Crypto School

— extra material —

computer

security

Universitat Bonn
Bonn-Aachen International Center for Information
Technology

© 2000-2015 dacHmM voN zuR GATHEN

Version: December 15, 2015






Chapter 21

Random oracle reductions

21.1. Random oracles

Security reductions in the standard model are hard to findse&ehers have
tried to judiciously weaken assumptions so that on the ond heductions can
be exhibited and on the other hand the problems do not becona. t

An example of such a relaxation is thhandom oracle model. It applies
to situations where hash functions occur, say in signatcieraes. Instead of
having to use the values of a specified (probabilistic) hasbtfon, the attacker
is allowed to fabricate hash values himself. If he was givemmpletely free
hand in doing so, then his task would be trivial in many cagdw restriction
now is that the values he fabricates must be uniformly randdve will see
in the next section how he can publish random values abouthaiie knows
a little secret that he can use to his advantage. Imaginerdgepgroducing
random colors whose composition from a few standard pamtsotes; he will
be able to recreate the color but others will have a hard tionegdso.

Dernition 21.1. We have a message spddeand a finite seH (of “hash val-
ues”). Arandom oracle€for (M, H) is a machin€D interacting with a request
machineR in rounds. In each roun® sends a request message M to O,
andO returns a value i, designated a¥m). There are three requirements:

() The length of each messagelh and the running time d® are polyno-
mial in the length of the elements Hf.

(i) If the same message is sent irftdrent rounds, then the same value is
returned each time.

(iii) The values returned are independent and uniformlylcen inH.

It is easy to implement such an oracle.

3



4 Chapter 21. Random oracle reductions

ALcoriTaM 21.2. Random oracl®.
Given: M, H andR as above.

1. O keeps a list. of messages and valuas,(m)) stored in its two fields.
Initially, this list is empty.

2. On receiving a request message M, O checks whether it occurs some-
where in the first field of.. If so, O returns the corresponding second field.

3. OtherwiseQ produces a uniformly random elemédin) in H, independent
of previous choices, returigm), and appendsg, h(m)) to L.

It is clear that Algorithm 21.2 implements a random oraclelefsned. For
an example, see the next section. The list may contain fufigles besidesn
andh(m), which help the algorithm usin@ in solving its task.

Several variations on this theme are possible. We might thepestriction
of polynomial time, thus allowing more than polynomially nyaequests. Also,
O might outsource the task of checking for duplicate®i@and thenO would
just be a random generator fdr. Finally, we might allow other distributions on
H, besides the uniform one.

If M is finite and we ignore the time restrictioR,might just feed all values
m € M to O and build the grapk(m, h(m)): m e M} of a functionh: M — H,
obeying the requirement of Definition 21.1 (iii). This ernssithat is a random
function and thus a perfect example of a hash function. Hewehe space
(and time) required would be exponential. In fact, one of shkent feature
of the RSA permutationx — xd is that it looks almost random (except for the
multiplicative property (3.4) in Crypto School) but recgsronly linearly many
bits for storage.

Suppose that we have a signature or encryption scHemth a reduc-
tion from a conjecturally hard probledd to breakingS, in the random oracle
model. In order to actually impleme, we have to substitute the oracle calls
by the evaluation of a hash function that is publicly knowralioparticipants.
One might use a hash function like SHA-256 (Section 7.6 inp&ryschool)
or a discrete-log based one (Section 7.2 in Crypto Schoadyve¥er, this fails
miserably.

What is the relation between standard and random oracletieds? In the
former, such as Algorithm 9.8 in Crypto School, the attackszs the publicly
known hash functioh that is part of the system. In the latter, he can fabricate his
own h*, subject to the constraints of Definition 21.1. We assumigthigagivenh
has the random property of Definition 21.1 (iii). Then thaeker might as well
useh for h*, and thus any standard reduction is also one in the randoateora
model.

A standard reductionX <, breakingS” implies that an éicient algorithm
for breakingS yields an éficient algorithm to solveX. This important property



21.2. RSA signatures with full domain hashing 5

does not hold for random oracle reductions. The propertirie" if we replace
the originalh in S by h* from the reduction. For this to be allowell, has to
be a fixed and publicly known function. This is not the case,efkample, in
reduction of Theorem 21.5 below.

Canetti, Goldreich & Halevi (2004) have put forth a ratheng@us notion
of “implementingS” and shown that for anys, secure in the random oracle
model, there exists a modificatidl which is also secure in this model, and
also demonstrably insecure. Thus there is no implicatiomfsecurity in the
random oracle model to actual security. Of course, the sevenplication holds.
Random oracle security is a necessary but néicient condition for actual
security. Itis like showing that a certain class of attactsdt work againsg,
which does not preclude other attacks from being succesbfuihct, it is just
that, with the class consisting of those attacks that worthénrandom oracle
model. (Always assuming that the base probléiis actually hard.)

The assessment of Cramer & Shoup (1999) is that “a randonteareatuc-
tion is at best a heuristic device that gives strong evidémaea scheme cannot
be broken—however, it is entirely possible that a schemebeasecure in the
random oracle model, and yet be broken without violating pasticular in-
tractability assumption.” Thus the random oracle assumpi$ problematic.
However, as long as we are aware of its potential weaknesyeindave no
stronger tool available, we may still use the assumption lzome for better
times.

