
Reconfigurable Implementation of Elliptic Curve Crypto Algorithms

M. Bednara, M. Daldrup, J. von zur Gathen, J. Shokrollahi, J. Teich
University of Paderborn, Paderborn, Germany�

bednara, daldrup, teich � @date.upb.de,
�
gathen, jamshid � @upb.de

Abstract

For FPGA based coprocessors for elliptic curve cryp-
tography, a significant performance gain can be achieved
when hybrid coordinates are used to represent points on the
elliptic curve. We provide a new area/performance trade-
off analysis of different hybrid representations over fields
of characteristic two. Moreover, we present a new generic
cryptoprocessor architecture that can be adapted to vari-
ous area/performance constraints and finite field sizes, and
show how to apply high level synthesis techniques to the
controller design.

1 Introduction

Currently, there are two popular kinds of cryptographic
protocols, namely public key and symmetric key protocols.
In the symmetric key protocols, a common key is used by
both communication partners and for both encryption and
decryption. Among them are DES, IDEA and AES. These
systems provide high speed but have the drawback that a
common key must be established for each pair of partici-
pants. In public key protocols we have two keys, one is
kept private by the owner and used either for decryption
(confidentiality) or encryption (signature) of messages. The
other key is published to be used for the reverse operation.
RSA, ElGamal and DSA are examples of public key sys-
tems. These systems are slower than the symmetric ones,
but they provide arbitrarily high levels of security and do
not require an initial private key exchange.

In real applications, both types are used. The public key
algorithm first establishes a common symmetric key over a
insecure channel. When this key expires after some time, a
new key is established via a public key algorithm. Then the
symmetric system is used for secure communication with
high throughput.

Due to the comparative slowness of the public key crypto
algorithms, dedicated hardware support is desirable. In this

This work has been supported by DFG Sonderforschungsbereich 376
“Massive Parallelität.”

paper, we present an area versus performance tradeoff for
FPGA based implementations of a cryptographic coproces-
sor using elliptic curve crypto algorithms. FPGA based
cryptoprocessors avoid a series of drawbacks of ASIC based
systems:

� A cryptography algorithm is secure as long as no ef-
fective attack is found. If this happens, the algorithm
must be replaced. FPGAs facilitate a fast and cost ef-
fective way of exchanging the algorithm, in particular
of switching to a higher key length.� In electronic commerce servers, cryptographic algo-
rithms must be changed often for the purpose of adap-
tion to the current workload, depending on the type of
cryptography that is mainly used (public key or sym-
metric). This can be done by exploiting the FPGAs
reconfiguration facility.� Elliptic curve cryptosystems facilitate several degrees
of freedom like Galois field characteristic, extension
degree, elliptic curve parameters or the fixed point gen-
erating the working subgroup on the curve (see Sec-
tion 7). FPGAs allow for an effortless adaption to
changing security requirements.� The empirical results of testing various approaches on
an FPGA may later be of help in designing an efficient
ASIC, where such experiments would be much more
costly.

The paper is organized as follows. Section 2 discusses
some previous work. In Section 3 we give a short introduc-
tion into the theory of elliptic curve cryptography. Section 4
is a survey of the required finite field operations along with
an area/performance analysis of different field multiplier ar-
chitectures. Sections 5 and 6 give a performance analysis
of various combinations of point multiplication algorithms
and coordinate representations. In Section 7 we present a
flexible and generic cryptoprocessor architecture and some
experimental and theoretical results. Section 8 summarizes
the results.

M
.B

E
D

N
A

R
A

,M
.D

A
L

D
R

U
P,

J.
S

H
O

K
R

O
L

L
A

H
I,

J.
T

E
IC

H
&

J.
V

O
N

Z
U

R
G

A
T

H
E

N
(2

00
2)

.
R

ec
on

fig
ur

ab
le

Im
pl

em
en

ta
tio

n
of

E
lli

pt
ic

C
ur

ve
C

ry
pt

o
A

lg
or

ith
m

s.
In

P
ro

c.
of

Th
e

9t
h

R
ec

on
fig

ur
ab

le
A

rc
hi

te
ct

ur
es

W
or

ks
ho

p
(R

AW
-0

2)
,1

57
–1

64
.F

or
tL

au
de

rd
al

e
FL

,U
SA

.
T

hi
sd

oc
um

en
ti

sp
ro

vi
de

d
as

a
m

ea
ns

to
en

su
re

tim
el

y
di

ss
em

in
at

io
n

of
sc

ho
la

rl
y

an
d

te
ch

ni
ca

lw
or

k
on

a
no

n-
co

m
m

er
ci

al
ba

si
s.

