
Crypto School
— extra material —

CoseC b-
itComputer

SeCurity

Universität Bonn
Bonn-Aachen International Center for Information

Technology

c© 2000–2015 Joachim von zur Gathen

Version: December 15, 2015





Chapter 21

Random oracle reductions

21.1. Random oracles

Security reductions in the standard model are hard to find. Researchers have
tried to judiciously weaken assumptions so that on the one hand reductions can
be exhibited and on the other hand the problems do not become trivial.

An example of such a relaxation is therandom oracle model. It applies
to situations where hash functions occur, say in signature schemes. Instead of
having to use the values of a specified (probabilistic) hash function, the attacker
is allowed to fabricate hash values himself. If he was given acompletely free
hand in doing so, then his task would be trivial in many cases.The restriction
now is that the values he fabricates must be uniformly random. We will see
in the next section how he can publish random values about which he knows
a little secret that he can use to his advantage. Imagine a painter producing
random colors whose composition from a few standard paints he notes; he will
be able to recreate the color but others will have a hard time doing so.

Definition 21.1. We have a message spaceM and a finite setH (of “hash val-
ues”). A random oraclefor (M,H) is a machineO interacting with a request
machineR in rounds. In each round,R sends a request messagem ∈ M to O,
andO returns a value inH, designated ash(m). There are three requirements:

(i) The length of each message inM and the running time ofO are polyno-
mial in the length of the elements ofH.

(ii) If the same message is sent in different rounds, then the same value is
returned each time.

(iii) The values returned are independent and uniformly random inH.

It is easy to implement such an oracle.

3



4 Chapter 21. Random oracle reductions

Algorithm 21.2. Random oracleO.

Given: M,H andR as above.

1. O keeps a listL of messages and values (m, h(m)) stored in its two fields.
Initially, this list is empty.

2. On receiving a request messagem ∈ M, O checks whether it occurs some-
where in the first field ofL. If so, O returns the corresponding second field.

3. Otherwise,O produces a uniformly random elementh(m) in H, independent
of previous choices, returnsh(m), and appends (m, h(m)) to L.

It is clear that Algorithm 21.2 implements a random oracle asdefined. For
an example, see the next section. The list may contain further fields besidesm
andh(m), which help the algorithm usingO in solving its task.

Several variations on this theme are possible. We might dropthe restriction
of polynomial time, thus allowing more than polynomially many requests. Also,
O might outsource the task of checking for duplicates toR, and thenO would
just be a random generator forH. Finally, we might allow other distributions on
H, besides the uniform one.

If M is finite and we ignore the time restriction,R might just feed all values
m ∈ M to O and build the graph{(m, h(m)) : m ∈ M} of a functionh : M → H,
obeying the requirement of Definition 21.1 (iii). This ensures thath is a random
function and thus a perfect example of a hash function. However, the space
(and time) required would be exponential. In fact, one of thesalient feature
of the RSA permutationx 7→ xd is that it looks almost random (except for the
multiplicative property (3.4) in Crypto School) but requires only linearly many
bits for storage.

Suppose that we have a signature or encryption schemeS with a reduc-
tion from a conjecturally hard problemX to breakingS , in the random oracle
model. In order to actually implementS , we have to substitute the oracle calls
by the evaluation of a hash function that is publicly known toall participants.
One might use a hash function like SHA-256 (Section 7.6 in Crypto School)
or a discrete-log based one (Section 7.2 in Crypto School). However, this fails
miserably.

What is the relation between standard and random oracle reductions? In the
former, such as Algorithm 9.8 in Crypto School, the attackeruses the publicly
known hash functionh that is part of the system. In the latter, he can fabricate his
ownh∗, subject to the constraints of Definition 21.1. We assume that the givenh
has the random property of Definition 21.1 (iii). Then the attacker might as well
useh for h∗, and thus any standard reduction is also one in the random oracle
model.

