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ABSTRACT

FPGAs are an attractive platform for elliptic curve cryptography
hardware. Since field multiplication is the most critical operation
in elliptic curve cryptography, we have studied how efficient sev-
eral field multipliers can be mapped to lookup table based FPGAs.
Furthermore we have compared different curve coordinate repre-
sentations with respect to the number of required field operations,
and show how an elliptic curve coprocessor based on the Mont-
gomery algorithm for curve multiplication can be implemented us-
ing our generic coprocessor architecture.

1. INTRODUCTION

Public key crypto systems are typically slower than symmetric sys-
tems but provide arbitrarily high levels of security and do not re-
quire an initial private key exchange. Due to the cost of the public
key crypto algorithms, dedicated hardware support is desirable.
FPGA cryptoprocessors avoid a series of drawbacks of ASIC sys-
tems:

� In electronic commerce servers, cryptography algorithms
must be changed often for the purpose of adaption to the
current workload, depending on the type of cryptography
that is mainly used (public key or symmetric). This can be
done by exploiting the FPGA’s reconfiguration facility.

� FPGAs allow for an effortless adaption to changing security
requirements.

In this paper, we present an area and performance tradeoff
analysis for FPGA based implementations of a cryptography co-
processor using elliptic curve crypto algorithms. Among many
others, FPGA based elliptic curve coprocessor implementations
have been presented in [1], [2], [3], and [4]. [1] uses normal ba-
sis to represent the finite field and the Massey-Omura multiplier
for field multiplication. The implementation in [2] uses the Mont-
gomery method for point multiplication which is introduced in [5]
and modified for fields of characteristic � in [6]. [3] is another
implementation of the Montgomery method in the normal basis
representation.

In this work we compare several ways for hardware implemen-
tation of elliptic curve point multiplication and focus on the effects
that occur especially on FPGA based implementations. Our com-
parison includes different mixed coordinate representations for curve
point coordinates which turned out to be more efficient than sin-
gle coordinate representations. In addition we analyze the effect

�This work is supported by DFG Sonderforschungsbereich 376
“Massive Parallelität.”

of parallelism on the overall performance. This topic has been al-
ready briefly analyzed in [4]. This work is a continuation of [7],
where some of the theoretical analyses were presented.

2. ELLIPTIC CURVE CRYPTOGRAPHY

Points of an elliptic curve defined over a finite field form a group,
together with the point addition [8] as group operation. The ba-
sic operation in elliptic curve cryptosystems is the computation of
��, where � is a curve point and � a large integer The com-
putation of �� is a sequence of point additions and doublings.
Elliptic curve cryptosystems (ECC) rely on the fact that solving
the discrete logarithm problem on a elliptic curve is a hard task,
that means, for a given � and �, computing �� is of polynomial
complexity, but computing � by knowing only � and �� is of
much higher complexity [9]. Our choice of 191-bit curves is con-
sidered secure at this time. The computation of �� is done in
three abstraction levels:

� Algorithmic level (double-and-add method, addition sub-
traction chains)

� Curve arithmetic level (Selection of coordinate representa-
tion)

� Field arithmetic level (basis selection, multiplier and in-
verter structures)

Each level can be optimized in order to meet given area and per-
formance constraints. Here, we focus on the curve and field arith-
metic levels.

3. FINITE FIELD ARITHMETIC

Finite field operations constitute the base operations to elliptic
curve computations, so optimizing them has a great impact on the
multiplication performance. Here, we discuss the influence of the
field multiplication on the overall latency of the �� multiplica-
tion.

3.1. Addition, Squaring and Inversion

Addition of two field elements of�� ���� is simply a bitwise XOR
combination of the corresponding bits of two n-bit vectors. The
field basis representation has no effect on the performance of ad-
dition.
Squaring is a special case of multiplication but can be performed
much more efficiently since both operands are equal. Squaring in
the normal basis is a cyclic shift and in polynomial basis a shift
followed by a reduction modulo an irreducible polynomial which
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can be a trinomial or pentanomial (See [10]). Thus, squaring al-
ways is an inexpensive operation. ([10], [11]).
Inversion is the most complex field operation but can be performed
as a sequence of multiplications and squarings using Fermat’s lit-
tle theorem. Since squaring operation is of low complexity, in-
version is mainly affected by multiplication performance which is
analyzed in the next section.

