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NORMAL BASES VIA GENERAL GAUSS PERIODS

SANDRA FEISEL, JOACHIM VON ZUR GATHEN, AND
M. AMIN SHOKROLLAHI

ABsTRACT. Gauf} periods have been used successfully as a tool for
constructing normal bases in finite fields. Starting from a primitive
rth root of unity, one obtains under certain conditions a normal
basis for Fy» over [F,, where r is a prime and nk = r — 1 for some
integer k. We generalize this construction by allowing arbitrary
integers r with nk = ¢(r), and find in many cases smaller values
of k than is possible with the previously known approach.

1. INTRODUCTION

Let F, be a finite field with ¢ elements. A basis of the vector space
F,» over F, of the form (a,a?,... ,aqn_l) is a normal basis, and in this
case « is a normal element in Fyn over F,.

GauBl periods have been used to construct normal bases in the following
way: Let n,k > 1 be integers such that r = nk 4+ 1 is a prime, and let
q be a prime power with ged(q,r) = 1. Then the group Z) of units
modulo r is cyclic and has nk elements, and since ¢"* = 1 mod r, r
divides ¢"F — 1 = #F;nk Hence there exists a primitive rth root of
unity 3 € Fne, and 3¢ is well-defined for any a € Z). Let K < Z) be

the unique subgroup of the cyclic group Z* with #K =k, and
(1) a=>Y B

Then « is called a prime Gauf period of type (n, k) over F,.

In this situation we have o € Fyn, and « is a normal element of Fy»
over [F, if and only if ged(e,n) = 1, where ¢ is the index of ¢ modulo r.
Starting with [8], this construction has been used to find normal bases,
in particular the so-called optimal normal bases; see also [5]. Opti-
mal normal bases using GauBl periods have been generalized in [1] (for
g = 2), and studied in [10], [7], Chapter 5, and [3]. The latter paper
reconciles asymptotically fast arithmetic with normal bases; the cost
for arithmetic in Fy» then depends not only on ¢ and n but also on k.
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So it is important to find a value for £ that is as small as possible. This
leads to the following definition:

Definition 1.1. A pair (n,k) is called a prime Gauf} pair over F, if

and only if the prime Gauf§ period of type (n,k) is a normal element
in Fygn over F,. We define

mink (n,k) is a prime Gauf pair over F,, if such a
Kp(q,n) = k exists,
00 if no such k exists.

(The subscript p stands for “prime”). Unfortunately, x,(q,n) is not
always small, and in fact it is sometimes not finite.

Fact 1.2. (Wassermann [10], Theorem 3.3..) Let p = char(F,), g =
p™ and n € N positive. Then k,(q,n) < oo if and only if the following
conditions hold:

(i) ged(m,n) =1,
(ii) 4p fn or (2p fn and p =1 mod 4).

GauB} indicated in Article 356 of his Disquisitiones Arithmeticae that
the construction of Gaufl periods might be extended from primes r to
arbitrary positive integers. He says: “Ceterum observarnus |...] haecce
theoremata salva vel potius aucta elegantia sua etiam ad valores qu-
osvis compositos ipsius n extendi posse: sed de his rebus, quae altioris
sunt indaginis, hoc loco tacere earumque considerationem ad aliam oc-
casionem nobis reservare oportet.”

It was a well-known habit of GauB to keep his results to himself rather
than to publish them, often to the dismay of his contemporaries who
would visit him to explain their great new result only to have Gauf}
pull it from a drawer. We could not find in the literature “another
occasion” where he published his “more elegant theorems.”

In this paper we present a generalization of Gaufl periods which yields
better results in the following sense, for some ¢:

e There are GauB} pairs (n,k) in the new sense with k& < k,(q,n).
Some examples are given in Table 2.
e There are GauB pairs (n, k) in the new sense where ,(q,n) = oo;

see Table 1.

'Besides, we observe that these theorems can with undiminished or even greater
elegance be extended to arbitrary composite integers n; but about these matters,
which are at a higher level of research, it is appropriate to be silent in this place
and to reserve their discussion to another occasion. [Gauf}’ n corresponds to our r
as above.]
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In Section 2 we generalize the definition of a Gauf period in finite fields,
and state our Main Theorem which gives a necessary and sufficient
condition for a Gauf} period to be normal. Sections 3 through 5 contain
the proof of the Main Theorem. In Section 3 we derive normal bases
in finite fields from global normal bases in cyclotomic fields. In Section
4 we exhibit normal p-integral elements in cyclotomic fields and in
Section 5 we prove our Main Theorem. In the last section we discuss
some experimental results showing the scope of improvement over the
previous construction.

