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as yet, to the majority of chemists. This infor-
mation is intended to help computational chemists
and computer scientists establish further common-
alities of interest and the paper is, in part, a fol-
low up to to MPB’s talk [28] and a workshop at
the International Symposium on Symbolic and Al-
gebraic Computation 2003. Now that the level of
cooperation between chemists and computer alge-
braists seems about to expand rapidly, note should
be taken again of earlier papers by chemists that
sought to bring the fields together, such as [65, 66]
by Cizek, Vinette and Weniger. A recent survey of
computer algebra in the life sciences [27] included
many topics that overlap chemistry. The exam-
ples of basic computer algebra concepts that are
included here are adapted from the recent mono-
graph [113] by JvzG and JG. MPB has collected
over 700 references to research papers that used
symbolic calculation in chemistry, chemical physics
and chemical engineering [30].

All the work cited in this survey used symbolic
calculation unless it is included only to provide
background and this is stated explicitly.
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2 Atomic energy levels

Fernandez et al. developed high-order perturba-
tion formulas that use moments and applied these
to the Stark effect in hydrogen and to 2D hydro-
gen (a model of systems such as highly anisotropic
crystals — see e.g. [191]), and to the Zeeman effect
[96, 99, 100]. He and Ogilvie have used symbolic
computation in studies of many other atomic and
spectroscopic problems that were reported without
explicit mention of this aspect [97].

Guiasu computed the ground state energies of H,
He, Li, Be and B by a novel probabilistic approach
to quantum mechanics in work that is summarized
in [125] and given in detail in [126].

Adams used Lie algebras in a high-order pertur-
bation calculation of the Stark effect in hydrogen
and 2D hydrogen and the Zeeman effect [2]. Also,
with Arteca, he derived a high order perturbation
theory from the Hellman-Feynman and hypervirial
theorems and made use of it [3].

Barnett et al. reworked the Pekeris treatment of
two-electron atoms using MATHEMATICA and solved
the secular equation as a power series in atomic
number to show consistency with Moseley’s law
[31]. Analogous methods seem possible for a mul-
titude of problems that involve parameterized ma-
trix elements in a secular equation. Cox, Smith and
Sutcliffe also repeated the basic Pekeris calculation
using MAPLE [72].

Vinette et al. based a perturbation expansion of
the energy of the N-dimensional H atom in a spher-
ically symmetrical field on the hypervirial theorem
[303]. Delhalle et al. tested an iteration-variation
method to solve the Schrédinger equation on the H
atom [80]. Work on quantum dots is discussed in
§10.

Dubey, Khandelwal and Pritchard constructed
asymptotic formulas for the hydrogenic radial
dipole integral and computed transitions probabil-
ities analytically using REDUCE [85].

Harris computed 3-electron atomic integrals over
Slater orbitals, to investigate correlation effects
[133].

3 Molecular dynamics

Harmonic oscillator: Korsch applied the posi-
tion and momentum matrix method for handling

eigenvalue problems to the harmonic oscillator
as a simple example [181]. Several instructional
modules based on the harmonic and other simple
oscillators are included in the Symbolic Mathe-
matics Documents for Physical Chemistry web site
[327].

Quartic, sextic and octic oscillators: Hadinger
et al. computed Yun-Dunham coefficients for the
quartic oscillator by recurrence, applied these
to the rotation-vibration spectra of diatomic
molecules and compared the results with experi-
mental data for CO, HBr, HCI in [129] and earlier
papers. They used REDUCE.

The ground state energies of models up to oc-
tic have been considered by éfiek, Vinette and
Weniger using inner projection methods [66], and
by Weniger using Rayleigh-Schrédinger perturba-
tion series and renormalized strong coupling [309,
310, 269]. In related work, effective characteristic
polynomials are used in [67], and evidence of the
Stieltjes nature of a perturbation expansion is dis-
cussed in [36]. Many more papers on the n-ic oscil-
lators by Cizek, Vinette and Weniger with Bludsky,
Bracken, Dvorak, Kapsa, Skéla, épirko, Vrscay and
Zamastil are listed in [30]. All these papers de-
pend on unrestricted precision arithmetic and/or
resources for mechanized differentiation.

Meifiner and Steinborn computed the ground
and excited states of the anharmonic oscillator by
an iteration scheme based on the Bloch equation
using 70-digit precision in MAPLE [219].

Morse oscillator: Bancewicz computed ma-
trix elements of powers of the momentum to
support investigations of the dependence of the
density of vibrational levels on the coupling
between bonds in a molecule [25]. He used
MATHEMATICA to manipulate special functions.
Sage applied van Vleck transformations using
REDUCE to compute vibrational-rotational inter-
action [258]. Skala et al. computed the behavior
of generalized Morse oscillators, using MAPLE [269].

Other diatomic models: Bouanich, Ogilvie
and Tipping performed early symbolic compu-
tations of vibrational and vibrational-rotational
matrix elements for diatomic molecules [46, 47].
Herbert and Ermler studied vibrational-
rotational levels of diatomics using a Taylor series
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expansion of the potential [139]. They produced
formulas using MATHEMATICA and applied these
to Hy, HD, N5, CO and HF.

Polyatomic vibrations: The benefits and
needs of flexible representation of molecular ge-
ometry in the expressions for the potential energy
and kinetic energy operator have been considered
by several authors who have applied symbolic
computation to the problem.

Handy constructed separable KE operators for
triatomic molecules and for HCHO-like and CoHs-
like tetratomic molecules by a change of coordi-
nates and showed how this simplifies the computa-
tion of matrix elements [130]. His subsequent work
with several coauthors dealt with

1. anharmonic corrections to vibrational transi-
tion intensities, using 2nd order perturbation
theory for the dipole matrix elements with ap-
plication to H20 [314],

2. another kinetic energy operator, with applica-
tion to CoHs-like tetratomics, a rigorous sym-
metry analysis and singularities [53],

3. pentatomic molecules [76],
4. ammonia [131].

This work used REDUCE and MATHEMATICA.

Gatti, Tung and coauthors developed a matrix
representation based on Jacobi position vectors for
N-atom molecules [114, 152] and extended this
work to use polyspherical coordinates [115, 152].

Rempe and Watts analyzed the vibrations of a
hexatomic molecule [251].

Wang and Kupperman used hyperspherical har-
monics for the mechanics of a four-atom molecule
[305].

Bessis and Bessis considered the subtle effects of
space curvature on the energy levels of the isotropic
oscillator via a high order perturbation treatment
of the Ricatti equation using MATHEMATICA [40].

4 Molecular electronic energy
and spectra

Molecular integrals: The analytical evaluation
of one-center Slater integrals by Gray, Pritchard

and Sumner [118] and two-center Gaussian inte-
grals by Turner and Boys, described in [49], are
amongst the earliest examples of symbolic calcula-
tion in any field. Barnett used the idea of array
manipulation, learned from Boys, to calculate aux-
iliary functions [304] and he used MATHEMATICA
more recently in [29] and in papers that it cites.

In recent work on Gaussian integrals, Bracken
and Bartlett used MAPLE [51] and Schwegler and
Challacombe used MATHEMATICA [265].

For integrals over Slater orbitals, Jones and
his coworkers used in-house software and MATH-
EMATICA in extensive work on two, three and
four-center cases. Their earliest and most recent
papers include [162] and [48], respectively. Righi
and Kuhnen used REDUCE for 2-center integrals
in [254]. Safouhi, Pinchon and Hoggan used the
unrestricted precision of AX1IOM for 2 and 3-center
integrals in [257]. Harris used MAPLE for 2-center
exhange integrals in [135].

Density functional theory: Jemmer and
Knowles developed a MATHEMATICA package to
obtain (1) functional derivatives in terms of the
density and its gradients, and (2) position when
the density is specified [157, 158]. They described
applications to the Dirac-Slater local exchange,
and to the Becke and Lee-Yang-Parr correlation
functionals.

Strange, Manby and Knowles developed a MAPLE
program to convert an expression for a density func-
tional into FORTRAN code to evaluate the exchange-
correlation kernel numerically [274]. Their program
also produces the IATEX file to document the func-
tional. The code produced for two functionals of
Tozer and Handy illustrates the action.

Further density matrix work is mentioned under
nuclear magnetic resonance in §8 [255] and lasers
in §10 [281, 282].

Coupled cluster theory: Bittl considered
protein bound tetrameric metal clusters that occur
in photosynthesis and other biological processes
[42]. He evaluated matrix elements of single spin
operators needed to calculate ground state energies
and effective hyperfine coupling observed in EPR
spectra.

Crawford, Lee and Schaefer used MATHEMATICA
to solve 2nd quantized equations in coupled cluster
calculations that included a spin restricted triple
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excitation correction CCSDT [74]. They listed an-
alytical results. Crawford gave the complete scripts
[73].

Harris developed an algorithm to construct Feyn-
man diagrams for a cluster of arbitrary size and
reported a MAPLE implementation with a simple
application[134].