3.2. Multiplication

The most resource consuming base operation in finite fields is mul-
tiplication which can be affected by the base of representation. The
most popular representations are polynomial and normal basis.
Finite field multipliers can be grouped into two major categories,
namely parallel and serial multipliers. Parallel multipliers perform
the total multiplication in one clock cycle but require large chip
area. Examples of parallel multipliers are discussed in [12], [13],
[14]. Serial multipliers have a less complex structure, but generate
only a few result bits per clock cycle [15], [16], [17]. Serial mul-
tipliers are more attractive under hard area constraints, since they
require less gates than parallel ones. In this section we study two
popular multipliers, Massey-Omura for normal basis and LFSR for
polynomial basis. Both can be implemented in a word-serial man-
ner, i.e. a word (which is a fraction of a field element) of certain
length is computed in parallel but multiple words are computed
subsequently. This can be seen as a trade-off between the area-
consuming parallel and time-consuming serial multipliers.
We compare the above mentioned multipliers with respect to three
different technology models:

� Theoretical analysis in 2-input gate model. Most of the
literature considers this model to analyze the hardware cost
of algorithms. The model assumes only 2-input gates and
neglects the influence of routing. The results are used for
speed and area estimations of silicon implementations (e.g.
ASICs).

� 4-input LUT1 model. FPGA use lookup table based logic
elements that compute arbitrary boolean functions up to a
certain number of inputs in constant time and area. We as-
sume a 4-input gate model here since many popular FPGA
(e.g. from Xilinx) use 4-input LUTs. Here we count only
the number of LUTs required by a synthesized algorithm.
The ratio of the number of 2-input gates to the number of
4-input LUTs is a number between 1 and 3, depending on
the structure of the circuit. Routing is also neglected since
it greatly depends on the selected FPGA routing resources.
We compare the number of used LUTs of different multi-
pliers.

� Real FPGA implementations. FPGA routing has a much
higher influence on timing behavior than on ASIC imple-
mentations due to switching circuitry and buffer trees for
high fanout nets. This model regards the experimental re-
sults of synthesis for a real FPGA under hard timing con-
straints. We have synthesized all multipliers for a Xilinx
XCV2000E-FG1156-7 FPGA. [18]

The results of the comparison between the 2-input and the 4-
input models are shown in Table 1. The latter completely agree
with a theoretical 4-input analysis for the number of elements.

1Lookup table.

Word 2-input gate 4-input LUT
length LFSR M-O LFSR r M-O r

1 384 761 380 1.01 253 3.01
2 773 1522 384 2.01 506 3.01
4 1549 3044 774 2.00 1012 3.01
8 3101 6088 1168 2.65 2024 3.01

16 6205 12176 2652 2.34 4048 3.01
32 12413 24352 4820 2.58 8096 3.01
50 20189 38050 7191 2.81 12650 3.01
64 24829 48704 8953 2.77 16192 3.01

100 40389 76100 13684 2.95 25300 3.01

Table 1. Number of logic elements required for LFSR and
Massey-Omura (M-O) multipliers for �� ������ in the 2-input
gate model (given by a theoretical analysis) and the 4-input LUT
model (by experimental results). The column r shows the ratio of
2-input-gates to 4-input-LUTs.

In the best case, every 4-input LUT can substitute three 2-
input gates. As it can be seen from Table 1 Massey-Omura makes
the best use of this reduction in the number of LUTs, and that the
LFSR multiplier only approaches a reduction factor of 3 for larger
word lengths. For the same reason, there is almost no difference
between the number of LUTs when implementing LFSR multipli-
ers with the word lengths of � and � respectively. LFSR, however,
requires a significantly lower number of LUTs.
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Fig. 1. Multiplication time versus number of LUTs for LFSR and
Massey-Omura multipliers in �� ������ (Lower and upper curves
respectively).

Figure 1 shows the time required for a complete multiplication
for a given number of LUTs in �� ������. As can be seen, LFSR
multiplier is always faster than the Massey-Omura multiplier for a
fixed number of LUTs. The LFSR multiplier seems to be the better
choice but the following facts should be taken into account:

� LFSR implementations cause an irregular FPGA floorplan
that may result in poor timing behavior depending on the
FPGA type.

� Massey-Omura multipliers are used for normal basis rep-
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resentations where the squaring operation is faster than in
the polynomial base since no final modulo reduction is re-
quired.

4. POINT ADDITION AND DOUBLING

The task of point multiplication is the computation of �� based
on repeated point addition and doubling operations. In this section
we consider different point coordinate representations and study
their effect on the point addition and doubling costs.

4.1. Coordinate Representations

Most point multiplication methods are based on repeated addi-
tion/subtraction and doubling of points (see Section 4.2). In this
subsection, we compare different representations of points on el-
liptic curves and show how hybrid forms of them can enhance
the computation logic depending on various area and performance
constraints. Hybrid coordinate representations were originally dis-
cussed in [19], see also [20].
Coordinate representations considered here are the Affine, Projec-
tive, Jacobian and López-Dahab representations [20]. Transform-
ing affine coordinates into one of the other representations is al-
most trivial, but not vice versa since field inversion is required.
Table 2 gives the formulas for mapping into affine coordinates.