C
op

yr
ig

ht
an

d
al

lr
ig

ht
s

th
er

ei
n

ar
e

m
ai

nt
ai

ne
d

by
th

e
au

th
or

s
or

by
ot

he
rc

op
yr

ig
ht

ho
ld

er
s,

no
tw

ith
st

an
di

ng
th

at
th

es
e

w
or

ks
ar

e
po

st
ed

he
re

el
ec

tr
on

ic
al

ly
.I

ti
s

un
de

rs
to

od
th

at
al

lp
er

so
ns

co
py

-
in

g
an

y
of

th
es

e
do

cu
m

en
ts

w
ill

ad
he

re
to

th
e

te
rm

s
an

d
co

ns
tr

ai
nt

s
in

vo
ke

d
by

ea
ch

co
py

ri
gh

t
ho

ld
er

,a
nd

in
pa

rt
ic

ul
ar

us
e

th
em

on
ly

fo
r

no
nc

om
m

er
ci

al
pu

r-
po

se
s.

T
he

se
w

or
ks

m
ay

no
tb

e
po

st
ed

el
se

w
he

re
w

ith
ou

tt
he

ex
pl

ic
it

w
ri

tte
n

pe
r-

m
is

si
on

of
th

e
co

py
ri

gh
th

ol
de

r.
(L

as
tu

pd
at

e
20

16
/0

5/
18

-1
4

:1
5.

)

2 Related work

FPGA based elliptic curve coprocessor implementations
have been reported in [6], [21], [5], and [23].

[6] is probably the first of these implementations. It uses
a normal basis to represent the finite field and the Massey-
Omura multiplier to multiply two elements of the field. The
implementation in [21] is the fastest reported implementa-
tion. It uses the Montgomery method for point multipli-
cation which is introduced in [17] and modified for fields
of characteristic � in [14]. Here in each iteration only the�

and � coordinates of the intermediate points are com-
puted. The computation of the � coordinate of the result
is postponed to the last iteration of the algorithm. Such an
implementation is also strong against side channel attacks,
because the number of operations does not depend on the
multiplier bits. On the other hand, the performance of the
method cannot be improved by using addition-subtraction
chains. Another point of this article is to exploit the re-
configurable structure of FPGAs for fast squaring in poly-
nomial bases, which was believed to be slow compared to
squaring in normal bases. This has been theoretically ana-
lyzed in [26]. [5] is another implementation of the Mont-
gomery method in the normal basis representation. [23]
discusses the Hessian form of an elliptic curve, another
representation of elliptic curves which can be used to par-
allelize the point multiplication algorithm. Unfortunately
this method can only be applied to curves whose groups of
points have a cyclic subgroup of order � . This restricts the
selection of elliptic curves. E.g. the elliptic curves which
are suggested by NIST cannot be implemented with this
method.

In this work we compare several possibilities for hard-
ware implementation of elliptic curve point multiplication.
Our comparison will include different point representations
like the mixed coordinate representation. In addition we an-
alyze the effect of parallelism on the overall performance.
This topic has been already briefly analyzed in [23].

3 Elliptic Curve Cryptography

This section gives a short introduction into the applica-
tion of elliptic curves in the area of cryptography [1].
The points of an elliptic curve defined over a finite field
form a finite group, and the group operation is point addi-
tion. The basic operation in elliptic curve cryptosystems is
the computation of �
	 , where 	 is a point and � a (large)
integer. The computation of �
	 is done as a sequence of
repeated point additions and doublings. Elliptic curve cryp-
tosystems (ECCs) rely on the fact that solving the discrete
logarithm problem on an elliptic curve is a hard task. That
means, for a given 	 and � , computing �
	 is of polyno-
mial complexity, but computing � from only 	 and ��	

is, in general, assumed to be infeasible in polynomial time
[16]. Some care has to be exercised in order to avoid special
curves with easy discrete logarithms. For a field of charac-
teristic two, the minimum number of bits required to repre-
sent the finite field elements is recommended to be larger
than ���� to resist ”generic” attacks. ECCs defined over
such fields are assumed to be as secure as RSA systems
with 1024 bits [1]. The short keys make elliptic curve cryp-
tosystems attractive in communication systems with tight
bandwidth limitations.
Fig. 1 shows how the ultimate goal, namely point multipli-
cation, naturally decomposes into a hierarchy of three lev-
els. The top two ones use essentially the subroutines pro-
vided at the level just below it. Each level can be optimized
in order to meet the given area/performance constraints.