J. Martin et al. computed the anharmonic po-
tential surface of NH, to determine the spectro-
scopic constants and thermodynamic properties,
using MATHEMATICA [210].

Piecuch et al. corrected quadruply excited clus-
ters in single reference theory, using projected un-
restricted Hartree-Fock wave functions [244]. They
used MAPLE to compute matrix elements and to
explore the energy surface. Piecuch and Paldus
studied the convergence of energy expansions for
molecules in electrostatic fields, in part to help cal-
culate intermolecular potentials. MAPLE was used
to solve the polynomial equations that arose [243].

Vinette [302] derived the coupled cluster equa-
tions for the Hubbard model of benzene using
MAPLE.

Williams et al.  [315] computed dispersion
energies for Hey, ArHo, ArHF, (HF); and HeF~
in coupled pair approximation. They constructed
spin free equations using the MATHEMATICA im-
plementation of algorithms to manipulate orbital
replacement operators (OROs) based on recursion
schemes.

Electronic transitions: Boens et al. found
the combinations of excitation wavelengths, emis-
sion wavelengths and co-reactant concentrations
that allowed unique solutions for the spectral
parameters related to absorption and emission and
the rate constants in reversible intermolecular two-
state excited state processes, using compartmental
analysis [45]. This methodology is explained in
[27], which comments on further applications
in kinetics (see above) and gives references to
background material.

D’yachenko and Petukhov computed overlap in-
tegrals for electronic vibration spectra of molecules,
using Matlab [86].

V. Martin and Robledo developed a MATHEMAT-
ICA package to compute multipole matrix elements
in the axial and triaxial harmonic oscillator basis
[211]. The user can select an algorithm that pro-
duces analytical results recursively or gives numer-

ical efficiency. The package includes a function to
compute selection rules.

5 Long range forces and mul-
tipole expansions

Hadinger et al. developed an asymptotic scheme
for the exchange interaction between open s, p, d
and f valence shells and used MAPLE to construct
and to check formulas for the exchange integrals by
manipulating special functions [127]. They applied
these to the ground states of the alkali dimers in
[128].

Lustig, Rastogi and Wagner used Chebyshev
economization to telescope both the far field mul-
tipole expansions and near field Taylor expansions
used to solve N-body geometry optimization prob-
lems by fast multipole methods [202]. They gave a
MATHEMATICA script to perform the calculation.

McDowell described the construction of general
multipole expansions using MAPLE in [214] and ap-
plied the methodology to the Hy trimer in [213], to
the O trimer in [217], and to the Ha, N2, and Oq
trimers in [215]. He used 2nd order perturbation
theory and spherical tensor formalism.

Novak defined a descriptor of coordination that
involves the bond angles [232]. He used MATH-
EMATICA to expand small symbolic determinants
that are then plotted for geometry optimization in
a VSEPR model.

Piecuch and Paldus studied energy expansions
for molecules in electrostatic fields [243], and
Piecuch et al. computed the interaction of two
atoms and a linear molecule using MAPLE [242].

Rérat et al. computed the critical points on the
surface of the potential function of the long range
interaction of several dipoles, using Morse inequal-
ities of topology theory [253].

Xantheas and Sutcliffe considered the Hamilto-
nian of weakly interacting trimers, with special ref-
erence to water, and put the calculation in a form
suited to symbolic calculation [318].

6 Collisions and scattering
Bancewicz constructed an analytical expression for

the scattered light intensity corresponding to the
interaction of a dipole with a multipole of arbitrary
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order [26]. Teboul and Bancewicz considered the
scattering of light by COs induced by intermolec-
ular collisions [287]. They used MATHEMATICA to
tabulate formulas for the coefficients in the spher-
ical harmonic expansion of the excess pair polariz-
ability.

Bartschat and coworkers constructed movies to
simulate collisionally excited atomic states [201].

Blackett and Stelbovics developed a MAPLE pack-
age to compute scattering amplitudes and differen-
tial and total cross-sections in electron-hydrogenic
ion scattering using the 1st Born approximation
[44].

Johnston and Sarkar used quantum transport
theory to analyze inelastic scattering with optical
phonons [160].

Noble evaluated exchange integrals for the im-
pact parameter formulation of atomic charge-
transfer collisions, using REDUCE [231].

Wang and Kupperman tabulated formulas for
about 43.8 million hyperspherical harmonics with
hyperangular momentum quantum numbers up to
30, to support calculations of the scattering theory
of diatomic collisions [305]. They implemented a
recurrence scheme in MATHEMATICA.

7 Conformational analysis

The treatment of ring closure by Go and Scheraga
[116] that essentially follows the inverse kinematic
methods used in robotics provides the infrastruc-
ture for some of the most dramatic applications of
computer algebra to chemistry, with far reaching
potential in the understanding of biomolecular pro-
cesses and the development of drug design and dis-
covery. The algebraic demonstration that cyclohex-
ane can exist in boat and chair forms is given in de-
tail in [113]. Geometrical reasoning based on fixed
bond lengths and bond angles leads to an overde-
termined set of equations and then, via a Gram de-
terminant, to a set of multinomial equations that
are solved using Grobner bases. The corresponding
analysis of cycloheptane was presented as a chal-
lenge to computer algebra by Levelt [193].
Manocha reported the early stages of a major
study of ligand-protein docking in [205, 206] that he
is pursuing actively at present. Emiris and Mour-
rain focus on the conformations of cyclic molecules
in [89]. These authors all use the standard Denavit-

Hartenburg formulation of robot linkage problems
that is described in many texts e.g. [226] and they
discuss the solution of the multinomial equations
using Grobner bases and resultant methods.

Finn and Kavraki provided an overview of this
type of investigation [101]. Lewis and Bridgett
[195] discussed docking from the standpoint of the
Apollonius problem of tangents to sets of circles.

8 Nuclear magnetic resonance

Calucci and Geppi analyzed 2H Zeeman and
quadrupolar spin-lattice relaxation measurements
in liquid crystals [56]. They used symbolic expres-
sions generated by MATHEMATICA to explore trends
in the computed effects of the diffusional and Ar-
rhenius coefficients.

Gasparovic et al. discussed the design of a
shielded gradient probe for high resolution work in
vivo [111]. They used MATHEMATICA.

Grotendorst et al. analyzed NMR work on trans-
port and diffusion across living cell membranes us-
ing MAPLE [123]. They solved a linear inhomoge-
neous system of ODEs with constant coefficients
(the McConnell equations) by use of matrix expo-
nentials. This REDUCEd the problem to symbolic
matrix manipulation.

Jang and Han constructed formulas for spin-echo
positions and amplitudes as functions of the pulse
flop and phase angles and delay times for several
pulse sequences [153]. They computed Zeeman and
1st and 2nd order quadrupole interactions for spins
1/2(1/2)3.

Kanters et al. published some prototype MAPLE
procedures to manipulate product-operator expres-
sions for spins under pulses and during chemical
shift and coupling evolutions [173].

Kim et al. described an NMR study of hindered
amide in an organometallic salt [178]. They solved
a small set of linear equations symbolically.

Kuchel and his co-workers explored the biochem-
istry and physiology of erythrocytes with NMR.
They used MATHEMATICA to deal with

1. spin-echo measurement of the diffusion of spins
in a sphere [186],

2. the permeability of cell membranes from g¢-
space data [183],
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3. the shape of erythrocytes [185],
4. 2,3-biphosphoglycerate metabolism,

5. shape and movement in red cell alignment
[184], and

6. time evolution computed from a tensor opera-
tor product basis for the density function [174].

Levitt produced hundreds of diagrams algorith-
mically that depict spin states, using MATHEMAT-
ICA for a text on spin dynamics [194] and developed
a notebook to teach the subject.

Majumdar explored the structure of 13C labeled
proteins and nucleic acids. He computed magneti-
zation transfers analytically, under the assumption
of isotropic mixing in [203]. This led to a system of
linear equations, that he solved symbolically with
MATHEMATICA for 3 and 4-spin systems.

Sanctuary, Man and their coworkers published
several papers on the analysis of quadrupolar in-
teractions in single-spin solid state systems using
MAPLE. They computed density matrices

1. for spin 5/2 excited by spin-lock sequences
[204],

2. for spins 1, 3/2, 2 and 5/2 with RF excitation,
using the Baker-Campbell-Hausdorff equation
[151],

3. for spins 7/2 and 3/2 under lst-order
quadrupole interaction and RF pulse excita-
tion [7, 8], and

4. Solomon echoes for spin 7/2 by soft pulse ex-
citation [5].

Related work includes [4, 5, 6, 7, 8, 9]. Also, they
developed pattern recognition algorithms CAPRI
to analyze complicated 2D and 3D NMR spectra of
proteins using graph theory and fuzzy mathemat-
ics. This was first reported in [319]. Back references
to several other papers are given in the most recent
account [197].

