primes ℓ1, ℓ2, r1, r2, by Theorem 4.2 and the condition in step (4) of

Algorithm 5.1. These primes are all at least yα/2, and

ϕ(ϕ(N)/4)

ϕ(N)/4
=

(

1 −
1

ℓ1

)(

1 −
1

ℓ2

)(

1 −
1

r1

)(

1 −
1

r2

)

≥ 1 −
( 1

ℓ1
+

1

ℓ2
+

1

r1
+

1

r2

)

≥ 1 −
4

yα/2
≥ 1 −

4

Nα/2
≥ 1 −

4

N1/8
.

The last estimate also holds for the other possibilities for the factors of p − 1 and

q − 1. Together with (5.2), this concludes the proof.

As y grows, the lower bound of Corollary 5.3 comes exponentially close to 1.
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Corollary 5.4. Let n be a sufficiently large integer. Then we can generate in ex-

pected time polynomial in n an RSA modulus N = pq so that

• 2n/n2 ≤ N ≤ 2n,

• ϕ(N)/4 = (p− 1)(q − 1)/4 is squarefree with at most four prime factors,

• each such prime factor is at least 2n/8,

• for uniformly random a ∈ Z×
N , a2 generates the group of squares in Z×

N with

probability at least 1 − 4 · 2−n/8.

It follows that the moduli presented here can be used in the encryption scheme

of Hofheinz, Kiltz and Shoup [18]. If g generates �N , then |g| generates the group

QR+
N of signed quadratic residues, in their notation. The factoring assumption

then refers to the moduli generated by Algorithm 5.1.

For various notions of RSA integers, their number is estimated in [8, 24, 34].

6 Heuristic estimates and extended range

It is interesting to compare the number of Marie Germain primes to that of the

Marie Germain2 primes generated in steps (5) and (6) of Algorithm 4.1. For So-

phie Germain primes, we take a prime ℓ ≤ x, of which there are about x/ ln x
many. If 2ℓ+ 1 is also prime, then ℓ is a Sophie Germain prime. Since the density

of primes up to 2x is about 1/ ln(2x) ∼ 1/ ln x, one might naively expect there to

be about x/ ln2 x of them. Although this gives the right order of magnitude, the

asymptotics is false as it ignores so-called “local” (or divisibility) conditions. The

argument of Bateman and Horn [3] in this special case suggests the following.

We take a prime q 6= 2, ℓ. Then 2ℓ + 1 6≡ 1 mod q, while general primes are

allowed to be 1 mod q. This consideration also applies to twin primes and leads

to the standard heuristics on the number of Sophie Germain primes, namely that

there are about 2C2x/ ln2 x of them up to x, where

C2 =
∏

p≥3

(

1 −
1

(p− 1)2

)

≈ 0.66016

is the twin prime constant. In our situation, x denotes an upper bound on 2ℓ + 1,

so that we consider the Sophie Germain primes ℓ ≤ x/2. We thus rephrase the

heuristics as follows for our purposes.

We use ∼ to denote the asymptotic equality of two quantities, so that f ∼ g
means that |f(x) − g(x)| ∈ o(g(x)) as x → ∞. This relation is symmetric in f
and g.



Generating safe primes 25

Conjecture 6.1 (Sophie Germain prime conjecture). We have

π1(x) ∼
2C2

lnx
· π(x/2) ∼

C2 x

ln2 x
.

The local behavior of 2ℓ1ℓ2 + 1, as (ℓ1, ℓ2) ranges over the set X2 as defined in

(4.4), is the same as that of 2ℓ + 1 in this range. The following conjecture is the

natural analog of the previous one:

π2,α(x) ∼
2C2

lnx
· #µ(X2), (6.1)

where the map µ is as in the proof of Theorem 4.2. It now remains to estimate the

magnitude of #µ(X2). This can be done unconditionally.

Theorem 6.2. We have

#µ(X2) ∼ #X2 ∼
ln(α−1 − 1)

2
·

x

lnx
.

Proof. We start with #X2 and set

r1 =
∑

xα≤ℓ≤x1/2

π
( x

2ℓ

)

, r2 =
∑

xα≤ℓ≤x1/2

π
( x

2ℓ ln2 x

)

.

Then the asymptotic version of (3.8), ignoring the term D1/2 of small order, says

that

#X2 ∼ r1 − r2.

