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Abstract. We study various combinatorial complexity measures of
Boolean functions related to some natural arithmetic problems about
binary polynomials, that is, polynomials over Fy. In particular, we con-
sider the Boolean function deciding whether a given polynomial over F,
is squarefree. We obtain an exponential lower bound on the size of a
decision tree for this function, and derive an asymptotic formula, having
a linear main term, for its average sensitivity. This allows us to estimate
other complexity characteristics such as the formula size, the average
decision tree depth and the degrees of exact and approximative polyno-
mial representations of this function. Finally, using a different method,
we show that testing squarefreeness or irreducibility of polynomials over
F, are not in AC°[p] for any odd prime p. Similar results are obtained
for deciding coprimality of two polynomials over Fo as well.
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1. Introduction

In light of their many applications in modern cryptography, Boolean functions
related to number-theoretic problems are a natural object to study from the
complexity viewpoint. Recently, lower bounds for several such functions have
been obtained, for computational models such as unbounded fan-in Boolean cir-
cuits, decision trees, and real polynomials (see Allender et al. (2001), Bernasconi
et al. (1999, 2000, 2001), Bernasconi & Shparlinski (1999), Coppersmith & Sh-
parlinski (1998), Plaku & Shparlinski (2001), and Shparlinski (1999a)). The
two main ingredients of these papers are harmonic analysis and estimates based
on number-theoretic considerations.

Copyright and all

In this paper we extend some results of the aforementioned papers to problems
concerning arithmetic properties of polynomials over Fy. Our primary motiva-
tion is to extend the class of natural number-theoretic problems for which lower
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2 Allender et al.

bounds can be rigorously proved. As one might expect, some of the techniques
that have proved useful in establishing lower bounds for number-theoretic prob-
lems over the integers are also helpful for polynomials over F,, and indeed our
techniques are similar to those of Bernasconi et al. (1999), (2000), (2001), and
Bernasconi & Shparlinski (1999). Nevertheless, some new difficulties and ef-
fects arise when working over F,[z]|. For example, some of our results are more
precise than those known for analogous problems over the integers. On the
other hand, we have not been able to extend some of the results of Allender et
al. (2001) to the case of polynomials.

There is a well-known analogy between integers and polynomials, in particular
when we take the binary representation and polynomials in Fy[z], respectively.
Basic arithmetic can be done with analogous algorithms, for example multipli-
cation, division with remainder, or computing the gcd. The recent result of
Agrawal et al. (2002) also puts primality and irreducibility testing, and finding
primes or irreducibles, on roughly equal footing.

However, some problems seem more difficult for integers than for polynomials,
at the current state of knowledge. The most dramatic example is factorization;
squarefreeness behaves similarly. For parallel computation, the ged is an exam-
ple. Bach & Shallit (1996), Cohen (1997), von zur Gathen & Gerhard (1999),
and Shparlinski (1999b) present overviews on arithmetic. The lower bounds
on complexity we obtain are approximately of the same strength in both cases;
this is presumably just a further indication that currently available methods
do not reach the computational “heart” of the difficult problems like factoring
integers.

In this paper we consider Boolean functions defined by of the following proper-
ties of polynomials in Fy[z]: A polynomial u in Fy[x] of degree greater than 0
is irreducible if u = vw implies v = 1 or w = 1, and it is squarefree if v = v>w
implies v = 1 (in particular, the constant polynomial v = 1 is squarefree).
Two polynomials are coprime if there is no nonconstant polynomial dividing
both, that is, if their ged is 1.

Throughout the paper we identify polynomials of degree £ over F, with con-
stant coefficient 1 and the corresponding k-bit vectors of coefficients. Writing

U=upa" + s+ Lo =vat + - v+ Lw=wat+ o+ wr + 1,

we consider the following functions:
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o the irreducibility function f:{0,1}"* — {0,1} defined by

£ )= 1, if u is irreducible,
Yl ) =0 otherwise.

o the squarefreeness function g: {0,1}" — {0,1} defined by

(u uy) = 1, if u is squarefree,
G\ULy -5 Un) = 0,  otherwise.

o the coprimality function h: {0,1}* x {0,1}¢ — {0,1} defined by

h(vs, ... v w1, . -, wg) = { 1, if v and w are coprime,
TR R 0, otherwise.

We provide estimates for the average sensitivity and the size of the Fourier
coefficient of highest order for these functions. These measures are important
indicators for the computational complexity of functions, and therefore they
have often received study, see Bernasconi et al. (1996), Boppana (1997), Linial
et al. (1993), and Nisan & Szegedy (1994). Then, using our estimates, we derive
lower bounds on the decision tree size, on the average decision tree depth, on

the formula size and on the degree of certain polynomial representations for g
and h.

Although, as we mentioned, our techniques are similar to those used for the
analogues of the functions above over the integers, here the functions exhibit
a somewhat different behavior which has allowed us to obtain more precise
results. For example, our results which are based on the properties of the
highest order Fourier coefficient have no analogs for the integers.

Finally, we show that the technique of Allender et al. (2001) can be modified
to provide circuit lower bounds for problems about polynomials over F,.

2. Basic definitions

Throughout the paper logz denotes the binary logarithm. The implied con-
stants in symbols ‘O’ are absolute and can be explicitly evaluated.