Mercier studied the relationship between the re-
laxivity and the molecular structure of paramag-
netic coordination complexes, using MATHEMAT-
ICA to compute molecular electrostatic potentials in
porphyrins as a basis for molecular modeling stud-
ies [220].

Nielsen and his co-workers published a survey
of solid state NMR work on the characterization
of membrane proteins [43] that cited their earlier
work on the Baker-Campbell-Hausdorff problem
[297] which used MATHEMATICA and is supported
by a downloadable notebook.

Ouvrard et al. computed 2D NMR spectra of
degenerate spin systems dissolved in liquid crystal
media using product operator formalism and spher-
ical tensor basis for the time evolution of the den-
sity matrix, using MATHEMATICA [236].

Rodriguez and Ruiz-Cabello developed a MATH-
EMATICA package to simulate the effect of RF cou-
pling, J-coupling and precession in a space-varying
magnetic field, via the use of density matrices and
product operators [255].

Straubinger et al. extended the theory of pulse-
angle dependence of double-spin-echo proton NMR
[275]. They evaluated the time evolution of the
density operator using MAPLE for comparison with
the integral of the spectral signals. They compared
theoretical and experimental results in [276].

9 Lattice spin models

Cizek, Vinette, Weniger and Bracken, in different
combinations

1. applied the inner projection method to lattice
spin [66],

2. showed that for finite cycles the energy of
the anisotropic spin Hamiltonian is the root
of a characteristic polynomial that they con-
structed using Grobner bases [64],

3. combined the Lieb-Wu formulation and the
configuration interaction approach to the Hub-
bard model in an application to cyclic polyenes
[52],

4. constructed secular polynomials (containing
coefficients that are functions of the coupling
constant) for small cycles in the XY, Heisen-
berg and double Ising models [50],

5. used coupled cluster models [302].

In related work, Delhalle et al. used a Fourier
method to evaluate lattice sums [81]. Further pa-
pers by these authors on symbolic spin lattice cal-
culations are listed in [30].
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Further work on the Hubbard model was re-
ported in papers by Angelescu and Bhatt [16],
Bartkowiak et al. [32] and Steeb et al. [132]. Taneri
and Paldus [286], and Bishop et al. [41] considered
Heisenberg and Ising models.

10 Lasers and electronic
behavior of nanosystems

This area is dominated mathematically by nonlin-
ear Schrodinger equations (nlSe). Software to deal
with solitary waves and solitons and with coupled
nlSe (cnlSe) is discussed later §15. Symbolic cal-
culations for specific phenomena span a range of
topics.

Bajer and Perina computed photon statistics and
quadrature squeezing of second and higher harmon-
ics generation using power series decompositions
[23].

Bajer and Lisonek predicted laser pump dynam-
ics for three- and four-wave mixing, developing Tay-
lor series for the Hamiltonians in the time depen-
dent Heisenberg formulation [22]. They computed
the mean number of sub-harmonic photons under
classical and chaotic pumping and squeezing.

Bancewicz interpreted low intensity scattered ra-
diation signals by using a MATHEMATICA script to
compute the interaction of a dipole with higher or-
der multipoles, and deriving polarizability tensors
for linear and tetrahedral molecules [26].

Beskrovnyi also approached three-wave mixing
via the Heisenberg equations, generating second
harmonics by mixing orthogonally polarized fun-
damental waves in a quadratic nonlinear medium
[39].

Chow considered four coupled non-linear
Schréodinger equations in relation to the propa-
gation of light along birefringent optical fibers
[63].

Dick calculated

1. the nonlinear optical response function and
2. the susceptibility of a molecule,

that correspond to
1. a given time sequence of light pulses and

2. a given combination of light fields,

respectively, using the Markov approximation to
model molecular relaxation [83]. Radiation propa-
gation steps and feeding were specified at run time.

Falloon and Wang computed the dynamic be-
havior of a single electron in a nanoelectronic de-
vice, using a time dependent propagation scheme
for one-dimensional potential scattering, based
on a Chebyshev expansion for the propagator
exp (—2Ht) and a wavefront splitting algorithm
coded in MATHEMATICA [91].

Janssen et al. computed the effect of saturation
on the distribution of molecular angular momen-
tum distribution in laser-induced fluorescence [154].

Javanainen and Yoo developed a semiclassical
theory of the laser cooling of a trapped multistate
ion, relevant to quantum jumps and frequency stan-
dards [156]. They used an anisotropic harmonic os-
cillator Hamiltonian and the Fokker-Planck equa-
tion for center of mass motion coded in MATHE-
MATICA. They dealt with closely related problems
in [155, 322].

Johnston and Sarkar considered an electron
trapped in a sub-micron device and used the con-
cept of trajectories to construct a master equation
for the single particle density matrix in a device
with a driving field and inelastic phonon scattering
[161]. They used MATHEMATICA to solve this for
the tunneling diode.

Joyce, Pike and Sarkar constructed asymptotic
expressions for laser line width by considering the
time evolution of second order photon correlation
functions of the radial field based on the Scully-
Lamb master equation [171].

Kuchiev and Ostrovsky computed the depen-
dence of angular asymmetry of photoionization and
other observables of the multi-electron detachment
from negative ions in a bichromatic laser field on
the difference of field phases, using the Keldysh
model and MATHEMATICA [187].

McCarthy, Wang and Abbott studied quantum
dots [212] — electrons trapped between two layers
of semiconductor that display many properties of
2D atoms that make them potential components
of very efficient and precise lasers, nanodevices and
quantum computers [306]. They described HF SCF
calculations of the electronic states of N-electron
quantum dots using MATHEMATICA [212].

Ng and Bhattacharjee extended the Ginzburg-
Landau equation for a free-electron laser oscillator
to the long-pulse low-gain region [229]. They devel-
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oped a small amplitude expansion of the radiation
field using MATHEMATICA and got excellent agree-
ment between theory and experiment.

Nguyen and Nguyen-Dang derived the equations
linking the time evolution operator for a laser
driven oscillator to the operator for the correspond-
ing free field system, as an example of the usage of
a MATHEMATICA package for calculations that in-
volve unitary transformations in quantum dynam-
ics [230].

Orlowski and Wddkiewicz approached approxi-
mate laser theory, linear amplifiers and attenua-
tors, correlated emissions lasers, two-photon lasers,
amplifiers and related phenomena, using dynami-
cal ordering of quantum quasiprobability functions
to transform a Fokker-Planck type equation using
MATHEMATICA [235].

Perinova et al. considered the quantum phase
properties of a cubically behaved second-order non-
linear medium [241].

Pulov, Uzunov and Chacarov studied the propa-
gation of

1. two waves at different carrier wavelengths in
two-mode optical fibers,

2. two modes in fibers with strong birefringence
[248].

They solved the cnlSe pair using the Lie symmetry
approach to differential equations discussed in §15.

Sanchez et al. computed the steady state of
the erbium laser model for 2-wavelength operation
[261].

Schuermann and Schmoldt computed reflectivity
and transmissivity of a lossless nonlinear dielectric
slab when the dielectric function is linear in the
intensity [263].

Senthilvelan et al. discussed the formation of a
self-written waveguide, produced by light propagat-
ing through a photosensitive medium [267]. They
solved the partial differential equations using the
Lie symmetry software package LIE [136].

Tadié¢ et al. discussed continuum (free-state)
wavefunctions for ultrathin quantum confining
structures. They avoided errors in the prior litera-
ture by using the WKB (Liouville-Green) approx-
imation and asymptotic boundary conditions and
unrestricted precision in MATHEMATICA [283].

Ueta considered the dynamics of an electron-
wave packet in a quantum dot subjected to mag-
netic fields [296].

Yu et al. computed the quasi-discrete Hankel
transform [323].

Yura et al. considered Laser-Doppler velocime-
try [324].

11 Crystals, solids, surfaces

Achim et al. studied electron transfer in a mixed
valence Fe?T /Fe*t complex [1]. Evidence of low
symmetry components in the crystal field at the
iron site prompted the inclusion of off-diagonal in-
teractions in the simulation of the relaxation spec-
tra. This used MATHEMATICA.

Anstis studied the reflection of fast electrons
from a crystal surface and a decrease in depth of
penetration when diffraction sets up a wave just
beneath the crystal surface [17]. The three-beam
approximation required eigenvalues of a 6 x 6 ma-
trix, that were expressed as a power series in the
Fourier components of the potential. MATHEMAT-
ICA was used to compute the leading terms.

Angelescu and Bhatt computed the ferromag-
netic interaction of polarons in dilute magnetic
semiconductors [16]. They used overlap integrals
between hydrogenic atoms, in a Hubbard model,
that had been computed using MATHEMATICA for
K, L and M shell orbitals.

Bartkowiak used a single band Hubbard model to
compute the grand canonical potential, staggered
and charge ordered magnetic susceptibilities and
compressibility from a series expansion in 1/T using
diagrammatic perturbation theory [32]. He used
MATHEMATICA to generate and to collect formulas.