Our Main Theorem is a statement about a construction in finite fields.
The necessity of the condition can be proven by working in finite fields
alone, but we do not have this type of proof for its sufficiency; rather,
we make use of global considerations in certain algebraic number fields.

2. GENERALIZATION OF (GAUSS PERIODS

The construction of the Introduction, with a prime r, generalizes as
follows:

For a prime ¢ and a nonzero integer r we define v4(r) as the maximum
number f such that ¢/ divides r. The squarefree part of an integer r is
the product of all primes £ such that v,(r) = 1.

Definition 2.1. Let n,k,r € N be positive integers such that o(r) =
nk. Write r as r = ryry where ry is the squarefree part of r, and sel

g(z) = ™ H Z A= Z[z].

£|7‘2 ls’iguz(rg)

Let q be a prime power with ged(q,r) =1, let B € Fyur be a primitive
rth root of unity, and K a subgroup of Z) of order k. The Gauf§ period
of type (n,K) over F, is defined as

a=> g(8").

ae

The parameter r on which a also depends is not made explicit; K is a
subgroup of 7.

If r is squarefree, i.e., r; = 1 in the above notation, then g(z) = =
and now a = )~ 3% is called a squarefree Gauf period and is of the
same form as the prime Gauf period in (1). For a prime r the above
definition is thus equivalent to the one in (1). In this case the group
Z} is cyclic, hence has for each divisor of ¢(r) = r — 1 exactly one
subgroup of that order.
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Example 2.2. Let ¢ = 2,n = 20,k = 2,r = 55. Then ¢(r) = 40 =
2:20 =k-n. The group Z) has three subgroups of order k, namely:

Ki={1,21}, Ky={1,54}, and Ks={1,34}.

As we will see in Example 6.2, the resulting Gauf§ periods are not equiv-
alent. In fact, only the first two of them yield a normal basis in Fyzo
over Fy .

The following is the main result of this paper and will be proved in
Section 5.

Main Theorem. A Gauf period of type (n,K) is a normal element
of Fyn over T, if and only if (¢,K) = Z}.

We can use this theorem to construct normal elements in finite fields,
as 1s shown in the following examples.

Example 2.3. (1) Let (3 be a primitive 9th root of unity over Fy. We
apply the theorem with g =2, r =9, and n = 6. Since (2) = Zj,
the element 3+ 3% is a normal element of Fy over F,.

(2) Let r = 25. The order of 3 modulo 25 equals 20 = p(25). Lel
K be the subgroup of order two of Zys, i.e., K = {1,—1}. Then
(3,K) = Z3;. Applying the theorem with n = 10 and q = 3 shows
that B+ B~Y + 3° + 375 is a normal element of Fs0 over Fy, if
B € Fs20 is a primitive 25th root of unity.

One might consider applying (1) for an arbitrary r. In Theorem 5.2
we show that in order to yield a normal element, r then has to be
squarefree.

The necessity of the condition given in the Main Theorem is easy to
prove.

Lemma 2.4. Wilh the notation of Definition 2.1, we have o € Fys,
where s is the multiplicative order of ¢ modulo K. In particular, if
(q,K) £ Z), then « is not normal.

Proof. Our assumptions imply that (¢°* mod r) € K. For the first claim,
it is sufficient to show a?" = o

ot = (Z gw“))qs =Y 9B =) 9(8) = a,

aek aeK aeK
by the above. The order s of ¢ modulo K equals #(q, K)/k, since (g, K)
is a disjoint union of ¢'K for 0 < i < s. In particular, if (q,K) # Z},
then s is less than n, and « is not normal. O
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The next lemma says that although « may depend on the choice of
(3 as a primitive rth root of unity, the normal basis generated by « is
independent up to a cyclic shift.

Lemma 2.5. Let 3,3" € Fyux be two primitive rth rools of unily, and
a,a' € Fpn the corresponding Gaufl periods. If (q,K) = Z, then o
and o' are conjugate over F,.