Finite field arithmetic:
Selection of basis, multiplier and inverter structures.

Point addition and doubling:
Selection of point representation method.
Affine, projective, Jacobian, or mixed representation.

Point multiplication:
Double and add method, addition subtraction chains.

Figure 1. Hierarchical levels of elliptic curve
point multiplication.

The register transfer level could be seen as a fourth level
below the field arithmetic level. However, logic optimiza-
tion is beyond the scope of this paper.

4 Finite field arithmetic

Every finite field ����������� ��� can be expressed as a vector
space over ����������� . We consider here the special case of�! "� . In this case every element of ����������� is a vector of
length # with coefficients in ��������� , i.e either � or � . Such
a representation is suitable for hardware implementation of
arithmetic in ����������� . Every element can be represented
with # one-bit registers.

There are several types of vector space bases that can be
used to represent the finite field. They have various advan-
tages and drawbacks for efficient implementation of arith-
metic. In this section we consider each of the field oper-
ations addition, multiplication, squaring, and division with
respect to different bases.

4.1 Addition

The addition of two elements of ���������$� is the XOR of
two # -bit sequences, independent of the choice of vector
space basis over ������� � � .
4.2 Multiplication

One of the most resource consuming operations in finite
field arithmetic is multiplication. Division can be (and is
normally) implemented using consecutive multiplications.
Therefore there is a lot of attention to finite field multipli-
cation in the literature. Multiplication can be implemented
either in parallel or serially. Parallel multipliers perform
the total multiplication in one clock cycle but require more
space to be implemented. Since this clock cycle propa-
gates through a long path due to large area implementation,
pipelining can be used to break the path into more logic
stages, allowing higher clock rates at the cost of more clock
cycles. But here again each result can be computed with
only one clock cycle if the pipeline stages are fed with data
at appropriate times. Examples of parallel multipliers can
be found in [24], [22].

Serial multipliers on the other hand require smaller area
and have a less complex structure, but generate one or a few
bits of the result in each clock cycle ([20], [25]).

Parallel multipliers are especially suitable for small finite
fields (#&%"(') since they require a large area on the order
of #*) for school method and #,+.- /10 for Karatsuba multipliers.

Indeed there are asymptotically fast multiplication algo-
rithms which can improve the software performance (see
[8]). These fast multiplication methods have been used to
factorize a polynomial of degree over ��23�����$23����� ([2]). But
to our knowledge there is no efficient hardware implemen-
tation of them. For elliptic curve systems to be secure, we
need #&45���� , and will use #6 7�98�� . Here serial multipli-
ers are more attractive and we consider only these kinds of
multipliers in this section.� Polynomial basis LFSR1 multiplier: To generate a

polynomial basis for the field ����������� , it suffices to
find a polynomial :;�=<>� of degree # which is irre-
ducible over ��������� . Such a polynomial will have a
root ? in ����������� ([15], [12]), and the # distinct pow-
ers @���2A?B2A?) 2DC�CDCE2F?G�IH +KJ of ? constitute a basis for����������� over ��������� . LFSR multipliers use such a
basis; see [20] for an FPGA implementation. It can
be implemented as bit-level multiplier which generates
the result in # clock cycles or as a word-level mul-
tiplier of length L which multiplies two elements in�! NM �OQP clock cycles using �R#TSULV��W
��LXS��K�E�=��LXS�9�YWX�[Z O H)\3]Y^`_ �a?G��b \ �cW _ �a?G�(b O H + � XOR gates and

1Linear feedback shift register

��L) AND gates, where _ �=?ed�� is the Hamming weight
or number of nonzero coefficients in the representation
of ?[d .� Normal basis multiplier: Normal bases are attractive
since squaring is very easy in such a basis. Because of
this characteristic, it is desirable to multiply two ele-
ments represented in this basis with as few resources
as possible ([19], [7], [24]). One normal basis mul-
tiplier is the Massey-Omura multiplier [19] which is
very flexible according to time and area. One can im-
plement L similar pieces and perform the total multi-
plication in �! NM �O P clock cycles.