Let B = {0,1} C R, so that B" is the n-dimensional Boolean cube. The
Hamming weight |u| of v € B" is the number of 1’s in u. If ¢: B* — B is a
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Boolean function and w € B", then we define

~ 1 U ; UjW;
plw) = o D (-1,

ucBr

The quantities (@(w))werr are the Fourier coefficients of ¢. We define
c(p) = ¢(1") as the highest order Fourier coefficient, and E(y) = ¢(0™)
as the lowest order Fourier coefficient. One can easily verify that

21) @)= 5 S = (3 ()M - T (1))

ueBn u€eR” u€eR”
p(u)=0 p(u)=1
1 u u -1 u
NV SRt ) ) e N Y )
ucB® ucB® ucB”
e(u)=1 p(u)=1 p(u)=1

since >, (—1)"! = 0. Thus ¢(p) is the number of inputs accepted by ¢
with odd Hamming weight minus the number of accepted inputs with even
Hamming weight, divided by 2"~!. In other words, c(¢) is the correlation of
¢ with the parity function on the same n input bits. Also,

(2.2) E(p) = 2in S (-1)p),

weBr

so that E(y) is the expectation of the function (—1)¥™ with regard to the
uniform distribution on its domain. Combining (2.1) and (2.2) gives

(2.3) [E(o)] + [e(e) < 1.

For a bit vector u € B", we denote by u(® the vector obtained from u by
flipping its ith coordinate. The sensitivity of ¢ at input v € B" is the

number
au(e) = Y |e(u) — pu?)|

1<i<n

of inputs at Hamming distance 1 from u where ¢ takes a different value. The
sensitivity of ¢ is defined as

o(p) = maxoy(p),
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and the average sensitivity of ¢ is

s(0) =27 ou(e).

u€cRr

Clearly, s(¢) < o(¢) < n for any ¢. The sensitivity provides lower bounds
for the CREW PRAM complexity of Boolean functions; see Nisan (1989), Di-
etzfelbinger et al. (1996), Fich (1990), Parberry & Yan (1991), and Wegener
(1987).

The average sensitivity of a function ¢ equals the sum of the influences of
all variables on ¢, where the influence of u; on ¢, denoted as I;(y), is the
probability that flipping the #th bit of a random Boolean input will flip the
output. In other words, I;(¢) is a measure of how influential the variable wu; is
in determining the outcome of ¢. Thus we have

L) =27 |o(u) — ou)],

u€Br

which immediately implies

A binary decision tree 7 is a binary tree with inner nodes labeled by Boolean
variables Uy,...,U, and leaves labeled by 0 or 1. Further, edges leaving the
same node are labeled 0 and 1, respectively.

Every input assignment u € B" to the variables in the tree determines a com-
putation path from the root to one of the leaves: at each visited inner node
that is labeled by variable U; the path follows the edge labeled u; € {0,1}.
The tree computes the function that maps every assignment to the label of the
leaf reached by its computation path.

For an input assignment u, let D,(T) be length of its computation path in T'.
Depth and average depth of the tree are defined by
D(T) =max{Dy(T): u € B"}, D(T)=2")_ D,(T).
u€eBr
The number of leaves is called the size of the decision tree.

For a Boolean function ¢, let M(¢), D(¢), and D(y), respectively, denote the
minimal size, minimal depth and minimal average depth, respectively,
of the decision trees that compute .
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Clearly, D(¢) < D(p) < n for any . Moreover, minimal average depth and
minimal size of any decision tree for a function ¢ are related as follows:

(2.4) D(p) > log M ().

This follows since the sequence of labels along a root-to-leaf path gives a binary
encoding for that leaf and the average length of any encoding for the leaves is
at least log M bits.

Further we mention the following definitions from Nisan & Szegedy (1994): for
a Boolean function ¢ : B® — {0,1}, let the real degree A(p) of ¢ be the
degree of the unique multilinear real polynomial P € R[Uy,...,U,] for which
¢(u) = P(u) holds for every u € B™. Multilinearity means that each variable
appears with degree at most 1.

More generally, for € € [0,1/3] we say that a real polynomial P in n variables
g-approximates ¢ if
p(u) — P(u)| < e

for all w € B", and define the real c-approximate degree J.(¢) of ¢ as
the minimum degree of a multilinear real polynomial that e-approximates ¢.
We simply write §(¢) for d1/3(¢). This notion was introduced by Nisan and
Szegedy with ¢ = 1/3, but it will be convenient to extend it to smaller e.
Clearly n > d.(p) > 6(p) for any € € (0,1/3). The following shows that
decreasing € can increase the real approximate degree only by a constant factor.

LEMMA 2.5. For any Boolean function ¢ and for ¢ € (0,1/3) we have
0=(¢) < C-d(p)loge™,
where C' is a constant independent of ¢ and .

Proor. Let P € R[Uy,...,U,] be a polynomial that 1/3-approximates ¢.
Defining Qo = +(3P + 1), we have Qo(u) € [0, 2] for u € ¢ '(0) and Qo(u) €
21] for u e @ 1(1).