For r1, the Prime Number Theorem and partial summation imply

r1 ∼
x

2

∫ x1/2

xα

1

λ ln(x/2λ) lnλ
dλ ∼

x

2

∫ x1/2

xα

1

λ ln(x/λ) lnλ
dλ

=
x

2

∫ x1/2

xα

1

(lnx− lnλ) lnλ
d ln λ =

x

2

∫ u/2

αu

1

(u− v)v
dv,

where u = lnx. Therefore,

r1 ∼
x

2u

∫ u/2

αu

( 1

u− v
+

1

v

)

dv =
x

2u

(

ln(1 − α)− lnα
)

=
ln(α−1 − 1)

2
·

x

lnx
.

For r2, we recall from (3.2) and (3.6) that

∑

xα≤ℓ≤x1/2

1

ℓ
∼ ln

1

2α
.
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Thus

r2 ≤
∑

xα≤ℓ≤x1/2

x

2ℓ ln2 x · ln(x/2ℓ ln2 x)

≤
x

2 ln2 x

∑

xα≤ℓ≤x1/2

1

ℓ ln(x1/2/2 ln2 x)
≤

x ln(1/2α)

ln3 x
∈ o(r1).

It follows that

#X2 ∼ r1. (6.2)

Now it remains to determine the size of µ(X2). The map µ : X2 → µ(X2)
is sometimes 1-to-1 and sometimes 2-to-1. The latter happens if and only if

(ℓ1, ℓ2), (ℓ2, ℓ1) ∈ X2. For every such pair (ℓ1, ℓ2), we have ℓ1, ℓ2 ≤ x1/2, and

thus there are at most π(x1/2)2 ∈ O(x/ ln2 x) ⊆ o(r1) of them. Now (6.2) implies

that #µ(X2) ∼ #X2 ∼ r1.

We have ln((1/4)−1 − 1) = ln 3 ≈ 1.098. The methods of Loebenberger and

Nüsken [24] provide upper and lower bounds on #µ(X2) of the form const·x/ lnx.

From the heuristic argument (6.1), we derive the following.

Conjecture 6.3 (MG2 prime conjecture). For 1/4 ≤ α < 1/2, we have

π2,α(x) ∼
C2 ln(α−1 − 1)x

ln2 x
.

Under the two conjectures, there are roughly 10% more MG2- than MG1-primes

for α = 1/4.

We now extend the range of applicability of our method. Lemma 3.2 and thus

Theorem 4.2 depend on a version of Mertens’ theorem over certain intervals, that

is, on good estimates of the sum

M(A,B) =
∑

ℓ∈(A . .B]

1

ℓ
.

In our present application, B is substantially larger than A, so that classical results

allow us to handle this sum. However, for future extensions and possible ramifica-

tions of our ideas and results, it might be useful to study this sum in a range of A
and B which is as wide as possible. For two quantities x and y, we write x ≍ y if

for some positive constants c1 ≤ c2 we have c1y ≤ x ≤ c2y.

Theorem 6.4. For real A and B with B ≥ A+ A0.525 ≥ 3 we have

M(A,B) ≍ ln
lnB

lnA
.
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Proof. We assume that A is large enough and let ∆ = B − A. A result of Baker,

Harman and Pintz [2] on primes in short interval (see also [15, Theorem 7.2])

implies that

π(A+ ∆)− π(A) ≍ ∆/ lnA (6.3)

for ∆ ≥ A0.525. Only the lower bound on the left-hand side in (6.3) requires this

restriction; the upper bound holds for any ∆ by the celebrated Brun–Titchmarsh

theorem, see [21, Theorem 6.6].

As a first case, we consider A+ A0.525 ≤ B < A+ A/ lnA. Then

1

B

(

π(B)− π(A)
)

≤ M(A,B) ≤
1

A

(

π(B)− π(A)
)

,

and (6.3) implies

M(A,B) ≍
∆

A lnB
. (6.4)

Since ∆ = o(A) and ln(1 + z) ∼ z as z → 0, we also have

lnB

lnA
= 1 +

ln(B/A)

lnA
= 1 +

ln(1 + ∆/A)

lnA
∼ 1 +

∆

A lnA

and

ln
lnA

lnB
∼

∆

A lnA
∼

∆

A lnB
.

Together with (6.4), the result follows in this case.

