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Abstract. On 22 May 2000, the factorization of a pseudorandom poly-
nomial of degree 1048 543 over the binary field Zs was completed on
a 4-processor Linux PC, using roughly 100 CPU-hours. The basic ap-
proach is a combination of the factorization software BIPOLAR and a
parallel version of Cantor’s multiplication algorithm. The PUB-library
(Paderborn University BSP library) is used for the implementation of
the parallel communication.

The approach. Polynomial factorization is a benchmark for the polynomial
arithmetic components of computer algebra software. Many algorithms for
polynomial multiplication, division with remainder and greatest common di-
visor have to be implemented and the crossover points between the various
methods have to be determined, to finally combine them into a hybrid algo-
rithm that works well for inputs of any size. Our parallelization is fine-grained,
the Cantor multiplication routine running on 4 processors (see Wang 1996).
Since many instances of a “small” problem have to be solved, the scalability of
the parallelization depends heavily on fast communication.

The basic factorization algorithm. The sequential factorization algorithm
used by our implementation is described in von zur Gathen & Gerhard (1996).
The algorithm is an implementation of the general three-stage approach by
Cantor & Zassenhaus (1981) with a blocking strategy, similar to the one in
von zur Gathen & Shoup (1992); see von zur Gathen & Panario (2000) for an
overview on polynomial factorization. Actually, we only parallelize the distinct-
degree stage of the factorization. The cost of the initial squarefree factorization
is negligible, as is the probability that substantial equal-degree factorization is
necessary. The main task during the distinct-degree stage is the computation of
interval polynomials. These are polyomials that have as factors all irreducible
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polynomials whose degree lies in a given interval and (almost) no factors of a
degree larger than the upper bound of the interval. The computation of these
polynomials requires many modular squarings. The preconditioned reduction
modulo the polynomial remaining to be factored is based almost completely
on costly multiplications, as is the asymptotically fast algorithm for computing
greatest common divisors.

Parallel multiplication. Fast multiplication is the indispensable basis to
treat polynomials of this size. Following its recursive structure, we parallelized
the multiplication algorithm of Cantor (1989). The factorization is then done
as follows. All processors execute the same sequential factorization algorithm
synchronously, only joining forces when multiplying. Thus, every processor is
completely aware of the context of the multiplication. For a multiplication no
initial communication is necessary, only the result must be distributed to all
processors. If the bandwidth is sufficiently large, this communication is domi-
nated by the communication needed to collect the result on a single processor.
Using this strategy, sequential state-of-the-art tricks such as Newton inversion
and preconditioned multiplication and division are easy to parallelize.

We also implemented a second strategy based on the master-slave paradigm
but it turned out to be inferior to the first strategy. The master processor
executes the sequential factorization algorithm and distributes every multipli-
cation to the other processors. These processors are unaware of the context of
the computation and no CPU-time is wasted, but there is a substantial com-
munication load. The implementation of this strategy was more complicated
and thus prone to error, since many kinds of precomputed data have to be
distributed. The fact that we do not need to distribute the inputs of the mul-
tiplication makes the first approach more efficient for all architectures that we
tested.

The PUB library. The core of our implementation are three software pack-
ages: BIPOLAR for sequential binary polynomial arithmetic, our parallel multi-
plication software, and the Paderborn University BSP library PUB. The latter
library is an implementation of the theoretical BSP (Bulk Synchronous Paral-
lel) model proposed by Valiant (1990). The efficiency of the implementation
is largely due to the fact that the library offers several features extending the
original BSP model. It is a flexible and easy-to-handle software tool which is
available for several parallel computer architectures such as networks of work-
stations, cluster machines, or Crays. Detailed information, the source code, and
the User Guide and Function Reference (Bonorden et al. 1999) are available
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from http://www.upb.de/ pub/.

The experiment. We ran our implementation on a Linux PC with 4 Pen-
tium IIT processors, each rated at 500 MHz. The computer offers a total of
3 GBytes of memory. We factored a pseudorandomly chosen polynomial of
degree 1048 543 = 229 — 33 with coefficients in Z,. We found 10 irreducible fac-
tors of degrees 23, 61, 239, 290, 4 555, 29874, 59193, 110295, 123 712, 720 300.
Thus interval polynomials had to be computed up to degree 360 150. In BiPo-
LAR an additional processor may be used to test the remaining polynomial for
irreduciblity. The best known algorithm for this task substantially depends on
arithmetical operations not covered by polynomial multiplication and thus has
not been invoked in our test. Our implementation has an estimated speedup
between 2 and 3.
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