Let w(z) = 322 — 22%. This is the unique cubic polynomial with vanishing
constant and linear terms that satisfies w(1 — z) = 1 — w(z). It is routine to
show that for any z € [0, 2] we have w(z) € [0,2"") and w(1—2) € (1—2"",1].

For i > 0, define the polynomial ;11 = w(Q;). Then it follows by induc-
tion that @;(u) € [0,1] for all u € B", that @; 7;-approximates ¢ with
v = (2/5)!", and that deg(Q;) = 3*deg(P). We can then choose m of size
O(logloge™"), so that ym, < ¢, and deg(Qm) < C deg(P)log L, for some abso-
lute constant C'. O
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A Boolean circuit C' on n variables is a directed acyclic graph with Boolean
inputs 0,1, x1,...,z, and some number of output gates y,...,y,. The gates
of C (except for the input gates) are labelled by —, A, or V and have the
corresponding in-degree; their number is the size s(C) of C. The depth d(C)
is the length of a longest path from an input to an output in C'. The circuit
computes a Boolean function from B" to B" in the natural way.

Formulae are defined in the following recursive way: 0, 1, the variables
Z1,...,%n and their negations —xi,...,—x, are formulae; if F; and F, are
formulae, then so are F1 A F, and F}V F5. The size of a formula is the number
of occurrences of variables in it. Formulae are equivalent to Boolean circuits
where the fan-out of each gate is bounded by one. Let L(y) denote the minimal
size of formulas that compute ¢.

Usually, we are interested in Boolean functions ¢: B* — B. In order to discuss
the (non-uniform) circuit complexity of such functions ¢, it is necessary to
consider families of circuits (Cp)nen, where C,, has n variables. Then the
family (Cy)nen computes ¢ if C, outputs ¢(u) for all n and u € B*. A
circuit family has size and depth bounded by s(n) and d(n), respectively, if
s(Crn) < s(n) and d(Cy) < d(n).

A function ¢ is in AC? if there is a circuit family (Cj,)qen of size n and
depth O(1) consisting of inputs, negated inputs, and unbounded fan-in AND
and OR gates and computing ¢.

o(1)

For integers d,n > 1 we define the Boolean function MoD,: B — B as

1ty ., ui = 0modd,
Mobg(u) = { 0 otherwise,
for u € B™. The function MOD, is known as the parity function. It has been
known since Ajtai (1983) and Furst et al. (1984) that the parity function is not
in AC?. This has led researchers to consider the power of AC? circuits that
are augmented with parity gates, and more generally with MoD, gates.

Let d > 1 be an integer. A function ¢ is in AC?[d] if there is a circuit family
(Cp)nen of size n°1) and depth O(1) computing ¢ and consisting of inputs,
negated inputs, and unbounded fan-in AND, OR, and MoD, gates.

For circuits with MoD, gates with prime p one can prove exponential lower
size bounds for explicitly defined functions. Circuits with MobD, gates for
composite d are of interest as well but unfortunately almost no nontrivial
results are known about such circuits, even in the simplest case d = 6.
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3. Fourier coefficients, average sensitivity,
and computational complexity

We mention here some known relations among various complexity measures.

The following simple and fundamental fact, which we heard from Nati Linial,
seems not to have appeared before.

LEMMA 3.1. For any Boolean function ¢: B" — B, s(¢) > |c(¢)| - n.

ProoOF. The hypercube H, is the undirected graph on vertex set B", whose
edge set F, consists of pairs of points that differ in a single bit position. We
partition B" into four sets V;(j) for i,5 € {0,1}, where V;(j) is the set of
x € B" such that |z| = imod 2 and ¢(x) = j. Let N;(j) = |Vi(j)|, so that
N;(0) + N;(1) =21 for 4 € {0,1}. Let V(5) = V() UVi(4) = ¢ !(j) and
let V; = {z € B" : |z|] = imod 2} = V;(0) U V;(1). We split E, into three
sets E°, B, and E7, where (z,y) € E° if o(z) = o(y) = 0, (x,y) € E* if
o) = p(y) =1 and (z,y) € E7 if p(z) # ¢(y). We write d”(z) for the
number of neighbors y of x with ¢(y) # ¢(z). Then [c(p)| = 2'7"|No(1) —
Ni(1)] and s(p) = 27" Y, e d7 (z) = 2'7"|E7|, so it suffices to show that
|E7| > n(|No(1)| — |[N1(1)]). Now, |E°| < nmin{Ny(0), N1(0)} and

|EY < nmin{Ny(1), N; (1)} = nmin{2" ! — Ny(0),2" ' — N.;(0)}
= n(2"" — max{Ny(0), N1 (0)}).

Thus
|E7| = n2"' —|E°| - |EY|
> n(max{No(0), N:(0)} — min{No(0), N;(0)})
= n|No(0) — Ni1(0)] = n[No(1) — Ni(1)]. O

The following lower bound on the minimal decision tree size in terms of the
Fourier coefficients was proved in Jukna et al. (1999). It combines results
from Kushilevitz & Mansour (1993) and Linial et al. (1993).

LEMMA 3.2. For an n-variate Boolean function ¢ and w € B", we have
M(p) > 2" " |@(u)],
u>w

where the sum is taken over all uw € B" such that u; > w,; for all i.