Representation Mapping to Affine Coordinates

Projective � � ���, � � 	��
Jacobian � � ���� � � 	���

López-Dahab � � ��� � � 	���

Table 2. Mapping of Projective, Jacobian, and López-Dahab rep-
resentation into affine coordinates.

We have analyzed Affine/Jacobian and Affine/López-Dahab
hybrid coordinate representations, Moreover, we analyzed the Mont-
gomery method [6] which is actually not a hybrid coordinate rep-
resentation but is based on the Jacobian coordinates.

Table 3 compares the methods for point addition and doubling
in these mixed coordinate representations with respect to the num-
ber of multiplications �, squarings � and additions � in the un-
derlying finite field.

Representation Addition Doubling
Affine/López-Dahab ��� � ��� 	� �� � �� � 
�
Affine/Jacobian �
� � 
�� ��� ��� 
� � 
�
Montgomery 
� � ��� �� �� � 
� � ��

Table 3. Costs of different point addition and doubling methods in
terms of field operations.

4.2. Point Multiplication Algorithms

The best known point multiplication algorithm is the double and
add method which uses the binary representation of �.

An arbitary number � satisfying ���� 
 � 
 �� has an
average of �

�
number of 1-bits. The number of operations can be

reduced by using addition-subtraction chains [21] requiring only
�

�
additions while the number of doublings is fixed.

The selection of the point multiplication method belongs to the

algorithmic abstraction level (see Section 2) and is not considered
here.

5. IMPLEMENTATION OF THE MONTGOMERY
ALGORITHM

In [7] we have presented a generic datapath architecture that can
be easily configured to meet various performance/area constraints
by exploiting several degrees of freedom: the number of functional
units in the data path, the degree of parallelism in the multipliers,
the type of point multiplication algorithm, the type of the controller
and the coordinate representation. For performance measures, we
have implemented a sample architecture on a prototyping system
with a Xilinx Virtex-1000 FPGA (XCV1000-BG560-4).

Adders Mult ipliers Squarers Registers

Dual Port

RAM

Arithmet ic

Control

Unit

Host

Control

Interface

Fig. 2. Datapath structure.

The structure of the datapath architecture is shown in Fig. 2.
We have used two squarers, two adders and four sequential LFSR
multipliers in our sample architecture presented in [7]. Here, we
use a different configuration of the processor architecture which
is optimized to compute a curve multiplication using the Mont-
gomery algorithm.

5.1. Montgomery Algorithm

We give a short introduction into the idea of the Montgomery mul-
tiplication of elliptic curve points. The algorithm is outlined in
Fig. 3.

Set �� ��������� � � �������.
Set � �  , � � � .
for � from � � � downto � do

if �� � � then
Set � � � � �, � � ��

else
Set � � � � �, � � ��

end if
end for

Fig. 3. The Montgomery algorithm for elliptic curve point multi-
plication

This algorithm computes the product �� where � is a large
integer and � an elliptic curve point.
The algorithm processes sequentially the bits of �. In each it-
eration, a point addition and a point doubling is performed. The
parameters of these operations depend on the state of the currently
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Point doubling
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RAM
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Main address bus

Fig. 4. Address bus structure for parameter passing.

processed bit of�.
The coordinates of the curve points � and � are stored in fixed
locations in the dual ported operand memory (refer to [7]). In order
to avoid additional overhead for writing parameters into temporary
registers and back to memory after the computation, we have used
a special address logic structure which allows for indirect address-
ing. This structure is shown in Fig. 4. The main state machine puts
the address of the apropriate variable on its parameter address port
before triggering the sub-state machines for doubling or addition.
Only one state machine (for point doubling or addition) is active at
one time. Via the address multiplexer, the active state machine can
select if the parameter address is passed on the DPRAM’s address
bus or (e.g. for temporary variable access) another address gener-
ated in the sub-state machine itself.
A maximum number of two field multiplications is performed in
parallel by the Montgomery algorithm except for the last iteration,
where more than two multiplications can be perfomed in paral-
lel. Thus we use only two multipliers instead of 4 as in [7]. We
have used word-parallel LFSR multipliers with a word length of 50
bits. The complete design uses about 17000 4-input LUTs, 3600
flipflops and can operate at 20 MHz on a XCV2000E-FG1156-7
FPGA. Each field multiplication requires 4 clock cycles.

6. SUMMARY

We have provided a tradeoff analysis of word-serial Massey-Omura
and LFSR multipliers with respect to area and performance for
FPGA implementations. Both multipliers were analyzed in a clas-
sical 2-input gate model and in a 4-input LUT model for FPGA.
For a comparison of the theoretical results with real synthesis re-
sults, we have synthesized the multipliers for different word lenghts
on a Xilinx Virtex FPGA. We could show that the synthesis results
largely match the theoretical results. As a case study, we have im-
plemented a elliptic curve coprocessor based on the Montgomery
algorithm using our generic architecture model.
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