It is better to have a random oracle reduction than none apeivided
one understands the limitations of this approach. The oartfins in Canetti
et al. (2004) are somewhat “unnatural”’, and none of the usual potgcshown
secure in the random oracle model have actually been br@keea.of the main
advantages of this model is that we can do at least sometbingdtocols that
seem out of reach for standard security reductions as pgezsgnSection 9.5 in
Crypto School.

21.2. RSA signatures with full domain hashing

In this section, we provide a reduction from breaking RSAorgiing a signature
scheme involving RSA that avoids the ultra-short hash wabieSection 9.6 in
Crypto School. Alas, no such reduction is known withouthartassumptions.
While the currently popular hash functions produce faityprs hash values,
say of 256 or fewer bits, we have to assume hash values of the Ength

n as the RSA key. RSA is considered secure at 2048 or, better, ah =

4096 bits. That is, we now have ultra-long hash values. Thimuch less of
worry than ultra-short ones, since we can extend short halsies ton bits by

nontrivial padding, and we certainly have to assume thatighstill secure; see
the preceding section. A more restrictive assumption isttiehash function is



6 Chapter 21. Random oracle reductions

given by a random oracle under control of the attacker.
SieNaTure ScHeME 21.3. Full Domain Hash RSA.
Key Generation.

Input: A security parameter.

Ouput: Ann-bit RSA modulusN = pg with public keyK = (N, €) and secret
key S = (N, d) as in the RSA notation?, and a surjective hash function
h: B* — Z{.

Signing.

Input: Messagen e B*.
Output: sig(m) € Zn.

1. sigg)(m) = h(m)?in Z¥.

Verifying.

Input: me B* andu € Zy§.
Output: “true” or “false”.

2. velk(m u) = “u® = h(m) in Z; .

We first check, as usual, soundness afiitiency. For the soundness, let
s = sigs(m). The verification step returns “true” if = s, since theru® = t.
Furthermore, the power magx Z — Z{ with n(a) = a° is bijective, since
ged(e, ¢(N)) = 1; see Corollary 15.61 in Crypto School. Therefofe= s°
implies thatu = s, and ifu # s, the verification step returns “false”. The
efficiency is clear, sinchis easy to evaluate and otherwise only exponentiations
in G occur.

The reader may object that the assumption$ are rather ludicrous. How
could we possibly avoid the multiplegy \ Zy, of p or g? How to be surjective
onto Zy? We might have a randomized hash functign B* — B", and for
eachn-bit modulusN takeh(m) as the remainder dfy(m) in Zy. If h(m) ¢ Z¥,,
we hash again. However, we now work under the assumptioratesist

The security of FDH-RSA is supported by the following randoracle re-
duction; see Section 21.1 for various caveats. We startawvitbverview of the
reduction and later discuss how to implement the varioyssste

Avrcoritam 21.4. Random oracle reductiofi from breaking RSA to existential
forgery F with chosen messages of FDH-RSA.

Input: N, e yas in the RSA notation ?.



21.2. RSA signatures with full domain hashing 7

Output: Eitherx with x° = yin Z{; or “failure”.

1. Asendsk,e)toF.

2. Areceives hash queries frofm and delivers hash values fo.

3. Areceives signature queries frafMmand either delivers a valid signature to

¥ or returns “failure”.

4. ¥ sends a “forged” signaturen(, s*) of FDH-RSA toA. Its hash value
h(m*) is among those requested in step 2.

. A verifies {n*, s") and returns “failure” if the verification answer is “false”

6. A returns eithex with x° = y in Z{ or “failure”.

ol

The various queries in step 2 and 3 may be interleaved. Byrgggn, the
verification in step 5 succeeds with probability at leagt

TueoreM 21.5. Suppose we have an existential forgewith chosen messages
for FDH-RSA, using timers, Osig Signature queries artfhash hash queries and
having success probability-. Then the above reductiofl can be imple-
mented fom-bit RSA moduli in the random oracle model so that

oF

4qsig,

Ta < TF + (Usig + Ghash+ 1) - poly(n).

oAa =

Proor. We have to explain how steps Algorithm 21.4 step 2, 3, 5 ante6 a
implemented. In step 2 of Algorithm 21.4 implements the random oracle in
the following way, which gives it the decisive advantage.

The idea is thatA uses two strategies to deliver hash value§toin the
first strategy (corresponding to = 1, as below), the hash value is chosen so
that A can easily deliver a valid signature 10, if that is requested later. In
the second strategy (correspondingote: 0), the hash value is chosen so that
when¥ returns, at the end, a valid signature of that particularsags, then
A can easily comput& with x* = y in ZJ. More precisely,A has an internal
parameteb with 0 < § < 1 and starts with the empty likt On a hash query for
amessagmin step 2, it first checks whetharoccurs as a first field somewhere
in L. If so, it delivers the corresponding hash vahge Otherwise, it chooses
r <& z3 andb <= {0,1} with probib = 1} = 6. If b = 1, thenhg = r® in Z}
and (m, ho,1,r) is added td_. If b = 0, thenhg = yr€in Zﬁ and fn, hg, 0,r) is
added td_. A sendshy ash(m) to 7.