The following well known fact says that if ¢(p) # 0, then the decision tree
depth and real degree of ¢ are determined.
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LEMMA 3.3. Let ¢ be an n-variate Boolean function. If ¢(p) # 0, then
D(p) = A(p) = n.

Proor. First, D(¢) > A(p) since any decision tree T for ¢ of depth d
gives a polynomial P of degree d that equals ¢: take P to be the sum over
accepting paths (with leaf label 1) in the decision tree of the product of wu; if
u; = 1 on the path and 1 — u; if u; = 0 on the path.

Let P be the unique multilinear polynomial representing ¢. Then (—1)#®) =
1 —2P(u) for any v € B" and therefore from (2.1) we have c(¢) = >, cp (1 —
2P(u))(—1)/*/. Expanding 1—2P as a linear combination of multilinear mono-
mials, we see that any monomial of degree less than n has a net contribution
of 0 to the sum Y . (1—2P(u))(=1)". Thus if ¢(¢) # 0, then P has degree
at least n, and the trivial bound u > D(¢) implies the claim. O

The next lemma and its corollary relate the real approximate degree of ¢
to ¢(p). We recall a few basic facts about the set F, of functions mapping
{—1,1}" to R. This is a 2" dimensional real vector space. Let [n| denote
the set {1,...,n}. For J C [n], define x; to be the n-variate polynomial
X7( X1, .o, Xn) = HjeJX]-. Then the functions #XJ when restricted to
{—1,1}" form an orthonormal basis of F,, (with the usual inner product {-,-)).
The representation of a function f € F; in terms of this basis gives a real
multilinear polynomial ¥; =" Je[n) @7X Whose restriction to {—1,1}" agrees
with f. By the orthonormality of the basis #X 7, we have that the high order
coefficient aj, satisfies

(3.4) U] = <f, ;[7}2> = 2% Z s () X[ (v)-

ve{-1,1}n

Also, since the coefficients a;2"/2 for J C [n] are obtained by applying an
orthonormal change of basis from f, we have Parseval’s identity:

(3.5) Y. (f@)=2") a
JCln]

ve{-1,1}»

LEMMA 3.6. Let ¢: B® — B be an n-variate Boolean function, and P an
n-variate real multilinear polynomial of degree d < n. Then

max [p(u) — P(u)| 2 |e(¢)|/2.

u€Br
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PrROOF. Let f be the function in F,, obtained by changing the Boolean
value b € {0,1} to (—1)® in both the range and domain of ¢. Thus for
(v1,...,v,) € {—1,1}", we have

1—1)1 1—Un
) =1-2 .
o= 20 (155, 1)

Similarly, define the real polynomial @) by

1-X 1-X
Q(X1,...,X,)=1-2P LI .
2 2
Let ¥ = ng[n] ayxs be the polynomial representation of f, let H = ¥ — (@,
and write H = ZJC[n] hyxs. Then

1
max | (u) — P(u)| = §veg§§}an(v)l
1/2
1 -n 2
S EEED ()
ve{-1,1}"
1/2
1 1
= 3 (hy)? Z§h[n]:
JCln]

where the last equality comes from (3.5). Now hj,) = ap,, since deg(Q) =
deg(P) < n. By (3.4), and since f((—1)",...,(=1)*) = (~1)¢® for u € B",
we have

1 1
hin) = am = 55 Y f)Xm) = on Y (-t =¢(p). O

ve{-1,1}" ueBr

Lemmas 2.5 and 3.6 imply the following.

COROLLARY 3.7. Foreach v > 0 there is an (effectively computable) constant
K() > 0 such that for any n-variate Boolean function ¢, c(p) > « implies

6(¢) > K(y)n.

The following bound on the formula size in terms of average sensitivity was
derived in Bernasconi et al. (1999, 2000).
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LEMMA 3.8. Let ¢ be a Boolean function depending on n variables. Then

s(¢)”
L(SO) > m

This bound has essentially been mentioned also in Bernasconi et al. (1996) and
Boppana (1997). Finally we have the following slightly relaxed version of the
result of Smolensky (1987).

LEMMA 3.9. Let p be a prime, and let d > 2 not be a power of p. Then the
Boolean function MoDy is not in AC?[p].

4. Squarefree and coprime polynomials

4.1. A preliminary identity. We denote by Z the set of all irreducible
polynomials w € Fy[z], and let

Ty =I\{z} and Z; =Z\{z +1}.

LEMMA 4.1. We have

1
_ 9—2degw) _ —
[T (x—272aev) >

wel
H (1 _ 2—2degw) — H (1 _ 2—2degw) — g
wELy w€eI

PROOF. By picking z = 1/4, the first equality follows from the identity

-1 1
[T (=) = 1—22

wel

which is a special case (with ¢ = 2) of Theorem 3.32 of Berlekamp (1968). The
other two products equal the first one times 4/3. O

We will make frequent use of an equivalent formulation of the products in the
preceding lemma. For polynomials over Fy we have an analog of the Euler
product formula (which is better known over the integers)

(4.2) H (1 —272dew) = Zu(w)2—2degw’

weZL
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where the sum is taken over all nonzero polynomials w in Fy[z], and p(w) is the
Mé&bius function for these polynomials. Recall that p(1) =1 and if degw > 1,
then pu(w) = 0 if w is not squarefree and p(w) = (—=1)"™) otherwise, where
v(w) is the number of distinct irreducible divisors of w € Fy[z].