We now come to the case where A+ A/ lnA ≤ B. Then

lnB

lnA
≥

lnA+ ln(1 + 1/ lnA)

lnA
∼

lnA+ 1/ lnA

lnA
= 1 +

1

ln2 A

and 1/ ln2 A ∈ O(ln(lnB/ lnA)). A slight modification of the argument of Vino-

gradov [33], coupled with [32, Theorem 8, § I.1], implies that

∑

p≤x

1

p
∈ ln lnx+ γ +O

(

exp
(

−c0(lnx)
3/5

))

for some absolute constant c0 > 0. Furthermore, we have

exp
(

−c0(lnA)
3/5

)

∈ o
( 1

ln2 A

)

⊆ o
(

ln
lnB

lnA

)

.

Thus we find

M(A,B) ∈ ln
lnB

lnA
+O

(

exp
(

−c0(lnA)
3/5

))

.

Hence

M(A,B) ∼ ln
lnB

lnA
,

which concludes the proof also in this case.
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Until the result of Baker, Harman and Pintz [2] is improved, there is clearly no

chance to extend the above range of A and B.

A famous result of Huxley [19], see also [17], shows that for ∆ ≥ A7/12, we can

replace ≍ in (6.3) by ∼ . That is, in the ≍ notation, both “constants” c1 and c2 can

be chosen in 1 + o(1). Arguing as above, we find that in this range, Theorem 6.4

also holds with ∼ . We have 7/12 = 0.58333 . . .

7 Cost estimates

We now analyze the cost of Algorithm 4.1 more closely. We denote by M(n) a

number of bit operations with which arithmetic (addition, multiplication, division

with remainder) can be performed on n-bit integers. Thus we have M(n) ∈ O(n2)
with classical and M(n) ∈ O∼(n) with fast arithmetic, where the O∼ notation

hides logarithmic factors. We also denote as T(n) the cost of testing an n-bit

integer for primality. There are several choices.

• Deterministic primality test: T(n) ∈ O∼(n6) (see [6, § 4.5]).

• Probabilistic primality test: T(n) ∈ O∼(n4) (see [6, § 4.5]).

• Probabilistic compositeness test: T(n) ∈ O(tnM(n)) for some t, the number

of iterations of a single test, see [12, Theorem 18.6] or [6, Algorithm 3.4.7].

For practical purposes, one will use the last type of test in the algorithm. After

Algorithm 5.1 has produced an output, one can test the pseudoprimes involved (p,

q, and the factors of p− 1 and q − 1) by a probabilistic primality test. This cost is

within the time bound of the algorithm.

We now examine separately MG1 prime generation, that is, Algorithm 4.1 with

steps (5) and (6) removed, and MG2 prime generation, that is, Algorithm 4.1 with

steps (3) and (4) removed.

In MG1 prime generation, we choose a uniformly random k ≤ x, test it for

primality, and on success, test 2k + 1 for primality. The probability finding a

prime p = 2ℓ+ 1 with ℓ prime is approximately π1(x)/x and the expected cost of

producing such a p is T(n) · x/π1(x).

In MG2 prime generation, we choose uniformly random (k1, k2) ∈ K, test both

for primality, and on success, test 2k1k2+1 for primality. The probability finding a

prime p is approximately π2(x)/#K and the expected cost of producing such a p is

T(n)·#K/π2(x). For a from (2.1), we have a ≈ 1/ ln(x1/2/xα) = 2/(1−2α) ln x.

Using (2.12), we find #K ≈ x/a ≈ ((1 − 2α)x lnx)/2.

We know from (4.1) that at least one of π1(x) and π1(x) is bounded from below

by cx/2 ln2 x. Algorithm 4.1 runs both MG1 and MG2 generation in tandem and
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bit-length 128 256 512 1024 2048

MG1 0.2 s 1.1 s 12.6 s 298.1 s 5798.8 s

MG2 20.8 s 164.7 s 2582.5 s 31892.8 s 558600.2 s

MG2 (fast) 0.4 s 1.8 s 11.7 s 144.9 s 2147.5 s

Table 1. Time needed for finding a safe prime, depending on the bit-length of x. (Av-

erage over at least 100 findings, except for MG2 of bit-lengths ≥ 1024; hardware:

single core Intel Xeon, 3.00 GHz.)

halts whenever one of them succeeds. Its expected cost is therefore the minimum

of the two costs. We have shown the following.