Barvik et al. studied exciton transfer between
molecules in a dimer using a dichotomic stochastic
model in [33] and earlier papers. They used MAPLE
to solve the time development of the site occupa-
tion probabilities and then the memory functions
entering the generalized master equation.

Bishop, Hale and Xian computed ground state
energy, anisotropic susceptibility and staggered
magnetization as functions of anisotropy parame-
ters using microscopic coupled cluster methods [41].

Bittl worked on protein bound tetrameric metal
clusters that occur in photosynthesis and other bi-
ological processes [42]. He evaluated matrix ele-
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ments of single spin operators needed to calculate
ground state energies and effective hyperfine cou-
pling observed in EPR spectra.

Coffey considered the magnetic interaction of
type-II superconductors and point dipoles using
London theory for work on magnetic force mi-
croscopy and low temperature imaging [69].

Folcia et al. studied systematic errors in high-
accuracy universal polarimeter (HAUP) measure-
ments [102]. They used MATHEMATICA to construct
transmitted intensities.

Hergert and Dane simplified group theoretical
studies of photonic crystals and applied the results
to 2D examples [142]. They described a MATHE-
MATICA package that can be downloaded.

Kristoffersen studied the quantum Hall effect us-
ing high order perturbation via a Green’s function
and the density of states of electrons in a high mag-
netic field in 2D crystals [182]. He used MATHE-
MATICA to handle a combinatorial problem involv-
ing representations of Feynman diagrams.

Larsen and Thorkildsen computed the primary
extinction factors for a perfect non-absorbing
spherical crystal in the Bragg limit [190]. They
computed absorption, weighted path lengths and
extinction coeflicients in cylinders and spheres in
[289] and earlier papers.

Repetowicz et al. computed the eigenvalues of
the tight binding models of quasi-crystals on 2D
rhombic tiling structures for particular values of the
hopping parameters [252].

Sobral et al. constucted formulas for the mag-
netic moments of intermallic compounds from the
characteristic polynomial (CP) of the model Hamil-
tonian containing molecular and crystal field com-
ponents using MATHEMATICA and applied these to
PrAl, and NdAl, [271]. They discussed the mag-
netic properties corresponding to hexagonally sym-
metrical crystal fields, showed that the CP factor-
izes and computed high temperature susceptibility
expressions [272].

Szécs and coworkers used a generalization of co-
herence observation by interference noise (COIN)
to explore electron excitation energy transfer (ET)
that affects optical relaxation pathways between
molecular aggregates, multichromophoric polymers
and photosynthetic complexes [280, 282]. They
used MATHEMATICA and MAPLE to compute the ele-
ments of large density matrices. Also, they studied
nonlinear subsystem dynamics induced by a reac-

tion field coupled to a quantum heat bath by apply-
ing projection techniques to the Liouville equation
[281].

van Eijck and Kroon dealt with Coulomb energy
in polar crystals [300].

Crystallographic group theory is discussed below
in §15.1. The crystallographic aspects of combina-
torial tiling theory are included in the short account
of the topic by Huson [146]. This provides refer-
ences to work of Dress, Huson, Molnar and others.

12 Kinetics

The earlier survey of life science applications of
symbolic calculations [27] mentioned papers on

1. (pseudo-)steady state enzyme kinetics by Ben-
nett, Dewar et al. [37], Bayram [34]-[35] and
Yildirim [320]-[321],

2. compartmental analysis and identifiability
methods in metabolic systems and pharma-
cokinetics by Raksanyi et al. [249], Chappell,
Godfrey and Vajda [61], Ljung and Glad [200],
Margaria et al. [209], Cobelli’s group [19, 20]
and Zheng [326],

3. affinity binding relations by Grinfeld, Bennett
and Hubble [38, 120],

4. models of animal digestion by Jumars [172],

5. abortive complexes and random substrate
binding by Schulz and Siidi [264],

6. on-line estimation in bioprocess engineering by
Farza and Chéruy [93].

Most of the papers in items 1-3 involve the so-
lution of simultaneous multinomial equations us-
ing Grobner bases and resultants. The survey [27]
also includes a section on population dynamics that
refers to several papers on Volterra-Lotka systems
and related mathematical problems that are paral-
leled in chemical kinetics. In further work on sym-
bolic computations in kinetics:

Ajbar delineated the behavior of bioreactors by
a straightforward analysis to find pitchfork singu-
larities using MATHEMATICA [10].
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Alberty studied the thermodynamics of biochem-
ical reactions involving water. He found the num-
ber of apparent components (independent reac-
tions) at specified pH by row reduction of the ap-
parent conservation matrix of stoichiometric num-
bers [11] and he computed Gibbs free energy [12].
He used MATHEMATICA for matrix operations and
differentiation.

Fraser studied the steady state kinetics of en-
zyme mechanisms. He related the standard treat-
ment to (1) slow manifold theory and (2) singular
and ordinary perturbation theory applied to ODEs
[103]. He gave formulas generated by MAPLE.

Grotendorst and Dornseiffer determined the
mass and energy balance of a steam reformer that
turns organic waste into hydrogen rich gases [122].
They computed the dependence of the extent of
the reaction on temperature and pressure. They
included a FORTRAN code generator.

Ratkiewicz and Truong generated reaction mech-
anisms mechanically [250] discussed in §13 below.

Gatermann investigated polynomial systems
apropos kinetic studies based on Clarke’s cone and
stoichiometric network analysis [68], using toric va-
rieties in an account that addressed a mathematical
audience [112].

13 Chemical graph theory

The structural formulas of molecules are treated
as graphs — weighted or unweighted, directed or
undirected — in chemical investigations that re-
quire the number of possible structures, the actual
list of these alternatives, the ranking of the alterna-
tives by reference to a set of criteria, and pattern
matching to test for overall identity and for sub-
structural commonalities.

The mathematical infrastructure dates back to
the isomer enumerations of Cayley in the nine-
teenth century. It led to the concept of isomor-
phism in graphs, to Pdlya theory [247], and to re-
lated work in group theory [175]. In recent years,
the chemical and pharmaceutical industries have
been driving forces in the development of structure
search algorithms and, for drug discovery and de-
sign, combinatorial chemistry. An extensive litera-
ture involves software that was implemented in gen-
eral purpose languages using standard kinds of data
structure representation and manipulation. The

journal MATCH is devoted largely to this topic.
Trinajsti¢ gives the general background [295].

The MOLGEN system of Kerber, Laue and their
associates is a powerful resource for research, indus-
try and education. An early account was given in
[15] and a recent application to patents is described
in [177]. The web site [124] provides further exten-
sive information, including links to several online
journal articles about the system and its applica-
tions.

In other projects, Cash developed programs to
compute the characteristic polynomial based on
several different algorithms and pointed out the
benefit of unrestricted precision arithmetic in this
work [58]. He reported a new algorithm to com-
pute the permanent polynomial and its implemen-
tation [59]. Dias and Cash developed a program
to find the number of resonance structures in con-
cealed non-Kekuléan benzenoid hydrocarbons [82].

Salvador et al. computed matching polynomials
of fullerene graphs for Cgp_100 by an algorithm that
uses partial differential edge operators [259].

Pisanski, Plavsi¢ and Randi¢ proposed a new
characterization of cyclicity that involves the dis-
tance and detour matrices, and developed a com-
putational algorithm that overcomes problems of
slow convergence [245].

Ratkiewicz and Truong developed representa-
tions and combinatorial algorithms to generate
mechanisms for complex combustion reactions and
implemented these in a program COMGEN that was
written in FORTRAN 90 to support the graph opera-
tions and pattern matching to eliminate redundan-
cies [250]. Their COMGEN system uses the SMILES
chemical notation [270].

van Almsick et al. developed an algorithm to
enumerate isomers and diamutamers (same central
skeleton but different arrangements of ligands) and
wrote an implementation. They used the Cauchy-
Frobenius lemma and Pdélya polynomials [298, 299].

14 Other

Debye-Huckel theory: Sushkin and Phillies
used MATHEMATICA to evaluate some integrals
in a Silverstone-Moats expansion of electrostatic
interaction of a pair of polyelectrolytes [278].

Dielectric properties of proteins: Simon-
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son and Perahia used MATHEMATICA to solve some
algebraic equations in a Charmm simulation of

TMV [268].

Liquid films: Rubenstein and Leshansky
considered the dynamics of thin liquid films with
nonsoluble surfactants. They computed the film
rupture time analytically from amplitude equations
for Turing instabilities. They used MATHEMATICA
to perform bifurcation analysis [256].

Polymers: Nakao et al. reported calcula-
tions on the cascade theory of substitution effects
in non-equilibrium polymerization [227].  The
kinetic equations give rise to polynomial equations
which were solved using Grobner bases.