4.2. Estimating the highest order Fourier coefficient. The next two
lemmas yield estimates for the highest order Fourier coefficient of the square-
freeness function ¢ and of the coprimality function A. As our standard nota-
tion, we use the set M, = {u € Fy[z]: degu < n, u =1 mod z} of polynomi-
als of the form

u=uz" + ...+ ux + 1€ Flx].

The congruence
(4.3) u=1modz

is equivalent to u(0) = 1. We can identify a polynomial u € M,, with the bit
string u = (u1, ..., u,) € B*. Then the string has odd Hamming weight if and
only if u(1) = 0.

LEMMA 4.4. For the squarefreeness function g we have

c(g) = —é + o(1).

Proor. Let D, denote the number of squarefree polynomials u € M,, with
u(1) = 0 minus the number of squarefree polynomials u € M,, with u(1) =1.

Then D
c9) = 5ot

For a nonzero polynomial m € Fy[z], let R,(m) be the set of polynomials
u € M, with © = 0 mod m?, and let R,(m) denote the cardinality of that
set. We also denote by T,,(m) the number of u € R, (m) with u(1) = 0 minus
the number of u € R,,(m) with u(1) =1.

The inclusion-exclusion principle implies that

Do= > p(m)T,(m).

degm<n/2

The constant polynomial v = 1 contributes —1 both to 7,(1) and to D,.
The idea of the principle here, and in our later applications, is that we start
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with the main term 7,,(1) = M,,. Then for irreducible m the polynomials in
T,.(m) are subtracted, since u(m) = —1. Those in T, (mymsy) for irreducible
my; # mo have been subtracted twice, so now they are added in once again,
since p(mimsy) = 1. And so on.

Now if m(1) = 0, then every polynomial u € R,(m) is such that u(1l) = 0;
thus T,,(m) = R,(m). On the other hand, if m(1) =1 and degm < n/2, then
exactly half of the polynomials u € R, (m) satisfy u(1) = 1; thus T,,(m) = 0.
Therefore we have

Du= 3 umBRum)+ Y u(m)T.(m).

m(1)=0 m(1)=1
degm<n/2 degm=n/2

Since |T,(m)| < R,(m) = 2"29%¢™ for degm < n/2, the second sum is of

order O(2"?). Since R, (m) = 2"~29%€™ for the first sum we have

ST umRum) = 30 p(m)zriesn

m(1)=0 m(1)=0

degm<n/2 degm<n/2
— Z Iu,(m)anZdegm + O( Z 2n2degm> )
m(l):O m(1)=0

degm>n/2

For the error term we obtain

Z gn—2degm _ Z Z gn—2d < Z on—d _ () (2n/2) ]

m(1)=0 d>n/2 m(1)=0 d>n/2
degm>n/2 deg m=d

Thus we have
D, =2" )" p(m)272%Em 4+ 0 (2"7).
m(1)=0
Taking into account that the only irreducible polynomial w with w(1) = 0 is
w=x + 1, using (4.2) and Lemma 4.1 we obtain

D p(m)2aem™ = N " p(m)2 e — N i (m)272dE

m(1)=0 m(1)=1
— H (1 _ 2—2degw) _ H (1 _ 2—2degw)
weL weTy
_ 1 2 -1
2 3 6
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LEMMA 4.5. For the coprimality function h, the highest order Fourier coeffi-
cient is .

PROOF. Let n = 2¢ be an even integer and let N, denote the set of pairs
(u,v) € M3 of coprime polynomials, with ged(u,v) = 1. We denote by G,
the number of pairs (u,v) € N, such that u(1) # v(1) minus the number of
pairs (u,v) € N, such that u(1) = v(1). That is, G, is the number of pairs
(u,v) € N, with odd |u| + |v| minus those with even |u|+ |v|. Then

For a nonzero polynomial m € Fy[z], we let S,(m) be the set of (u,v) € M?
with © = v = 0 mod m, and let S, (m) denote its cardinality. We also denote
by Qn(m) the number of pairs (u,v) € S,(m) with u(1) # v(1) minus the
number of (u,v) € S, with u(1) = v(1).

From the inclusion-exclusion principle it follows that
Gn = Z 1(m)Qn(m).

degm<¢

Now if m(1) = 0, then every pair (u,v) € S,(m) is such that u(1) = v(1) = 0;
thus @,(m) = S,(m). On the other hand, if m(1) = 1 and degm < n/2, then
exactly half of the pairs (u,v) € S,(m) satisfy u(1) = v(1); thus @,(m) =0.
When degm = ¢ =n/2, then

_ [ {(m,m)} ifm=1moduz,
Sn(m) = { 0 otherwise.

We then have

G Y um)Sa(m)= 3" u(m)Qu(m).

m(1)=0 degm={
deg m<{ m(1)=1

and this is absolutely bounded by
{m € Fy[z]: degm = £,m(0) =m(1) =1} =24

Now the desired result follows from the calculation in Lemma 4.4. O
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4.3. Influences and average sensitivity. In this section we derive asymp-
totically optimal formulas for s(g) and s(h).