A standard reduction “X ≤p breakingS ” implies that an efficient algorithm
for breakingS yields an efficient algorithm to solveX. This important property



21.2. RSA signatures with full domain hashing 5

does not hold for random oracle reductions. The property is “true” if we replace
the originalh in S by h∗ from the reduction. For this to be allowed,h∗ has to
be a fixed and publicly known function. This is not the case, for example, in
reduction of Theorem 21.5 below.

Canetti, Goldreich & Halevi (2004) have put forth a rather generous notion
of “implementingS ” and shown that for anyS , secure in the random oracle
model, there exists a modificationS ′ which is also secure in this model, and
also demonstrably insecure. Thus there is no implication from security in the
random oracle model to actual security. Of course, the reverse implication holds.
Random oracle security is a necessary but not sufficient condition for actual
security. It is like showing that a certain class of attacks do not work againstS ,
which does not preclude other attacks from being successful. In fact, it is just
that, with the class consisting of those attacks that work inthe random oracle
model. (Always assuming that the base problemX is actually hard.)

The assessment of Cramer & Shoup (1999) is that “a random oracle reduc-
tion is at best a heuristic device that gives strong evidencethat a scheme cannot
be broken—however, it is entirely possible that a scheme canbe secure in the
random oracle model, and yet be broken without violating anyparticular in-
tractability assumption.” Thus the random oracle assumption is problematic.
However, as long as we are aware of its potential weakness andyet have no
stronger tool available, we may still use the assumption andhope for better
times.

It is better to have a random oracle reduction than none at all, provided
one understands the limitations of this approach. The constructions in Canetti
et al. (2004) are somewhat “unnatural”, and none of the usual protocols shown
secure in the random oracle model have actually been broken.One of the main
advantages of this model is that we can do at least something for protocols that
seem out of reach for standard security reductions as presented in Section 9.5 in
Crypto School.

21.2. RSA signatures with full domain hashing

In this section, we provide a reduction from breaking RSA to forging a signature
scheme involving RSA that avoids the ultra-short hash values of Section 9.6 in
Crypto School. Alas, no such reduction is known without further assumptions.
While the currently popular hash functions produce fairly short hash values,
say of 256 or fewer bits, we have to assume hash values of the same length
n as the RSA key. RSA is considered secure atn = 2048 or, better, atn =
4096 bits. That is, we now have ultra-long hash values. This is much less of
worry than ultra-short ones, since we can extend short hash values ton bits by
nontrivial padding, and we certainly have to assume that this is still secure; see
the preceding section. A more restrictive assumption is that the hash function is



6 Chapter 21. Random oracle reductions

given by a random oracle under control of the attacker.

Signature Scheme 21.3. Full Domain Hash RSA.

Key Generation.

Input: A security parametern.
Ouput: Ann-bit RSA modulusN = pq with public keyK = (N, e) and secret

key S = (N, d) as in the RSA notation?, and a surjective hash function
h : B∗ → Z×N.

Signing.

Input: Messagem ∈ B∗.
Output: sigS (m) ∈ ZN .

1. sig(S )(m) = h(m)d in Z×N .

Verifying.

Input: m ∈ B∗ andu ∈ Z×N .
Output: “true” or “false”.

2. verK(m, u) = “ue
= h(m) in Z×”

N .

We first check, as usual, soundness and efficiency. For the soundness, let
s = sigS (m). The verification step returns “true” ifu = s, since thenue

= t.
Furthermore, the power mapπ : Z×N −→ Z

×
N with π(a) = ae is bijective, since

gcd(e, ϕ(N)) = 1; see Corollary 15.61 in Crypto School. Thereforeue
= se

implies thatu = s, and if u , s, the verification step returns “false”. The
efficiency is clear, sinceh is easy to evaluate and otherwise only exponentiations
in G occur.

The reader may object that the assumptions onh are rather ludicrous. How
could we possibly avoid the multiplesZN r Z

×
N of p or q? How to be surjective

onto Z×N? We might have a randomized hash functionh0 : B∗ → Bn, and for
eachn-bit modulusN takeh(m) as the remainder ofh0(m) in ZN. If h(m) < Z×N ,
we hash again. However, we now work under the assumption as stated.