The Massey-Omura multiplier requires at least Lf���(#gS�9� AND gates and Lf���(#hSi��� XOR gates.� Dual basis: There are also multipliers for the dual ba-
sis of polynomial basis like the Berlekamp multiplier
[15]. We have not considered them.� Comparison of different multipliers: We have com-
pared the number of logic elements to implement both
LFSR polynomial basis multiplier and normal basis
multiplier for ������� +A0.+ � in Figure 2, and also the prop-
agation times. There is no general formula to com-
pute the propagation delay of a LFSR multiplier. Val-
ues have been measured by analyzing the schematic
diagram of this multiplier. The normal basis is as-
sumed to be an optimal normal basis. The LFSR
multiplier is generated with the irreducible polynomial:;�=<j�G k< +A0.+ WX< 0 Wl� .

As can be seen from the figures, a LFSR multiplier al-
ways requires fewer logic elements. The propagation delay
is smaller than of the Massey-Omura for a word length less
than ��m . For the word lengths between �9m and ��� , which
correspond to a number of clock cycles between and �9� ,
both multipliers have the same propagation delay. Since cir-
cuits with larger word length require a lot of logic elements,
we have used a bit-level LFSR multiplier. The design is so
modular that changing the multiplier can be done easily.

4.3 Squaring

Squaring is a special case of multiplication, we have
to multiply an element by itself. But there are algorithms
that perform squaring much better than multiplication. So
we examine the cases of normal bases and polynomial
bases separately, and have an element n represented by�Ro ^ 2Dp�pDpD21o �IH + �eqr���������A� .� Normal basis: In this case n) will be represented by�Ro �IH + 23o ^ 2DpDp�pD21o �IH) � . It means that squaring in normal

basis is only a circular shift [16].

� Polynomial basis: In this case we have :

n) �sH +t u]Y^ o
u
?)
u
p (1)

0 20 40 60 80 100 120 140 160 180 200
2

4

6

8

10

12

14

Clock cycles

P
ro

pa
ga

tio
n

(T
)

0 20 40 60 80 100 120 140 160 180 200
0

1

2

3

4

5

6

7

8
x 10

4

Clock cycles

N
um

be
r

of
 tw

o
in

pu
t l

og
ic

 e
le

m
en

ts

Figure 2. Propagation delay (above) and num-
ber of 2-input logic gates (below) of both
LFSR (*) and normal basis multiplier (+)
for one multiplication in ������� +F0.+ � (assumingvcw ��x vYyKzF{ v).

We have to reduce the polynomial corresponding to (1),
of degree at most �(#fS|� , modulo :;�=<j� . This can be done
with �R}$S~�9�E�R#[S~�9� two-input gates, where } is the Hamming
weight of :;�=<j� ([26], [10]). It is conjectured that we can al-
ways choose }i��� , and often }� �� ([10]). So squaring
will consist of a permutation followed by a modular reduc-
tion. The later can be reimplemented separately for each
finite field using the reconfigurable structure of FPGAs.

Table 1. Sequence of multiplications and
squarings for inversion in ������� +A0.+ �
0: � +T� < @�<>)�� H + J
1: �)�� �)+ CD� + @�<)3� H +KJ
2: ��� � �)) CD� + @�<)3� H +KJ
3: � /�� �)1�� CE�) @�<)3� H +KJ
4: � + ^ � �)3�/ CE� / @�<)��R� H +9J
5: �) ^ � �)��R�+ ^ CD� + ^ @�<)3��� H +9J
6: �(� ^ � �s)3���) ^ CD�) ^ @�<>)F��� H + J
7: ��� ^ � �)F���� ^ CD� � ^ @�<)3��� H +9J
8: ��� / � �)3�� ^ CE� / @�<)3��� H +9J
9: � 01/�� �)��R�� / CD� + ^ @�<)3��� H +9J

10: � +F0 ^ � �)1���03/ C�� 01/ @�<)��R��� H +�J
11: Output � �)+F0 ^ @�<) �R���1H)�J

4.4 Inversion

There are two ways to perform inversion in a finite field.
One approach is via the Extended Euclidean Algorithm, and
another via Fermat’s theorem:� Euclidean algorithm: This algorithm requires ���R#) �

bit operations to perform an inversion in ����������� .� Fermat’s theorem: For every element n�q
���������$��� ,
we have n)1� H + �� , and hence n;H + ln)1� H) .
The binary representation of ���hSk� has # digits and#�Si� of them are equal to � . So it requires #�Si� mul-
tiplications and # squarings by double and add method.
This cost can be reduced to # squarings and ���=�����j�=#*�3�
multiplications ([9]). The sequence of ��� multiplica-
tions and ��8�� squarings for the case #r ���8$� is shown
in Table 1.