Thermodynamics: J. Martin et al. com-
puted thermodynamic properties of NH, [210] as
mentioned under density functional theory in §4.

Levelt derived the equation of the critical curve
of a binary mixture by converting the problem to
a polynomial system that he solved using Grébner
bases [192].

Transport phenomena: Galceran et al.
developed methods to analyze steady state cur-
rents of the scanning electrochemical microscope
based on a theory of diffusion of an electroactive
species through a multi-layered medium [107]. The
MATHEMATICA code was included. It manipulates
special functions and performs symbolic linear
algebra.

Grotendorst et al. analyzed NMR work on trans-
port and diffusion across living cell membranes us-
ing MAPLE [123].

Metzler and Comte solved the fractional diffusion
equation to deal with advection processes [222].
They used MATHEMATICA to compute Fox func-
tions.

15 Mathematical methods

15.1 Group theory

Classical applications of group theory to chemistry
and materials science were aimed primarily at
spectroscopy, crystallography and solid state
physics. The development of software to compute
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properties of groups had grown sufficiently by 1967
to warrant the survey talk by Neubiiser [228]. The
numerous papers that he and other authors wrote
in the years that followed have built computational
group theory into a major activity. This affects
many subjects besides chemistry and chemical
physics. The monograph [54] explains the role of
the mathematical objects that underly point group
calculations and gives references to a wide range of
computational schemes. Further background will
be provided in [143].

Crystallographic groups: The GAP system
that was initiated by Neubiiser in 1986 addresses a
wide range of topics in computational algebra and
discrete mathematics [110]. It is a major source of
algorithms for computing with groups in general.
Most of these are performed by packages with
individual authorship. CRyYST [88] implements
algorithms for work with crystallographic groups
that include the computation of Wyckoff positions
and maximal subgroups [87] and CRYSTCAT [95]
contains a library that gives access to all crystal-
lographic groups up to dimension 4. Gahler has
also considered density of states on tilings [106].
Souvignier considered the enantiomorphism of
crystallographic groups in higher dimensions with
results in dimensions up to 6 [273].

The CARAT project of Plesken et al. handles enu-
meration, construction, recognition and compari-
son for crystallographic groups up to dimension 6
— see [57, 234] and further papers cited in [57]. It
was coded in C and it can be used as a standalone
package or within GAP together with CRYST and
CRYSTCAT that, in combination, constitute a very
powerful resource.

Tools of this kind, that

1. regenerate data which had to be transcribed
from printed tables in the past, and

2. which will generate data for new groups that
arise in the course of future work on quasicrys-
tals and structures of kinds that have not been
anticipated,

transform the nature of crystallographic comput-
ing.

Altmann and Herzig constructed the extensive
Point Group Theory Tables [14] using general pur-
pose programming methods. They included char-
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acter and multiplication tables, irreducible repre-
sentations, subductions, direct products and other
properties of proper and improper point groups.
Besides crystallographic work, these tables are
cited in scores of papers that relate to topics as
diverse as quantum wires, magnetic properties of
Co0, m-electron theory of 2D and 3D conjugated
systems, fullerenes, phosphomolybdates and many
other topics (found in an online search using Sci-
ence Citation Index). Pokorny and the authors of
the compendium [14] extended its methods in [246].

Altermatt and Brown reported a computer-based
symmetry algebra to reconstruct an infinite bond
network without a priori knowledge of atomic co-
ordinates [13].

Arteca and Mezey computed a hierarchy of ho-
mologous shape groups of algebraic topology to rep-
resent and characterize potential surfaces, confor-
mations and other shapes of chemical interest [18].

Chen, Ping and their coworkers reported point
group calculations in [62] and earlier papers.

Grosse-Kunstleve presented algorithms for crys-
tallographic space group information and described
tests using the Sglnfo library [121].

Thiers et al. discussed incommensurably mod-
ulated crystals and quasicrystals and used super-
space groups to describe them [288].

van Almsick et al. used point group calculations
to enumerate isomers and diamutamers [299].

For combinatorial tiling theory that applies to
crystallography, see [146].

Spectroscopic applications of point groups
supported by symbolic computation include the
work on CO, [75] and tetratomic molecules [53]
that were mentioned under molecular vibrations.

Symmetry groups: These were used by
Fripertinger [104] and Kerber and Kohnert [176]
in work related to chemical graph theory discussed
in an earlier section, and by Li and Pauncz [196]
in an evaluation of valence bond matrix elements
based on algebrants (generalized matrices).

Pseudo orthogonal groups: Taneri and
Paldus constructed dimensional information con-
cerning the irreducible representations needed in
a Hubbard model of cyclic polyenes, using MAPLE
[286]
Lie

groups: This term has double meaning.

In one usage that occurs in the titles of several
monographs and texts, e.g. [149, 233, 262], the
commonplace usage of “symmetry” is generalized
to a very large class of local transformations that
are used to solve differential equations by Lie sym-
metry analysis. The Russian literature also uses
the term Ovsiannikov group [237]. The methods
are discussed under Lie algebras below. Recent
accounts of symbolic calculations of chemical inter-
est that mention Lie groups with this connotation
report the work of Ayari on supersymmetric two
bosons equations [21] and the work of Pulov et al.
on optical fibers discussed earlier [248].

The other usage, found in titles that include [199]
and in monographs that include [2, 98, 79] refers
to unitary and orthogonal groups of operators that
satisfy the Jacobi anticommutation identity, used
in studies of spin and angular momentum and in
models that create and annihilate particles.

As regards this double usage, Hydon has com-
mented “The main focus in quantum physics is on
the groups and algebras themselves; tools such as
representation theory are particularly useful in ap-
plications. By contrast, symmetry methods focus
on the role of symmetries as transformations of a
given differential equation. Once the symmetries
have been found, they can be used to construct
exact solutions. Although the structure of the un-
derlying Lie group or Lie algebra is important (par-
ticularly when one looks for discrete symmetries),
many applications do not require this structure to
be stated explicitly.” [148]

Unitary Lie groups were used by Paldus for
many-electron correlation calculations [238]. The
relation between these Lie groups, e.g. SU(3) and
SO(3), and the corresponding Lie algebras su(3)
and so(3) is explained in [2, 79].

15.2 Lie symmetry analysis

Hydon provided a very clear introduction [147].
Further accounts include [149, 233, 262, 237].
“Symmetries” in this context can be regarded as
changes of variable that permit the simplification
of differential equations, in part by converting high
order equations to sets of lower order equations,
and separating PDEs into sets of ODEs. Hy-
don explained the ideas of diffeomorphisms, sym-
metries, infinitesimal generators, orbits, invariant
points, REDUCEd characteristics, canonical coordi-
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nates, prolongations and other terms that are taken
for granted in some of the software documentation.

A recent literature search by MPB has found (1)
an extensive literature that applies these methods
using “pencil and paper” (or at least makes no men-
tion of symbolic software), (2) accounts of numer-
ous software packages to solve differential equations
using these methods that do not have published ap-
plications which could be found using a variety of
search strategies, and (3) a few packages written
for particular applications that did, in each case,
receive wider published use.

Hereman provided an extensive survey of soft-
ware through 1994 to support the mathemati-
cal reduction of cnlS systems using Lie algebras
[140]. Mansfield, Reid and Clarkson included ref-
erences to software for Lie algebra work on cnlS
systems through 1998 [207]. The Symbolic Analy-
sis Focus Group website provides further updates
[279]. Carminati and coworkers reported a de-
tailed comparison of the performance of several
packages in applications to test examples of the
Boltzmann, Fokker-Planck, magneto-gas-dynamic,
Navier-Stokes and nonlinear Schrodinger equations
[55].

Symmetries for the stationary Schrédinger equa-
tion, and for numerous problems in fluid dynamics,
nonlinear optics and properties of liquid crystals
are among the results in [149], which contains fur-
ther material for a wide range of physical problems.
Many of these symmetries were derived using Rus-
sian symbolic computation software [148].

Wittkopf listed symmetries for numerous differ-
ential equations that came from physical problems
in the account of the MAPLE package rif [316].

Wolf developed the packages Crack, LiePDE
(Refs. 205 and 207 in [140]) and ConLaw (for the
related computation of conservation laws) and ap-
plied these to his work in the theory of relativity
and the classification of integrable systems. He dis-
cussed his general methodology in [317].

Head developed the package LIE for his own
work in materials science and extended it to BIGLIE
[136, 137, 138]. These have been used in several fur-
ther applications in science and engineering [138]
including work on a self-writing waveguide [267].

Hereman developed the Macsyma package
symmgrp .max that was the basis of numerous pa-
pers in plasma physics, fluidics and other natural
phenomena (Ref. 30 in [140]).
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15.3 Lie operator algebras

Adams used these in symbolic calculations to ma-
nipulate expressions containing angular momentum
operators and the matrix elements in high order
perturbation calculations of the Zeeman effect [2].