The security of FDH-RSA is supported by the following randomoracle re-
duction; see Section 21.1 for various caveats. We start withan overview of the
reduction and later discuss how to implement the various steps.

Algorithm 21.4. Random oracle reductionA from breaking RSA to existential
forgeryF with chosen messages of FDH-RSA.

Input: N, e, y as in the RSA notation ?.



21.2. RSA signatures with full domain hashing 7

Output: Eitherx with xe
= y in Z×N or “failure”.

1. A sends (N, e) toF .
2. A receives hash queries fromF and delivers hash values toF .
3. A receives signature queries fromF and either delivers a valid signature to
F or returns “failure”.

4. F sends a “forged” signature (m∗, s∗) of FDH-RSA toA. Its hash value
h(m∗) is among those requested in step 2.

5. A verifies (m∗, s∗) and returns “failure” if the verification answer is “false”.
6. A returns eitherx with xe

= y in Z×N or “failure”.

The various queries in step 2 and 3 may be interleaved. By assumption, the
verification in step 5 succeeds with probability at leastσA.

Theorem 21.5. Suppose we have an existential forgerF with chosen messages
for FDH-RSA, using timeτF , qsig signature queries andqhashhash queries and
having success probabilityσF . Then the above reductionA can be imple-
mented forn-bit RSA moduli in the random oracle model so that

σA ≥
σF

4qsig
,

τA ≤ τF + (qsig + qhash+ 1) · poly(n).

Proof. We have to explain how steps Algorithm 21.4 step 2, 3, 5 and 6 are
implemented. In step 2 of Algorithm 21.4,A implements the random oracle in
the following way, which gives it the decisive advantage.

The idea is thatA uses two strategies to deliver hash values toF : in the
first strategy (corresponding tob = 1, as below), the hash value is chosen so
thatA can easily deliver a valid signature toF , if that is requested later. In
the second strategy (corresponding tob = 0), the hash value is chosen so that
whenF returns, at the end, a valid signature of that particular message, then
A can easily computex with xe

= y in Z×N . More precisely,A has an internal
parameterδ with 0 < δ < 1 and starts with the empty listL. On a hash query for
a messagem in step 2, it first checks whetherm occurs as a first field somewhere
in L. If so, it delivers the corresponding hash valueh0. Otherwise, it chooses
r ←−− Z×N andb ←−− {0, 1} with prob{b = 1} = δ. If b = 1, thenh0 = re in Z×N
and (m, h0, 1, r) is added toL. If b = 0, thenh0 = yre in Z×N and (m, h0, 0, r) is
added toL. A sendsh0 ash(m) toF .

If F requests in step 3 the signature of some messagem,A first determines
h(m) as in step 2 above. If in the corresponding entry (m, h0, b, r),A findsb = 1,
then it deliversr toF . If b = 0,A returns “failure”.

In step 5, whenA receives a signed message (m∗, s∗) from F , there is, by
assumption, an entry (m∗, h(m∗), b∗, r∗) in L, and this is the only entry withm∗



8 Chapter 21. Random oracle reductions

in the first field. If (s∗)e
= h(m∗) in Z×N , thenA goes to step 6, otherwiseA

returns “failure”. In step 6,A returnsx = s∗/r∗ if b∗ = 0 and reports “failure”
if b∗ = 1.

We have to prove three claims:

◦ A runs in polynomial time,

◦ A satisfies all ofF ’s requests properly,

◦ A returns a correct solution to the RSA problem with probability at least
some specified valueσA, namely at leastσF /4qsig.