5 Point addition and doubling

Any point multiplication will be done with a sequence
of point additions, so to minimize the total cost one should
consider both the point addition algorithm and the sequence
in which the operations will be performed.

In this section we consider three different representations
of a point on an elliptic curve and study their effect on point
addition and doubling costs.

5.1 Coordinate Representations

Most point multiplication methods are based on repeated
addition/subtraction and doubling of points (see Section 6).
In an addition, one of the two arguments is fixed. This al-
lows a simpler and faster computation logic in certain cases.

In this subsection, we introduce different representations of
points on elliptic curves and show how some hybrid forms
of them can be used to enhance the computation logic in de-
pendence of various area and performance constraints. Hy-
brid coordinate representations have been discussed in [4]
and [13].
The most popular coordinate representation is the affine rep-
resentation which is based on two coordinates �R<*23�s� . Other
representations are projective, Jacobian and López-Dahab
representation [13] each of which uses three coordinates� � 21�G2.��� . Transforming affine coordinates into one of the
other representations is almost trivial, but not vice versa
since the back transformation requires (expensive) field in-
versions. Table 2 gives the formulas for mapping into affine
coordinates.

Coordinate
Representation

Mapping to Affine Coordinates

Projective <
 �V � , �� ¡� �
Jacobian <
 �V �) �� l� � �
López-Dahab <� �V �¢�~ £� �)
Table 2. Mapping of Projective, Jacobian, and
López-Dahab representation into affine coor-
dinates.

We have analyzed two different hybrid coordinate rep-
resentations with respect to the suitability for perfor-
mance enhancement of the computation logic, namely
affine/Jacobian and affine/López-Dahab. We call these rep-
resentations mixed coordinate I and mixed coordinate II, re-
spectively. Moreover, we analyze the Montgomery method
([17], [14]) for point addition and doubling which is ac-
tually not a hybrid coordinate representation but uses the
Jacobian coordinates. The Montgomery method is based
on the observation that the < coordinate of the sum of two
points 	¤W¦¥ depends only on the < and § coordinates of the
two points 	 and ¥ , if ¥i "	¦W|¨ for a fixed point ¨ . This
method keeps the condition ¥¦ l	�W�¨ in each iteration step
of the point multiplication, and thus only works with very
special addition chains.

Table 3 compares the methods for point addition and
point doubling in mixed coordinate I and II and the Mont-
gomery method. The table gives the number of multipli-
cations © , squarings ¨ and additions ª in the underlying
finite field.

The number of field operations in Table 3 gives only a
coarse estimation for the time and area requirements of the
computation logic. A more detailed analysis is given in the
next subsection.

Representation Addition Doubling
Mixed coord. I ����©«W|�(¨�W&m�ª ��©¢W|�(¨�Wi'Kª
Mixed coord. II �D'�©¢WX'�¨�Wl�9��ª (©¢WX'�¨�Wi'Kª
Montgomery '�©«W¡��¨�W|�Dª ��©¢WX'�¨�Wl��ª
Table 3. Costs of different point addition and
doubling methods in terms of field opera-
tions, in characteristic 2.

6 Point Multiplication Algorithms

The task of point multiplication is to compute ��	 from� and 	 , assuming that we know how to add two points and
also how to double a point 2.

By Hasse’s bound, the elliptic curve has at most ¬" �(�QWX�(��) b + points, and we can always reduce � to satisfy�~�|�«%l¬ .
The standard method for multiplication by an integer �

is the double and add method which uses the binary repre-
sentation of � .

In this method all the bits in the binary representation
of � except the first one are traversed from left to right.
For each � a doubling will be performed, and for each � a
doubling and an addition with the original point. Since for a
random n bit number � , on average �) bits equal 1, the total
number of operations for a complete point multiplication is
about # doublings and �) additions.

The number of operations can be reduced by using bet-
ter addition chains [3] or addition subtraction chains [11],
[18]. If the bit sequence is processed to produce an addition
subtraction chain, and considering that computing inverse
of a point is a trivial task we require only � � additions but
the number of doublings will be kept fixed.