Theorem 7.1. Algorithms 4.1 and 5.1 for the generation of safe primes and safe

moduli with nearly n bits, respectively, take an expected number of O(n3
T(n)) bit

operations.

With probabilistic compositeness tests, this comes to O(n4
M(n)) operations,

that is, O(n6) operations with classical and O∼(n5) with fast arithmetic.

If Conjectures 6.1 and 6.3 hold, then the cost comes to O(n3
M(n)) for MG1

prime generation and O(n4
M(n)) for MG2. We might run MG1 prime generation

n times for each execution of MG2 prime generation. Then we are in the best of

two worlds:

• The algorithm provably terminates.

• If the Sophie Germain Conjecture holds, then it does not take much more

time than pure MG1 prime generation.

The advantage is that pure MG1 prime generation is not proven to terminate.

In a “fast” variant of MG2 generation, instead of rejecting (k1, k2) if one of

them is composite, we first test k1 and on success keep generating values for k2

until we find a prime. This works well in practice as shown in Table 1 which is

taken from [35].

The primes generated have n or slightly fewer bits. If exactly n bits are re-

quired, one can reject the smaller ones. Under the conjectures, this also works in

polynomial time.

For a simplified version of our method, we recall that Algorithms 2.3 and 3.1

rely on an asymptotically uniform sampling of points under a hyperbola given by

Algorithm 2.1. We now exhibit a slower but simpler “dyadic” algorithm, using y0

and y1 from Algorithm 4.1.
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Let n = ⌈log2 x⌉ and j0 = ⌊α log2 x⌋. We know that either (4.2) or (4.3) holds.

In the latter case, for some j ∈ [j0 . . n/2] there are at least

π2,α(x)

n/2 − j0
≥

cx

n ln2 x

primes p = 2ℓ1ℓ2 + 1 ∈ MG2,α(x) with primes ℓ1 and ℓ2 such that ℓ1 ∈ [2j , 2j+1].
A simple version of Algorithm 4.1 repeats on input x and α the following steps

until success:

• choose ℓ ∈ [y0 . . y1] uniformly at random and test ℓ and 2ℓ+ 1 for primality,

• for j ∈ [j0 . . n/2 − 1], choose ℓ1 ∈ [2j . . 2j+1] and ℓ2 ∈ [y0/ℓ1 . . y1/ℓ1]
uniformly at random and test ℓ1, ℓ2, and 2ℓ1ℓ2 + 1 for primality.

This dyadic method has an expected cost of O(n4
M(n)) bit operations. If one per-

forms about n iterations of the first step for each execution of the second one, this

bound still holds and the algorithm provably terminates. But if Conjecture 6.1 is

true, this version uses about as much time as MG1 prime generation. Its advantage

is its greater simplicity, when compared to Algorithm 4.1.

8 Comments and open questions

From the point of view of algorithmic applications, it would be nice to have a

version of of the result of Heath-Brown [16, Lemma 1] with an effective (or, even

better, an explicitly computed) constant c for which (4.1) holds. This, however,

may be a nontrivial task and may only work for values of β smaller than 0.276.

The proofs in this paper rely on fairly deep results in analytic number the-

ory. But the resulting algorithm is quite simple. In any efficient prime generation

method, one will need a (probabilistic) primality test. This is sufficient for Sophie

Germain prime generation. For MG2 prime generation, one only needs in addition

a variable-precision numerical package to approximate A(B/A)v/M in step (2) of

Algorithm 2.1 with sufficient accuracy. Table 1 gives some experimental results.

Besides making our main results and algorithms stronger, Algorithm 2.1 may

have more applications. For example, one can consider various approximate count-

ing problems with positive integer points (m,n) in the hyperbolic domain mn ≤
x. The exact determination of the total number of such points is treated by Tao,

Croot and Helfgott [31, Theorem 2.1 and Section 2.1]. This number can also be

approximated, with the currently best known error bound x131/416+o(1), see [20].

However, these methods do not apply to counting integer points (m,n) under a

hyperbola if some additional restrictions are imposed on m and n that might be

expressed as congruence conditions or properties of b-ary expansions (to some
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fixed base b ≥ 2) or a combination of both. For such questions, Algorithm 2.1

may lead to effective probabilistic estimation algorithms.
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