Ferndndez reported similar work and further
symbolic Lie algebra computations to construct
functions of square matrices, and to manipulate
expressions that contain operators to create and
annihilate particles [98]. Examples include calcula-
tions of the vibration-rotation spectra of diatomic
molecules. Ferndndez and coworkers reported re-
lated symbolic calculations in several other papers
— see §2.

The work on nuclear magnetic resonance, men-
tioned earlier, that is based on the Baker-
Campbell-Hausdorff equation [151, 297] does, in ef-
fect, use Lie algebra methods (see, e.g. [98]).

Several of the symbolic calculations in nonlinear
optics, mentioned earlier, manipulate expressions
containing creation and annihilation operators us-
ing the methods of Lie algebras, without using the
term explicitly. Bajer and Lisoneck coded in TUR-
BOPASCAL [22]. Beskrovnyi wrote simple MATHE-
MATICA scripts [39]. Dick used a diagrammatic per-
turbation theory, represented operators and observ-
ables by lists, and coded in REDUCE. Nguyen wrote
MATHEMATICA modules for a substantial class of
unitary transformations [230].

15.4 Solitons

Solitons play an important role in several areas of
chemistry and allied fields that involve nonlinear
differential equations. Many of the papers that
discuss symbolic calculation in relation to solitons
deal in general mathematical terms. The connec-
tion with potential applications that address spe-
cific chemical, physical and biological properties
and phenomena has to be made largely through fur-
ther literature that does not mention symbolic cal-
culation. Among the monographs that made these
connections

1. Davydov addressed the behaviour of proteins,
muscles and other biological systems [78],

2. Kishvar and Agrawal considered optical soli-
tons in a wide range of contexts [180],
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3. Ihn considered electronic
nanosystems [150], and

properties of

4. Wegener and Schafer dealt with both optical
solitons and nanosystems [308].

A recent search of the online archives of the Interna-
tional Journal of Quantum Chemistry, using “soli-
tons” as the key, found 46 papers, and the corre-
sponding search of the Journal of Chemical Physics
found 76 papers. Most dealt with electronic and dy-
namic properties of conducting polymers, a subject
surveyed by Chandrasekhar [60].
Other topics included

1. metal-polymer interfaces [77],

. lattice relaxation [159],

. surface catalysis [90],

. liquid films [170],

. Raman processes in molecular liquids [179],
. carcinogenic radiation [188],

. fullerene superconductivity [208],

. Langevin equations [216],
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. coherent biosystem excitation [221],

—_
o

. geometry optimization [224],

—_
—_

. hydrogen bonded molecular chain solids [225],

—
[\V]

. vibron dynamics [239],

—_
w

. polyelectrolyte light scattering [266],
14. inorganic complexes [277].

The papers just cited did not use symbolic com-
putation but they all suggest fertile fields for ap-
plying software that supports soliton theory.

Hereman and Zhuang provided a very convenient
explanation of the computational basis of some of
the key methods, and commented on a few of the
early Macsyma and MATHEMATICA packages [141].

Gao and Tian have published over 60 papers on
the mathematics of soliton theory, both in gen-
eral terms and in relation to specific applications
to plasmas, fluid dynamics, hydrology, optics, and
topics in chemistry and biology.

The reports of their software include accounts of

1. a generalized hyperbolic function method [290,
291],

2. a variable coefficient balancing act method for
NLEEs [10§],

3. a direct method for non linear Schrddinger
equations [292],

4. Béacklund transformations and soliton-like so-
lutions via the truncated Painlevé expansion,
applied to coupled KdV equations [293],

5. the Clarkson-Kruskal direct reduction method
extended to variable coefficient and coupled
NLEEs [294].

The five papers just cited refer back to the con-
siderable earlier work of the authors. They have
application, respectively, to

1. non-linear chemical kinetics modeled by the
Duffing equation, as in [260],

2. rotating fluids,
3. optical fibers,

4. liquid films as in [170], and phase separation
as in [218],

5. the Brusselator problem.

Also, [109] relates to superconductivity.

In the further recent literature of symbolic com-
putations that relate to single solitary waves and
solitons

1. Fan discussed a generalized Hirota-Satsuma
coupled KdV equation and a coupled MKdV
equation [92],

2. Hong discussed dark solitary wave solutions for
the higher order nonlinear Schrédinger equa-
tion with cubic-quintic terms [144],

3. Hu, Tam, Wang and co-workers discussed the
Jimbo-Miwa and related equations [145] and
the 2+1 dimensional Kaup-Kupershmidt equa-
tion [285),

4. Li and Liu described Rath, a MAPLE package
for finding solitary wave solutions to nonlinear
evolution equations [198],
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5. Parkes and Duffy discussed a tanh method,
with several illustrations [240],

6. G. Zhang et al. discussed the tanh method
combined with Wu elimination or Grébner ba-
sis reduction [325].

7. Baldwin, Hereman and their coauthors re-
cently completed an extensive treatment of the
tanh method for ODEs and PDEs which in-
troduces several innovations, includes MATH-
EMATICA implementations and surveys earlier
literature [24].

This literature cites extensive earlier work of the
respective authors.

15.5 Convergence acceleration

Weniger summation was treated extensively in
[311, 312] and earlier papers. These discussed se-
quence transformations and the related algorithms
of Aitken, Wynn and Brezinski, and Padé approx-
imants. Also, [311] gave references to applications
that include the polarization expansion for the in-
teraction energy of hydrogen atoms, the interac-
tion of atomic hydrogen with an ultrashort laser
pulse, a perturbational treatment of the triplet
S even-parity ground state of helium, auxiliary
functions for the evaluation of molecular integrals
over Slater orbitals and Gaussian orbitals, scat-
tering equations, SCF iterations, Fourier series in
the evaluation of Green’s functions, excluded vol-
ume problems of dilute polymer solutions, statisti-
cal systems, and electronic structure of stereoregu-
lar quasi-one-dimensional polymers such as undis-
torted and Peierls-distorted polyacenes, using both
solid-state and crystal cluster approaches.

15.6 Coupling coefficients

Clebsch-Gordan, Wigner, 3j, 65, Racah, Gaunt and
related coeflicients have been computed precisely
by several authors, using a variety of formulas and
the unrestricted precision rational arithmetic pro-
visions of several computer algebra systems. Early
work included Takada [284]. Wang and Williams
[307] and Kocbach and coworkers [94] used MATHE-
MATICA. Lai used MAPLE [189]. Draeger used MAC-
SYMA [84]. Recently, Fritzsche et al. developed a
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further powerful system in MAPLE using Racah al-
gebra, reported in [105] and papers cited therein.
Barnett has used a non-standard approach [29].

15.7 Statistics

Symbolic calculation has vast potential in its appli-
cation via statistics to theoretical work in natural
science and to data analysis. This has been dis-
cussed at length with extensive references in [27].

16 Modern computer algebra
— fast multiplication

Symbolic calculation is supported by a panoply of
algorithms that have evolved over the past half-
century from an algebraic approach to mathemat-
ics. While linear algebra and group theory are
used and understood very widely in the natural
sciences, there is need for increased awareness and
understanding of the methods of computer algebra.
These have been brought together in two recent
books [71, 113].

The manipulation of polynomials is a major fo-
cus of published results and ongoing research that
impacts chemistry via many routes.

The multiplication of integers on a computer
with fixed word length d and base r illustrates some
of the key principles. Typically, an n-digit integer
can be stored in an array of £ = [n/d] + 1 words.
The 1st word contains £, the 2nd word contains the
leading n mod d digits, and the 3rd through final
words contain the successive blocks of d digits in
decreasing order. Then, multiplication of two inte-
gers can be regarded as the multiplication of two
polynomials of degree £ and argument z = r¢. The
contents of the array comprise the coefficients. The
use of symbolic calculation software to perform un-
restricted precision arithmetic is being reported in-
creasingly, even when formulas are not generated.
The efficient multiplication of integers is supported
by algorithms to multiply polynomials efficiently.

The multiplication of two polynomials of de-
gree n with integer coefficients by the classical
pencil and paper method requires (n + 1)? inte-
ger multiplications and n? integer additions. For
example, when n = 1, evaluating the formula
(a+bz)(c+dx) = ac+(ad+be)z+bdz? requires 4 in-
teger multiplications and 1 integer addition, when
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a,b,c,d are integers. However, by computing ac,
bd, u = (a + b)(c + d) and ad + bc = v — ac — bd
in turn, the number of multiplications is REDUCEd
to 3, at the expense of increasing the number of
additions and subtractions by 3. This principle is
used in the Karatsuba algorithm. Two polynomi-
als f(z) and g(z) of degree at most n = 2m — 1
can be written Fy + F1xz™ and Go + G12™ , where
Fy, F1,Go, Gy are polynomials in z of degree < m.
The product f(x)g(x) can be written as

F1G1.’L'2m +
((F(J + Fl)(Go + Gl) — FyGy — FlGl)Z'm +
FoGo (1)

This requires one polynomial multiplication to form
the first coefficient Fy Gy, another to form the third
coefficient FyGy, and two additions, a multiplica-
tion, and two subtractions to compute the mid-
dle coefficient, because FyGo and F1G; have been
formed already. Their degree is up to 2m — 2, and
the two subtractions cost as much as four additions
at degree less than m. Finally, there are two more
additions of the “top half” of FoGy (namely, at de-
grees m ...2m —2) and the “bottom half” of F1 G,
(at degrees 0...m—2) to the middle coefficient. As
an example with m = 2, we have

((2z + 1) + (4z + 3)z?) - ((6z + 5) + (8z + 7)z?)
= (322% + 52z + 21)z*+
(4022 + 60z + 22)z? + 1222 + 167 + 5.