The number of clock cycles required for a point mul-
tiplication (plus the conversion into affine coordinates) is
shown in Figure 3. All multipliers are serial LFSR multi-
pliers in �������®+F0�+D� . Each triple of bars corresponds to a
complete point multiplication and a subsequent coordinate
transformation using the above mentioned methods and a
fixed number of multipliers.

The number of required clock cycles reduces as more
multipliers are used until the maximum degree of par-
allelism in the point multiplication algorithm is reached.
For the Montgomery representation, the maximum required
number of multipliers is 2, for the López-Dahab represen-
tation it is 3, and for the affine/Jacobian representation 4.
These diagrams hold only for multipliers with a latency of
more than 5 clock cycles. For smaller values, the latencies
of memory accesses and other functional units limit the per-
formance.

2The formula for doubling is not that for addition with two identical
arguments.

7 Architecture

In this section, we present a generic datapath architecture
that can be easily adapted to various performance/area con-
straints by exploiting several degrees of freedom, namely:

� number of functional units in the data path,

� degree of parallelism in the multiplier units,

� type of point multiplication algorithm,

� implementation type of the controller,

� coordinate representation.

The impact of the number of functional units and the coor-
dinate representation on the overall performance is shown
in Fig. 3. An area and performance estimation of multipli-
ers of different degrees of parallelism is already given in
Section 4.2. For the controller we can use either a hard-
wired finite state machine or a microprogrammable con-
troller. For performance measures, we have implemented
a sample architecture on a prototyping system with a Xilinx
Virtex FPGA (XCV1000-BG560-4).

7.1 Datapath Architecture

The structure of the datapath architecture is shown in
Figure 4. We use two squarers, two adders and four se-
quential LFSR multipliers in our sample architecture. Each
of these arithmetic units (AU) can get operands from a dual-
port operand memory, a register, or directly from the output
of another arithmetic unit.

Control

Host

Interface
B_O

B_I

B_CA_C

A_O

A_I

Arithmetic
Control

Unit

Dual−

RAM
Port

Mult. I Mult. IV Squarer I Squarer II Adder I Adder II Register

data

data

control

Figure 4. Datapath structure.

The arithmetic control unit (ACU) generates control sig-
nals for all AUs, the operand memory and the register.
The second port of the operand memory is used by a host
interface, thus allowing for host data transfer while a point
multiplication is being performed.

The AUs consist of one or two operand registers, one
output register and the core functional unit.

Point Double Unit
(PDU)

Point Conversion Unit
(PCU)

Point Addition Unit
(PAU)

Main

Control

Unit

(MCU)

m

Arithmetic Control Unit (ACU)

control

Figure 5. The Arithmetic Control Unit (ACU).

z1 z3y1

M1

M2

S1

x1 x1

S2

A1 S3

A2

M4

S4

m1

a2

A3

M5

A4

y3

z3

x3

M3

Figure 6. Data dependency graph for point
doubling in mixed coordinates type II.

7.2 Controller Architecture

For our sample implementation, we use a hardwired con-
troller state machine. The FSM is structured hierarchically
as shown in Figure 5, which reduces the state set and in-
creases the design reusability.

The PAU and PDU units generate control signals for the
AUs in order to perform a point addition or point doubling,
respectively. The algorithm implemented by the PDU is
given exemplarily as a data dependency graph in Figure 6.
The A, S, and M gates perform an addition, squaring, and
multiplication, respectively.

The PCU generates control signals to perform a coordi-
nate transformation for Jacobian/affine conversion, which
requires also a field inversion operation (Section 4.4).

0

100000

200000

300000

400000

500000

600000

1 2 3 4 5
of multipliers

o

f
cl

o
ck

-c
yc

le
s

Montgomery
Mixed-Coordinate I
Mixed-Coordinate II

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

1 2 3 4 5
of multipliers

o

f
cl

o
ck

-c
yc

le
s

Montgomery
Mixed-Coordinate I
Mixed-Coordinate II

Figure 3. Required number of clock cycles for point multiplication in double and add method (left)
and addition subtraction chains (right).

The point multiplication algorithm according to the double-
and-add method (Section 6) is performed by the MCU. For
this purpose, MCU provides control signals for PAU, PDU
and PCU.