Using Lemma 3.1, we could immediately derive linear lower bounds for the
average sensitivities s(g) and s(h) from the bounds on the highest order Fourier
coefficient given in Lemmas 4.4 and 4.5. However, with a different, and longer,
calculation it is possible to improve these bounds and give asymptotically tight
upper and lower bounds on s(g) and s(h).

We define the constant

(16) =221 (1 o)

weZ

Numerical calculations yield v & 0.27358.

THEOREM 4.7. Let g be the squarefreeness function and 1 < ¢ < n. Then
Ii(g) =2y +0(1), and s(g) = 2yn + o(n).

PRrROOF. Let M; denote the number of polynomials u € M, which are not
squarefree and for which u(®) = u+ 2% is squarefree. Thus I;(g) = 2M;/2". We
now show that M; = 42" + O(2™/®8), which suffices to prove the theorem, since

s(g) = 219‘5” Ii(g).
For m € Fy[z], let W, ,,(m) be the number of polynomials u € Fy[z] which are
not squarefree and for which

u~+ T = 0 mod m?.

Let S,, denote the set of squarefree polynomials in M,,. The inclusion-exclusion
principle says that

M= 37 ) Win(m)

degm<n/2
meESn

The constant polynomial v = 1 is squarefree, and thus contributes neither to
M; nor to W ,(m) for any i, m.

Given a further polynomial k € Fy[z], let R;,(k, m) be the number of polyno-
mials u € M,, such that

(4.8) u = 0 mod k* and u+T" = 0 mod m?.

Again, the inclusion-exclusion principle says that

Win(m) == 3 (k) Rip (b, m).

0<deg k<n/2
kESH
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Since u and u + z' are coprime, R;,(k,m) =0 unless k and m are coprime.
If x divides either £ or m, then (4.3) is inconsistent with (4.8) since ¢ > 1,
and hence R;,(k,m) = 0. Otherwise, x, k, and m are pairwise coprime, and
by the Chinese Remainder Theorem, u is uniquely determined modulo zk?m?,
so that R;,(k,m) = 2""2d%6km if n > 2degkm, and R;,(k,m) = 0 otherwise.
Together, we obtain

(49) Ri,n(ka m) — 2n—2deg km +0 (2n—t) — 2n—2degkm +0 (2n/2)
for any polynomial k£ € §,,. It is also clear that
(4.10) Rin(k,m) < 2n2degk

for any k € S, of degree at most n/2.

In our estimates below we will use several times that a sum of the form

S(D) — Z 2n—2degk

D<degk<n/2
kESH

can be bounded as

S(D) — Z Z gn—2d < Z gn—d < gn—D.

n/2>d>D degk=d d>D
- kESH

Now fix some integer K > 1. Using (4.9) for degk < K and (4.10) for
deg k > K, we obtain

Winlm) == 37 (k) Rin(k,m)
0<deg k<n/2
ged(k,m)=1
keSn

- Z u(k)2n—2degm—2degk+0( Z 2n/2) +O(S(K))

0<deg k<K 0<deg k<K
ged(k,m)=1 keSp
kESy
- _ § : M(k)Qn—Qdegm—2degk + O(2K+n/2+2n—K)
0<deg k<K
ged(k,m)=1

kESn
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For the first summand, we have

Z /L(k)an?degmf?degk

0<deg k<K
ged(k,m)=1
kESH

= Z ,u(k)Qn—2degm—2degk+O( Z 2n—2degk—2degm>

deg k>0 deg k> K
gcd}ik,gn):l kESRH
€Sn

_ 2n—2degm (_1 + H (1 _ 2—2degw)) +0 (2n—2degm—K) )

ged(w,m)=1
wEZLy

Selecting K = [n/4], we obtain

(@11 m,n<m>=2"‘2degm(1‘ I1 (1—2—2deg“’>)+o<23n/4>.
ged(w,m)=1

w€EZIy

It is also clear from the definition that
(4.12) Win(m) < 27 2degm

for any m € S,. We may use (4.11) for degm < n/8, since then (n —
2degm)/2 > K, and (4.12) for degm > n/8, and obtain

Mi — Z ,U’(m) 2n72degm (1 _ H (1 _ 22degw))

degm<n/8 ged(w,m)=1

meSny weZLgy
+0 (23"/4 Z pu(m) + S(n/S)) .
degrggn/s

As before we obtain for the error term

254N p(m) + S(n/8)]

degm<n/8
meESn

< 284 {m € S,: degm < n/8}| +n™" =0 (2™/%) .

Therefore

(413) M= > u(m)Q"—Zdegm(1— 11 (1—2—2deg’”))+0(27“/8).

degm<n/8 ged(w,m)=1
meSn weZIy
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Extending the summation range in (4.13) to all polynomials m € S, gives an
additional error term not exceeding S(n/8) < 2™/%. Thus we have

M, = Z M(m)2n—2degm

meSy

_ Z M(m)2n72degm H (1 _ 272degw) +0 (27n/8) )

meSy gcd(weﬂzn):l
weZy

The first sum equals % - 2" by Lemma 4.1 and

Z M(m)272degm — H (1 _ 272degw) ]

meESy weLy

Finally, we calculate the second sum as follows, using the squarefreeness of the
m in the sum for the third equation.