(2)
Each of the three multiplications involves a pair of
polynomials of degree less than m. By the classi-
cal method, this costs 3m? integer multiplications
instead of (2m)2, at the expense of 3(m —1)% +8m
additions instead of (2m — 2)2, i.e., a saving of m?
integer multiplications and m? —10m + 1 additions.

The Karatsuba algorithm applies this principle
recursively to each of the polynomial products in
(1). The detailed analysis in pp. 221-223 of [113]
showed that when n is a power of 2, polynomial
multiplication can be performed with 9n!°83 — 8n
additions and multiplications instead of 2n% — 2n +
1. This is a 1.7 fold improvement for n = 128 and
a 4 fold improvement for n = 1024.

The same approach applies to the multiplication
of long integers, except that one has to take care
of carries as well. Thus one obtains an O(n!°83)
algorithm for multiplication of n-word integers.

Further advances for polynomial and integer mul-
tiplication give O(nlogn) and O(nlognloglogn)
performance. The latter are due to Schénhage and
Strassen, Schénhage, and Cantor and Kaltofen. All
of these were described and analyzed in Chapters
8 and 10 of [113].

The fast multiplication techniques described
above can be employed not only for multiplication
of integers and polynomials of arbitrary length, but
also of multiprecision floating point numbers.

We now have a trio of multiplication methods:
slow (classical), medium (Karatsuba), and fast.
Experience shows that any implementation must
use all three in a hybrid fashion, because typically
the slow algorithm is the fastest for small inputs, at
some input size the medium algorithm takes over,
and large inputs are the domain of fast methods.
Fortunately, the typical user of a computer algebra
system need not give any thought to this, since this
is one of the core functionalities provided by such
systems.

Following the discovery of the Karatsuba algo-
rithm in 1962, attention was directed to other mul-
tiplication processes. In particular, the conven-
tional methods of linear algebra require O(n®) op-
erations to multiply two n X n matrices. In 1969,
Strassen developed a scheme for matrix multiplica-
tion that requires O(n!°87) ring operations (addi-
tions and subtractions). Each of the input matrices
A and B “is divided into four n/2 x n/2 blocks,
and the computation of AB is REDUCEd to seven
multiplications and 18 additions of n/2 x n/2 ma-
trices, in comparison to eight multiplications and
four additions for the classical algorithm” (p. 327
of [113)).

The multiplications are handled recursively, as in
the Karatsuba algorithm for polynomials. Matrix
addition is much less costly than multiplication.
Hence the asymptotically shorter running time. A
slightly shorter variant was analyzed on p. 328 of
[113], which also cited subroutine libraries that con-
tain (1) implementations and (2) quotations con-
cerning the range of practicality of the algorithm.
Golub and van Loan gave a trivial example of the
Strassen algorithm producing an incorrect numeri-
cal result [117]. Their argument depended entirely
on fixed precision, and the rationalization of the
matrix elements in their example leads to the cor-
rect result without intermediate swelling.

“Further computational problems in linear alge-
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bra include matrix inversion, computing the deter-
minant, the characteristic polynomial, or the LR-
decomposition of a matrix, QR-decomposition and
unitary transformation to upper Hessenberg form.
It turns out that all these problems have the same
asymptotic complexity as matrix multiplication (up
to constant factors), so that a fast algorithm for
one of immediately gives fast algorithms for all of
them. ...The most fundamental consequence of
Strassen’s breakthrough was the development of bi-
linear complexity theory .. .that is concerned with
good and optimal algorithms for functions that de-
pend linearly on each of two sets of variables” e.g.
the coefficients (elements) in a pair of polynomi-
als (matrices) — p. 329 in [113] — which went on
to discuss fast modular composition of polynomi-
als, “black box linear algebra”, Wiedemann’s algo-
rithm for solving linear equations and sparse linear
algebra.

Many chemical problems lead to vast, sparse ma-
trices. The development of fast algorithms based
on the methods of computer algebra, that benefit
from structural features that are consequent on the
underlying chemistry is an open field for research.

17 Modular arithmetic

Modular operations are used extensively in the the-
ory and application of computer algebra. Check-
ing the correctness of new algorithms for the rapid
multiplication of long integers is one of the simplest
applications. Assume that a and b are positive inte-
gers and c is supposedly the value of ab. Let p stand
for a prime and let a* = a mod p, b* = b mod p,
¢* = ¢mod p. Then if (a*b*) mod p # c¢*, it follows
that ¢ # ab. As explained in [113], the converse
(a*b*) mod p = ¢* only REDUCEs the probability
that ¢ # ab to less than 1/2. But the probabil-
ity can be REDUCEd to any required tolerance by
checking that the equality holds for a large enough
number of primes.

This “fingerprinting” method is used to compare
separate copies of large databases that have been
updated independently by supposedly the same
changes. Each copy is a bit string and viewed as a
(possible huge) number, and with an exchange of a
small (logarithmic) number of information bits one
can quite reliably detect discrepancy. This might
be applicable when molecules, sets of molecules,

17

lengthy mathematical formulas, numerical refer-
ence data, sequencing information, or depictions of
molecular properties in combinatorial chemistry are
compared.

Many of the algorithms of computer algebra ex-
ploit the duality between “ordinary” and modular
operations. In some cases, data is REDUCEd mod-
ulo a single prime integer or polynomial, opera-
tions are performed on the modular image, which is
then “lifted” to an image modulo a sufficiently high
power of the prime or polynomial, respectively, us-
ing an algebraic variant of the well known Newton
iteration technique from numerical analysis. The
final result of direct interest is reconstructed from
its image that the lifting has produced.

In other cases, the same set of modular oper-
ations is performed with respect to several small
primes and the modular results are combined to
form a single end product. The formal recombi-
nation, called the Chinese Remainder Algorithm,
is based on the extended Euclidean algorithm that
is discussed below. This technique is analogous to
the well known Lagrange interpolation from numer-
ical analysis, which recovers the value of a function
from its images at several points and, in fact, is
also used in symbolic computation. Exercise 5.18
in [113] provides a lighthearted illustration of the
recombination in the integer case.

The extended Euclid algorithm (EEA) follows
the general path of the elementary Euclid algorithm
but, additionally, constructs a set of intermediate
results that the following table illustrates. It re-
lates to the computation of the ged of ro = 126
and ry = 35.

i| g i | Si | b
0 126 | 1 0
1] 3 35| 0 1
2 1 21 1| -3
3|1 14 | -1 4
4| 2 7T 2| -7
5 0|-5]18

Reading down the r; column we have the two start-
ing numbers 126 and 35, and then the remainders
of the successive divisions 126/35, 35/21, 21/14 and
14/7. Reading down the ¢; column, the occupied
slots 3, 1, 1, and 2 are the quotients of these di-
visions. The Bézout coeflicients s; and ¢; satisfy
r; = s;f + git leading to an expression in row 4



18 BARNETT, CAPITANI, von zur GATHEN and GERHARD

for ged(ro, 1) as a linear combination of rg and 74,
namely 7=2-126 + (-7) - 35.

The fast algorithms for multiplication, factoring,
linear algebra and other processes based on modu-
lar arithmetic and algebra and the EEA comprise
several chapters of [113]. The algorithm to evalu-
ate a determinant, that is a staple of many software
packages including the SACLIB system used in [31]
provides a relatively simple example of the use of
modular methods.

A determinant can be evaluated by Gaussian
elimination, which costs at most 2n® multipli-
cations, additions and divisions. Edmonds and
Bareiss have shown that the numerators and de-
nominators in all intermediate results are of length
O(n), if the coefficients of the input matrix are
word-size integers. Thus, using classical arith-
metic, computing the determinant via straightfor-
ward Gaussian elimination takes O(n®) word opera-
tions. Using a modular approach, described below,
the cost can be REDUCEd to O(n*).

The idea is to choose O(n) word-size primes,
compute the determinant independently modulo
each prime via standard Gaussian elimination, and
reconstruct the determinant from its modular im-
ages. The following toy example illustrates the pro-
cess. Suppose we want to compute the determinant

of the matrix
4 5
(55

We choose the prime numbers 17 and 19 as mod-
uli and obtain det A = 10 mod 17 and det A =
18 mod 19. The recombination yields det A € 265+
3237, and in fact det A = —58, the integer of least
absolute value in this set.