7.3 Merits of the Modular Structure

The modular structure of the datapath and the hierarchi-
cal design of the controller allows a high design reusability
when adapting the design to given area and performance
constraints.� Replacing the sequential multipliers by parallel units

requires no modifications to the controller.� Changing the point multiplication algorithm requires
only modification of the MCU.� Changing the coordinate representation requires only
modifications of PAU, PDU, and PCU.� Changing the degree of the field extension (i.e. the key
length) requires no modifications to PAU, PDU, and
PCU.

The PAU, PDU, and PCU were designed using high
level synthesis techniques. For generating the resource con-
strained schedules, we used an LP based scheduler. From
these automatically generated schedules the state machines
can easily be derived and coded in VHDL.

7.4 Performance Measures

Our prototype implementation on a Xilinx Virtex FPGA
(XCV1000-BG560-4) operates at a clock period of 20ns.
The total time for a point multiplication in our implementa-
tion is given in the first row of Table 4 as well as theoretical

Figure 7. Schedule for the point doubling op-
eration with two multipliers.

performance values for some other selected configurations
using serial LFSR multipliers (assuming 20ns clock period
for all configurations).

Configuration PMult. Conv . Total [ms]

4Mult,Double&Add,
Mixed Coordinate II

183742 2482 3.72

2Mult,Double&Add,
Mixed Coordinate I

201220 2290 4.07

1Mult,AddSubChain,
Montgomery Coord.

210673 3438 4.28

2Mult,AddSubChain,
Montgomery Coord.

110207 3248 2.27

Table 4. LFSR Latency of point multiplication,
conversion and total operation

Table 5 gives performance values when a parallel
Massey-Omura multiplier is used instead of a LFSR multi-
plier. Our Massey-Omura implementation requires 7 clock
cycles for one multiplication but an extremely large CLB
area (about 48300 LUTs), so Table 5 covers only implemen-
tations with a single multiplier at clock period of 27.8ns.

Configuration PMult. Conv . Total [ms]

1Mult,Double&Add,
Mixed Coordinate II

17954 274 0.50

1Mult,Double&Add,
Mixed Coordinate I

16331 268 0.46

1Mult,AddSubChain,
Montgomery Coord.

9550 310 0.27

Table 5. Massey-Omura Latency of point mul-
tiplication, conversion and total operation

As in Section 6, we assume for both tables that the num-
ber of 1-bits in the multiplier � is �) for the double and add
algorithm coordinates and � � for addition subtraction chains,
where #r ¯��8$� is the number of bits of � .

8 Conclusion and summary

Our work gives an area/speed tradeoff analysis for hard-
ware implementations of elliptic curve cryptography algo-
rithms. We have shown that in each case, the Montgomery
representation gives the fastest point multiplication method
even when there is no limitation for the area. In this method
the maximum number of multipliers that can be used are
two multipliers. The best choice of representation basis is
the polynomial basis. The normal bases are advantageous
only when the available area is very large, so that a Massey-
Omura multiplier with a high throughput can be used.

Our tradeoff analysis concerns different characteristic
two field multipliers with respect to area and performance.
Moreover, we analyzed the tradeoff between different ellip-
tic curve point multiplications using various hybrid coordi-
nate representations and multiplication algorithms. In con-
clusion, we have presented a new generic architecture for
an FPGA based elliptic curve coprocessor that can be easily
adapted to area and performance constraints and designed
using high level techniques. Experimental results give com-
parison of different configurations of our coprocessor.

References

[1] Ian Blake, Gadiel Seroussi, and Nigel Smart. Elliptic Curves in Cryptography.
Number 265 in London Mathematical Society Lecture Note Series. Cambridge
University Press, 1999.

[2] Olaf Bonorden, Joachim von zur Gathen, Jürgen Gerhard, Olaf Müller, and
Michael Nöcker. Factoring a binary polynomial of degree over one million.
ACM SIGSAM Bulletin, 35(1):16–18, March 2001.

[3] A. Brauer. On addition chains. Bulletin of the American Mathematical Society,
45:736–739, 1939.

[4] Henri Cohen, Atsuko Miyaji, and Takatoshi Ono. Efficient elliptic curve ex-
ponentiation using mixed coordinates. In ASIACRYPT 1998, number 1514 in
LNCS, pages 51–65, 1998.