Z M(m)Q—Qdegm H (1 _ 2—2degw)

meSy, gcdq(u'wé;r:))zl
— H (1 _ 2—2degw) Z ,u(m)2—2degm H (1 _ 2—2degw)_1
w€eZp meSn Tj:?
_ H (1_2—2degw) Z M(m)2—2degm H ( 92degw )
92degw _ |
welp meSy, u;JEhInO
1
= H (1 _2—2degw) Z wu(m) H (722degw — 1)
welp meS, wwelTIno
_ 1
= H (1 — 272degw) H (1 ~ e 1 1)
wELy w€Ly
2 2
= H <1 o 22degw) =2 H (1 - 22degw> :
weZp weT

Adding up, we find M; = 2" + O(2™/8) and s(9) = ¥, li(9) = 2yn +
O(n27™%), as desired. O

THEOREM 4.14. Let h be the coprimality function and 1 < i < n = 2{. Then
I;(h) =2y + 0(1) and s(h) = 2yn+ o(n).
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PROOF. We denote by L; the number of pairs (u,v) € M? of polynomials
such that v and v are not coprime and

o if 1 <i< ¥, then u+ 2* and v are coprime,

o if £ < i< 2¢, then v and v + 2" ¢ are coprime.

Clearly, I;(h) = 2L;/2". We now show that L; = y2" +O(27/8) which suffices
to prove the theorem.

For m € Fy[z], let U;,(m) be the number of pairs of polynomials (u,v) € M?
which are not coprime and

e if 1 <4</, then u+ 2’ =v =0 mod m,

(4.15) oif ¢ <i<2¢ then u=v+2"*=0modm.

As before, let S, denote the set of squarefree polynomials in M, . The
inclusion-exclusion principle yields

L= Z pu(m) U n(m).

degm<{

meSn
Given a further nonconstant & € Fy[z], let V;,(k, m) be the number of pairs
of polynomials (u,v) € U;,(m) satisfying

(4.16) u=v = 0 mod k.

Again, applying the inclusion-exclusion principle we derive that

Uin(m) = = 32 (k) Vi (h,m).

0<deg k<{
k€ESn

The pairs (u,v) contributing to V;,(k, m) are characterized by degu, degv <
¢, ged(u,v) # 1, and the three sets of congruences: u = v = 1 mod z, (4.15),
and (4.16). The first congruence implies that ged(u, u+27) = ged(v,v+27) = 1
for any j > 0. It follows that V; ,(k, m) = 0 unless the three moduli z, &k, and
m are pairwise coprime. In that case, R;,(k,m) = 22(-deekm) if ¢ > deg km),
and R;,(k,m) <1 otherwise. We obtain

(417) V;',n(ka m) — 22(—2degkm +0 (226—2:‘,) — 22@—2degkm +0 (2n/2)
for any polynomial k£ € §,,. Tt is also clear that
(4.18) Vin(k,m) < 2n—2degk

for any k£ € S,,. The rest of the proof is identical to the proof of Theorem 4.7,
using (4.17) and (4.18) instead of (4.9) and (4.10). O
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4.4. Squarefree and irreducible polynomials. Using the simple sieve
method as above one can prove the following result.

LEMMA 4.19. Let w € Fy[z] be a polynomial of degree | such that w(0) =
w(l) = 1. Then for any k > [ — 3, there are

8
Qk=§2”+0@W%

squarefree polynomials of the form w + T(T + 1)?q with q € Fy[z] of degree
less than k.

PrROOF. We denote by W the set of squarefree polynomials m € Fy[z] with
m(0) = m(1) =1, or, equivalently, with ged(m, z(x+1)) = 1. Forany m € W
with degm < k/2 the congruence

w+ z(x + 1)*¢ = 0 mod m?

has precisely 2¥724e¢™ golutions g € Fy[z] with degq < k. There are not more
than 2F3-2dee™ golutions for polynomials m € W with degm < max{l/2, (k+
3)/2} = (k+3)/2. It is also clear that if m ¢ W or if degm > (k+3)/2, then
there are no solutions.

Using the same arguments as in the proofs of previous statements we obtain

Qk — Z u(m)Qk—Qdegm + O( Z 2k+3—2degm>

degm<k/2 k/2<degm<(k+3)/2

me
— 2k: Z 2 2degm + O(zk/? _ 2k H 2—2degw) + 0(2/6/2)
mew deruI>2

— 2k: H — 9~ 2degw + O(Qk/Z)

weL
and from Lemma 4.1 we obtain the desired result. O
Finally we need the well-known estimate on the number of irreducible poly-

nomials of given degree; see for example the inequality (3.37) in Berlekamp
(1968).

LEMMA 4.20. For any integer k > 1 there exist 2¥k~1+O(2¥/2k~1) irreducible
monic polynomials of degree k in Fy|x].
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5. Complexity lower bounds for arithmetic
problems for binary polynomials

At this point we are able to derive our main results about the complexity of
irreducibility, squarefreeness, and coprimality in various models.

We first consider bounds on the decision tree size.

THEOREM 5.1. For the squarefreeness function g and the coprimality function
h we have

1 1
M(g) > 22" +0(2")  and  M(h)> 32" +0(2").