In the determinant example, the size of the re-
sult of interest is about the same as the size of the
coefficients in all intermediate results. There are,
however, many examples in symbolic computation,
the most prominent one being the greatest common
divisor of two polynomials with integer coefficients,
where the coefficients of the intermediate results are
significantly larger than the coefficients of the final
result. This phenonmenon is known as interme-
diate expression swell. The small primes modular
approach described above is particularly useful in
such a case, since the required number of primes
depends only on the size of the final result.

18 Polynomial systems

Many computer algebraists regard the pinnacle of
their field to be the theory of Grébner bases started
by Bruno Buchberger in the early 1950s. The solu-
tion of sets of simultaneous multinomial equations
comprise the main practical application in the nat-
ural sciences. Grobner bases were used for this pur-
pose in

1. some of the stereochemical work of Manocha
[205], Emiris and Mourrain [89] and Levelt
[193],

2. the polymerization studies of Nakao et al.
[227],

3. the enzyme kinetics work of Bayram [34]-[35]
and Yildirim [320]-[321],

4. the compartmental analysis and identifiabil-
ity work of Margaria et al. [209] and Co-
belli’s group [20, 19] on metabolic systems, and
Boens work [45] on spectroscopic data analy-
sis,

5. the transformation of the Bethe equation by
Cizek and P. Bracken [64] and

6. Levelt’s work on the thermodynamics of binary
mixtures [192],

which have all been mentioned earlier in this survey.

Buchberger developed an algorithm to construct
Grobner bases. Refinements and extensions of this
algorithm are the subject of ongoing research that
has been the subject of entire books and confer-
ences. Methods based on the classical theory of re-
sultants in fact are used for polynomial equations
to an increasing extent, but Grébner bases will un-
doubtedly continue to command considerable at-
tention. The literature of computer algebra tends
to introduce these by reference to ideals and other
mathematical concepts. A simple explanation that
begins by sidestepping algebraic terminology is be-
ing provided separately [223].

For the present, we give a very simple example.
Suppose that a piece of equipment must be installed
in a rectangular box that has a capacity of 6 cubic
centimeters, a surface area of 22 square centime-
ters, and a total edge length of 24 centimeters (be-
cause of some scenario involving the radiation or
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absorption or catalytic properties of surfaces and
edges). How long are the edges? Call the edge
lengths z,y,z. Then the geometry is expressed by

Eq. (3).

zyz = 6,
2¢y + 2yz + 2zx = 22,
dr + 4y +42 = 24 (3)
In MATHEMATICA, the single command (4)
GroebnerBasis|
{wyz - 6,
2zy + 2yz 4+ 2zx — 22,
4z + 4y + z — 24},
{z, y, 2} ] (4)

converts the three equations (actually the polyno-
mials that comprise the left hand sides, after the
transpositions that make the right hand sides zero)
to the triangular system Eq. (5).

{z +y+ 2 -6,

—2% —zy + 62— y? + 6y — 11,
-2% +62% — 112 + 6}. (5)
The third of the polynomials in Eq (5) factors to
(z —1) (2 — 2) (z — 3). Substituting the root z =1
in the second polynomial gives —y? + 5y — 6. This
factors to —(y — 2) (y — 3). Substituting the roots
z =1,y = 2, in the third polynomial gives (y — 3).
So{z =1,y =2, z = 3} is asolution of the original
equations and, by symmetry, so are {z,y, 2} set to
all permutations of {1,2,3}.

In this particular example the Grobner basis pro-
vides a triangularization of the original set of equa-
tions. Many other sets of polynomials can be trian-
gularized correspondingly to Grobner bases. How-
ever, this does not always occur. Certain side con-
ditions have been tacitly assumed that cannot be
taken for granted in general. Triangularization of a
set of polynomials does not always create a Grobner
basis. And the word “basis” in this context does
not have the meaning that it usually conveys to
chemists, that comes from linear algebra where it
connotes the basis of a vector space. For a full ex-
planation, see [223].
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19 Discussion

This survey is, of necessity, incomplete. It has been
spun off a bibliography that MPB compiled for an
NSF workshop two years ago, that has since grown
in a manner reminiscent of the broomstick of the
Sorcerer’s Apprentice. The survey [27] was an ear-
lier spin-off. Here, the constraints of space and time
have prevented the coverage of heat/mass trans-
fer and several other topics that are important in
chemical engineering and materials science. The
many pieces in the educational resource maintained
by Zelinski [327] have not been woven into the fab-
ric of the survey. The Journal of Chemical Ed-
ucation has published numerous articles in recent
years on the instructional use of symbolic calcu-
lation. For further citations that relate to these
topics and to the topics in the present survey see
[30].

The process of collecting material for the sur-
vey provided a dramatic experience of the power
of current technology in the location, retrieval and
organization of information. The process also has
provided salutary insights into the limitations of
some resources, and pointers to presentational tac-
tics to facilitate future mechanized survey writing.
Numerous papers of considerable relevance that
slipped through the net of CAS and SCI searches
were found by searching the websites of the jour-
nal publishers. Citation searches based on book ti-
tles can be rather incomplete. Macsyma and other
acronyms that do not have multiple meanings are
excellent search keys. “MAPLE” and other words
that are in general usage are not.

Having the full text of articles online has expe-
dited the inspection of recent papers (and older pa-
pers in some journals) enormously. But there is no
substitute for expert knowledge and the collection
of information by email has been essential and the
key to many parts of this survey.

The citations to several workers do not show the
full extent of their published work which uses sym-
bolic computation. In some cases — notably Cizek
and Weniger, the work was too voluminous to list
here. We have tried to indicate this in the text.
In some cases, the workers used symbolic compu-
tation in research without mentioning this in the
published accounts. Férnandez has provided MPB
with a list of over 20 papers which he and Ogilvie
wrote individually and jointly, in which this hap-
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pened. Pike has told MPB that he and several
other members of the Wheatstone Laboratory used
MATHEMATICA in work for dozens of papers over
the past decade without mention.

While the authors believe that symbolic calcu-
lation will become commonplace in scientific re-
search, they think that mention of its use can be
beneficial, particularly when scripts are made avail-
able in the supplementary material which journals
put in online archives to an increasing extent. It
is to be hoped that these scripts will contribute to
a growing body of material that builds on earlier
work mechanically and, in turn, is built on corre-
spondingly.

Looking to the infrastructure of symbolic com-
putation, MAPLE and MATHEMATICA have featured
most extensively in the material which has been
surveyed. General purpose programming languages
have been used effectively in several calculations,
e.g. TURBOPASCAL in [22]. FORTRAN 90 contains
features that are a major advance on the more com-
monly used FORTRAN 77, that proved very useful
in [250].

FORM [301], SINGULAR [119], sAcLIB [70] and
other languages that were developed for special re-
search environments are far more powerful for cer-
tain applications than MAPLE and MATHEMATICA.
A partial comparison for one problem is given in
[31]. The specification of future languages should
take note of the varied needs of users that published
accounts reflect. 'While some users need (or avail
themselves of) the very varied features of MATH-
EMATICA, many users have very simple needs that
are best addressed by relatively simple low cost sys-
tems with short learning curves and freedom from
idiosyncratic behavior. The whole issue of learn-
ing via MAPLE worksheets and MATHEMATICA note-
books has been bypassed here, but it is very impor-
tant. So is the combination of symbolic calculation
with graphic display. Besides plotting continuous
functions, this includes limitless possibilities of al-
gorithmic generation of diagrams. Obvious exam-
ples include (1) Feynman diagrams, (2) reaction
pathways, (3) transition schemes in laser systems,
and (4) simple enumerations of chemical formulas
and depictions of orientation, 3D structure, chiral-
ity and properties of atoms and bonds.

Future developments in hardware and in algo-
rithms for parallel and grid computing are needed
to increase the extent to which symbolic calculation

can benefit society. Weniger has provided the fol-
lowing historical comparison. “As a simple test for
the power of a computer, I like to compute 10000!
— approximately 0.28 * 1035660 — with the help of
MAPLE. On my old 486 PC, I needed something
like 220 seconds, and older SUN workstations were
actually not much faster. Under MAPLEV Release
5.1, my private laptop now needs 1.7 seconds, but
under MAPLE 8 I need on the same machine only
0.14 seconds” [313].

Still further advances, however, are needed.
Pharmaceutical /biomedical applications of CA is
conspicuously limited by present compute power
in Manocha’s work on protein-ligand docking [206]
and Cobelli’s work on identifiability [19].

More than a dozen benefits of symbolic calcula-
tion were listed recently in [28]. Herbert Jones was
probably the first user to observe and report sev-
eral of these. The juggernaut rolls on. He was one
of the drivers.
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