The first item is easy, sinceA’s computations are just random choices and ex-
ponentations inZ×N , usingO(n(qhash+ qsig + 1)) operations inZ×N, wheren is
the bit length ofe. As to the proper satisfaction ofF ’s request, the valuesre

and yre are uniformly random elements ofZ×N (by Corollary 15.62 in Crypto
School, since gcd(e, ϕ(N)) = 1), and so ish0. Thus the hash values delivered
in step 2 are as required in the random oracle model. In step 3,a signaturer
delivered byA is valid, sincere

= h0 = h(m) in Z×N , as required in the verifi-
cation step of FDH-RSA. “Failure” occurs here at each signature request with
probability 1− δ, and success with probabilityδ. In step 5,A knows the entry
(m∗, h(m∗), b∗, r∗) in L from step 2. By the assumption onF , (s∗)e

= h(m∗) in
Z
×
N and hence verN,e(m∗, s∗) = “true” with probability at leastσF . In step 6, if

b∗ = 0 then

xe
= (

s∗

r∗
)e
=

h(m∗)
(r∗)e =

y(r∗)e

(r∗)e = y in Z×N ,

so thatx indeed solves the RSA problem. This happens with probability 1− δ.
If a total of qsig signatures are requested byF , then the success probability in
the various passes through step 3 isδqsig, and overall we have

σA ≥ δ
qsig · (1− δ)σF .

We have to consider the functionu(δ) = δq(1 − δ) for positiveδ and a positive
integerq. Its derivative with respect toδ is δq−1(q − (q + 1)δ), andu takes its
maximal value at

δ0 =
q

q + 1
= 1−

1
q + 1

.

Furthermore,

u(δ0) =
1
q

(1−
1

q + 1
)q+1 ≥

1
4q

;

in fact, (1− 1/m)m tends toe−1 for largem, and is at least 1/4 for m ≥ 2. It
follows that, by choosingδ = δ0 inA, we have

σA ≥
σF

4qsig
. �



Notes 9

Notes 21.1. In Definition 21.1 (iii), it is sufficient that the distribution of the values be indistin-
guishable in polynomial time from one that satisfies the requirements; we neither elaborate nor
use this in the following.

21.2. The FDH-RSA signature scheme and its security reduction were presented by Bellare &
Rogaway (1996).

The proof of Theorem 21.5 is due to Coron (2000).



10 Chapter 21. Random oracle reductions



Bibliography

The numbers in brackets at the end of a reference are the pageson which it is cited. Names of
authors and titles are usually given in the same form as on thearticle or book.

Mihir Bellare & Phillip Rogaway (1996). The Exact Security of Digital Signatures
— How to Sign with RSA and Rabin. InAdvances in Cryptology: Proceedings of
EUROCRYPT 1996, Saragossa, U. Maurer, editor, volume 1070 ofLecture Notes in
Computer Science, 399–416. Springer-Verlag, Berlin. ISBN 354061186X. ISSN0302-
9743. URLhttp://dx.doi.org/10.1007/3-540-68339-9_34. [9]

Ran Canetti, Oded Goldreich & Shai Halevi (2004). The Random Oracle Method-
ology, Revisited. Journal of the ACM (JACM) 51(4), 557–594. URLhttp:
//portal.acm.org/citation.cfm?coll=GUIDE&dl=GUIDE&id=1008734. Arti-
cle home page:http://www.wisdom.weizmann.ac.il/~oded/p_rom.html. [5]

Jean-Sébastien Coron (2000). On the Exact Security of Full Domain Hash. In
Advances in Cryptology: Proceedings of CRYPTO 2000, Santa Barbara, CA, Mi-
hir Bellare, editor, volume 1880 ofLecture Notes in Computer Science, 229–235.
Springer-Verlag, Berlin. ISBN 3-540-67907-3. ISSN 0302-9743 (Print) 1611-3349
(Online). URL http://www.springerlink.com/content/v5pn8pp8nmfk675w/
?p=b5cab6950f154a24ba652e70b22eafda&pi=0. [9]

Ronald Cramer & V ictor Shoup (1999). Signature Schemes Based on the Strong RSA
Assumption. InACM Conference on Computer and Communications Security, 46–51.
URL http://citeseer.nj.nec.com/article/cramer98signature.html. [5]

11