Proor. If we take w = (1,...,1) in Lemma 3.2, we obtain the bound
M(p) > 2™ c(p)|. The two bounds then follow from Lemmas 4.4 and 4.5. O

The worst case decision tree depth is D(g) = D(h) = n by Lemmas 3.3, 4.4,
and 4.5. The inequality (2.4) and Theorem 5.1 imply a similar bound for the
average depth.

THEOREM 5.2. For the squarefreeness function g and the coprimality function
h we have

D(g) > n —log, 3+ 0(1) and  D(h) >n —log,3 + o(1).

For the exact real degrees of g and h, Lemmas 3.3, 4.4, and 4.5 immediately
imply A(g) = A(h) = n. Corollary 3.7 yields a linear lower bound also on the
approximate real degrees 6(g) and §(h):

THEOREM 5.3. For the squarefreeness function g and the coprimality function
h, we have

o(g) > Cn,  4(h) > Cn,
where C' > 0 is an effectively computable absolute constant.
For formula size, lower bounds of order £2(n?) follow from Lemma 3.8 together

with Lemmas 3.1, 4.4, and 4.5. The asymptotic formulas derived in Theorems
4.7 and 4.14 provide the following explicit bounds.
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THEOREM 5.4. For the squarefreeness function g and the coprimality function
h we have
L(g) > 47v*n? and  L(h) > 4+*n?,

where ~y is defined by (4.6).

Using the same arguments as in the proofs of Lemmas 4.4 and 4.5, one can
show that
E(g)~E(h)~1—-2 ] (1—27%=").

wEZLy

Hence by Lemma 4.1, E(g) ~ E(h) ~ —1/3, and we can obtain explicit values
for the constants in the bounds of Theorem 5.4.

In the circuit model, we have the following result.

THEOREM 5.5. For any odd prime p, the irreducibility function f, the square-
freeness function g and the coprimality function h do not belong to AC?[p].

PrOOF. First of all we remark that for a polynomial u € M, we have
ged(u,z 4+ 1) =1 <= u(l) = 1 <= parity (ui,...,u,) = 0. Therefore, from
Lemma 3.9 (with d = 2) we obtain the desired result for the function h.

If ged(u,z + 1) = 1, then every irreducible polynomial of degree n + 2 has a
unique representation of the form u + z(z + 1)g with degq = n, and there is
no such representation if ged (u,z +1) =z + 1.

Now, to test whether ged (u,z + 1) = 1, which as we have seen is equivalent to
the parity of the vector (uy,...,u,), we test irreducibility of u + z(z + 1)g for
n® random polynomials ¢ € Fy[z] of degree n. If ged (u,z+ 1) = z + 1, then
the results of all tests are ‘No’. We see from Lemma 4.20 that otherwise with
probability at least 1 — 272" at least one of the tests will return ‘Yes’. Now,
as in the standard argument of Adleman (1978), there must be at least one
set of n® polynomials g € Fy[z] with deggq = n such that for all polynomials
u of the above form, the corresponding n? tests all return ‘No’ if and only if
ged (u,z +1) = x4+ 1. Because u + z(x + 1)¢ can be computed by a circuit
from AC?, Lemma 3.9 shows that the function f does not belong to AC°[p].

Finally, we remark that
(z+1)? |u(@®) =v? <= 1+ 1|u < parity (u,...,u,) = 1.

If (z+ 1)?|u(x?), then the polynomial u(x?) + z(x + 1)?q is not squarefree
for any g € Fy[z]. Otherwise from Lemma 4.19 we see that there are at
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least 8- 22"*1/9 > 22" polynomials g € Fy[z] of degree at most 2n such that
u(z?) + z(x + 1)?q is squarefree. Repeating the previous arguments, we obtain
the desired result for the function g. O

6. Concluding remarks

We remark that using Corollary 2.5 and Lemma 3.8 of Nisan & Szegedy (1994),
one can estimate A(g), A(h), 6(g), and §(h) directly from the linear bounds
that we have on the average sensitivity. However, this gives only a cn lower
bound for A(g) and A(h) (for some ¢ < 1) rather than the tight bound of
n proved here, and an (n'/2) lower bound for §(g) and d(h), compared to
the linear bound proved here. This approach has been used in Bernasconi
et al. (2000) for studying the analogue g of the function g over the integers.
Unfortunately the highest order Fourier coefficient of g seems to be quite small,
and thus Corollary 3.7 is not useful for this function.

The only nontrivial lower bound on the complexity of irreducibility testing is
given by Theorem 5.5, and at the moment we do not see how to extend other
results to this function.

QUESTION 6.1. Obtain analogs of Theorems 5.1, 5.2, 4.7, and 5.4 for the irre-
ducibility function f.

Although our results are similar to those of Allender et al. (2001), Bernasconi
et al. (1999, 2000, 2001), and Bernasconi & Shparlinski (1999), we still have
not been able to establish complete analogs of the results of Allender et al.
(2001). Namely it is shown there that the integer primality, squarefreeness,
and coprimality functions are hard for the complexity class TC?. In contrast,
we are able only to show that the analogous irreducibility, squarefreeness, and
coprimality problems f,g, and h over Fy[z] are not in AC?[p] for any odd
prime p. In particular, we cannot rule out the possibility that these problems
are in AC?[2].
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