If ¥ requests in step 3 the signature of some messagefirst determines
h(m) as in step 2 above. If in the corresponding entnyt, b, r), A findsb = 1,
then it delivers to . If b = 0, A returns “failure”.

In step 5, whenA receives a signed message’ (s') from ¥, there is, by
assumption, an entryn, h(m*), b*, r*) in L, and this is the only entry witn*



8 Chapter 21. Random oracle reductions

in the first field. If §")° = h(m") in Z§, thenA goes to step 6, otherwisd
returns “failure”. In step 6A returnsx = s*/r* if b* = 0 and reports “failure”
if b* = 1.

We have to prove three claims:

o Aruns in polynomial time,
o A satisfies all off’s requests properly,

o A returns a correct solution to the RSA problem with probabdit least
some specified value #, namely at leastrs/40sg.

The first item is easy, sinc#&’s computations are just random choices and ex-
ponentations irZy;, using O(N(thash + Osig + 1)) operations irZy, wheren is
the bit length ofe. As to the proper satisfaction &f’s request, the values
andyr® are uniformly random elements @£ (by Corollary 15.62 in Crypto
School, since gcd(¢(N)) = 1), and so idp. Thus the hash values delivered
in step 2 are as required in the random oracle model. In stapsRnature
delivered byA is valid, sincer® = hg = h(m) in ZY, as required in the verifi-
cation step of FDH-RSA. “Failure” occurs here at each sigreatequest with
probability 1— 6, and success with probability In step 5,A knows the entry
(m*, h(m*), b*, r*) in L from step 2. By the assumption ¢, (s*)¢ = h(m*) in
Zy, and hence vege(m', s') = “true” with probability at leastr#. In step 6, if
b* = 0 then

S'.e h(m9) y(r*)e .
== e e YA
so thatx indeed solves the RSA problem. This happens with probgHilit 6.
If a total of gsig signatures are requested %y then the success probability in
the various passes through step 8%%, and overall we have

oq > 06%9.(1-06)os.

We have to consider the functiarfs) = §9(1 — 6) for positives and a positive
integerq. Its derivative with respect t6 is 641(q — (q + 1)6), andu takes its
maximal value at

.9 _,__1
%0 = q+1 ! q+1
Furthermore, L L L
— = I ¢ £ o .
W0 = S0 - =)™ = g

in fact, (1- 1/m)™ tends toe™* for largem, and is at least /4 form > 2. It
follows that, by choosing = 6q in A, we have

oA = .
A 4QSig



Notes 9

Notes 21.1 In Definition 21.1 (iii), it is sufficient that the distribution of the values be indistin-
guishable in polynomial time from one that satisfies the irequents; we neither elaborate nor
use this in the following.

21.2 The FDH-RSA signature scheme and its security reductior weesented by Bellare &
Rogaway (1996).

The proof of Theorem 21.5 is due to Coron (2000).



10

Chapter 21. Random oracle reductions




Bibliography

The numbers in brackets at the end of a reference are the pagekich it is cited. Names of
authors and titles are usually given in the same form as oartiwe or book.

Miur BeLLare & PaiLuie Rogaway (1996). The Exact Security of Digital Signatures
— How to Sign with RSA and Rabin. IAdvances in Cryptology: Proceedings of
EUROCRYPT 1996, Saragossa, U. Mirer, editor, volume 1070 oEecture Notes in
Computer Science, 399-416. Springer-Verlag, Berlin. ISBN 354061186X. |ISE02-
9743. URLhttp://dx.doi.org/10.1007/3-540-68339-9_34.[9]

Ran Canerti, Opep GorpreicH & SHat Hacevi (2004). The Random Oracle Method-
ology, Revisited. Journal of the ACM (JACM) 51(4), 557-594. URLhttp:
//portal.acm.org/citation.cfm?coll1=GUIDE&d1=GUIDE&id=1008734. Arti-
cle home pagehttp://www.wisdom.weizmann.ac.il/~oded/p_rom.html. [5]

Jean-SEBasTiEN Coron (2000). On the Exact Security of Full Domain Hash. In
Advances in Cryptology: Proceedings of CRYPTO 2000, Santa Barbara, CA, M
HIR BeLLArE, editor, volume 1880 of ecture Notes in Computer Science, 229-235.
Springer-Verlag, Berlin. ISBN 3-540-67907-3. ISSN 030289 (Print) 1611-3349
(Online). URLhttp://www.springerlink.com/content/v5pn8pp8nmfk67 5w/
7p=b5cab6950f154a24ba652e70b22eafda&pi=0.[9]

RonaLp Cramer & Victor Saoup (1999). Signature Schemes Based on the Strong RSA
Assumption. INACM Conference on Computer and Communications Security, 46-51.
URL http://citeseer.nj.nec.com/article/cramer98signature.html.[5]

11