[5] Markus Ernst and Sorin Huss. Ein FPGA basierter Elliptic-Curve Krypto-
prozessor mit variabler Schlüssellänge für hohen Datendurchsatz. In Entwurf
Integrierter Schaltungen und Systemen, Dresden, April 2001.

[6] Lijun Gao, Sarvesh Shrivastava, and Gerald E. Sobelman. Elliptic Curve Scalar
Multiplier Design Using FPGAs. In CHES ’99, number 1717 in LNCS, pages
257–268, 1999.

[7] Shuhong Gao, Joachim von zur Gathen, Daniel Panario, and Victor Shoup. Al-
gorithms for Exponentiation in Finite Fields. Journal of Symbolic Computation,
29(6):879–889, June 2000.

[8] Joachim von zur Gathen and Jürgen Gerhard. Modern Computer Algebra. Cam-
bridge University Press, Cambridge, UK, 1999.

[9] Joachim von zur Gathen and Michael Nöcker. Computing special powers in
finite fields: Extended abstract. In Sam Dooley, editor, Proceedings of the 1999
International Symposium on Symbolic and Algebraic Computation ISSAC ’99,
Vancouver, Canada, pages 83–90. ACM Press, 1999.

[10] Joachim von zur Gathen and Michael Nöcker. Exponentiation using addition
chains for finite fields. submitted, 2002.

[11] Daniel M. Gordon. A survey of Fast Exponentiation Methods. Journal of
Algorithms, 27:129–146, 1998.

[12] Rudolf Lidl and Harald Niederreiter. Finite Fields. Number 20 in Encyclopedia
of Mathematics and its Applications. Addison-Wesley, Reading MA, 1983.

[13] Julio López and Ricardo Dahab. Improved Algorithms for Elliptic Curve Arith-
metic in °²±;³)1�(´ . In Selected Areas in Cryptography, number 1556 in LNCS,
pages 201–212. 1998.

[14] Julio López and Ricardo Dahab. Fast Multiplication on Elliptic Curves over°²±;³)1µ¶´ without Precomputation. In CHES ’99, number 1717 in LNCS,
pages 316–327, 1999.

[15] Robert J. McEliece. Finite Fields for Computer Scientists and Engineers. The
Kluwer International Series in engineering and computer science. Kluwer Aca-
demic Publishers, 1987.

[16] Alfred J. Menezes, Ian F. Blake, XuHong Gao, Ronald C. Mullin, Scott A. Van-
stone, and Tomik Yaghoobian. Applications of finite fields. Kluwer Academic
Publishers, 1993.

[17] Peter L. Montgomery. Speeding the Pollard and Elliptic Curve Methods of
Factorization. Mathematics of Computation, 48(177):243–264, January 1987.

[18] François Morain and Jorge Olivos. Speeding up the computations on an elliptic
curve using addition-subtraction chains. Informatique théorique et Applica-
tions/Theoretical Informatics and Applications, 24(6):531–544, 1990.

[19] Jimmy K. Omura and James L. Massey. Computational method and apparatus
for finite field arithmetic. United States Patent 4,587,627, 1986.

[20] G. Orlando and C. Paar. A Super-Serial Galois Fields Multiplier for FPGAs
and its Application to Public-Key Algorithms. In FCCM ‘99, April 1999.

[21] G. Orlando and C. Paar. A High-Performance Reconfigurable Elliptic Curve
Coprocessor for °²±;³)1µ¶´ . In CHES ’2000, number 1965 in LNCS, pages
41–56, 2000.

[22] Christof Paar. A New Architecture for a Parallel Finite Field Multiplier with
Low Complexity on Composite Fields. IEEE Transactions on Computers,
45(7):856–861, July 1996.

[23] N. P. Smart. The Hessian form of an elliptic curve. In CHES ’2001, number
2162 in LNCS, pages 118–125, 2001.

[24] B. Sunar and Ç. K. Koç. Mastrovito Multiplier for All Trinomials. IEEE Trans-
actions on Computers, 48(5):522–527, July 1999.

[25] C. C. Wang, T. K. Truong, H. M. Shao, L. J. Deutsch, J. K. Omura, and
I. S. Reed. VLSI Architectures for Computing Multiplications and Inverses
in °²±;³)1µ¶´ . IEEE Transactions on Computers, C-34:709–717, 1985.

[26] Huapeng Wu. On Computation of Polynomial Modular Reduction. Techni-
cal report, Centre of Applied Cryptographic Research, University of Waterloo,
June 2000.