Proof. There exists an s with 1 < s < m, ged(s,m) =1, and ' = °.
Since (¢,K) = Z, there exists a j € {0,...,n — 1} with s € ¢’K.
Thus

o' = ) = X a5 = X a5 = (L o(5) = o,

a€eX aeEX aeEX aeEX

and « and o are conjugate. 0

For the proof of the Main Theorem we have to leave in the next sections
the realm of finite fields and work in algebraic number fields. This is,
of course, Gauf}’ original setting for his periods.

3. MODULAR NORMAL BASES FROM GLOBAL NORMAL BASES

In this section we discuss conditions under which reductions modulo
prime ideals of normal elements in number fields (global normal ele-
ments) yield normal elements in finite fields (modular normal elements).
In the sequel we will use several well-known results from algebraic num-
ber theory. Proofs of these results can be found in the first chapter of
Lang’s book [6].

Let L be a Galois extension of Q with Galois group 7, and let o € L be
a normal element, i.e., the Galois conjugates of « generate L as a vector
space over Q. Let Oy, denote the ring of integers of L. For a rational
prime p the ideal pOr, decomposes into a product (py---p,)°, where
each p; is a prime ideal of Of and has the same residue class degree
[ = f(p:/p), ie., #(Or/p;) = p’. Furthermore, efr = [L : Q]. The
prime p is called unramified if e = 1, and it is called inert if e =r =1,
Le,if f=[L:Q).

We fix a prime divisor p of pOr,. (We call p a prime divisor of p in the
sequel.) We would like to obtain conditions under which (a mod p) is a
normal element of F,;. We will first study when the set {a? mod p: g €
G'} generates F s, for which some preliminaries are needed.

Recall that Oy, is a free Z-module. Any basis of this Z-module is called
an integral basis of . The localization of Z at a prime p is denoted

by Z,). In other words, Z, = (Z \ pZ)~'Z. The localization of the



6 FEISEL, VON ZUR GATHEN, AND SHOKROLLAHI

Z-module Oy, at p is then Op, = Z,)Or. Obviously, Oy, is a ring,
and any integral basis of L forms a basis of this free Z-module.

Definition 3.1. An integral element o € L is called normal p-integral
if it is normal and if O, = @gEGZ(p)ag; a is called normal integral

if it is normal p-integral for all primes p, v.e., Op = @gEGZag.

Let p be a prime ideal of Of, of residue class degree f. Our first aim is
to show that the set {af mod p: g € G’} generates F,; as an F,-vector
space if « is normal p-integral. For the following remark, note that if
I is any ideal of Or, then IOr,, is an ideal of Or, .

Remark 3.2. We have a canonical isomorphism Oy, ,/pOL, ~ OL/p
of rings, for any prime ideal p of Oy,.

Proof. Let ¢: Or/p — Or,/pOr, be the map sending r + p to r +
pOr . The map is well-defined, as p C pOyr,,. To show surjectivity, let
r € Orp. Then there is an integer N prime to p such that r = r'/N,
for some 1’ € Op. Let s be an integer congruent to 1/N modulo p.
Then ¢(sr') = r + pOr,,, and we are done. O

The last remark and the fact that z mod p lies in F, for all z € Z
immediately imply the following.

Corollary 3.3. If a is a normal p-integral element of L, then {af mod
p: g € G} generates the residue class field of p over F,.

Normal p-integral elements can be characterized in an alternative way.

Proposition 3.4. An element a € L is normal p-integral if and only
if it is integral, normal, and for any integral basis (v1,...,7v,) of L
there exist a;, € ZL(p) such that v; = deG aiq07 for allv.

Proof. We only need to prove the “if” part. Integrality and normality
of a imply that € Zpya? C Opp = P Zpyyi- The other assumption
implies that Or,, C @ Z,)a?, and we are done. O

The Galois group G' of L over Q contains an element ¢ = ¢, such
that ¢(z) = 2 mod p for all z € Op. It is uniquely determined if p is
unramified. Changing from p to another prime divisor of p results in
conjugation of ¢ by an element of G. Hence, if G is Abelian (which will
be the case in our application), then ¢ only depends on p, and we call
it the global Frobenius automorphism of p. There is an epimorphism
from G to the Galois group of F,; /F,, which maps ¢ to the Frobenius
automorphism of the finite field extension. As a result, p is inert if and
only if G is cyclic (and hence is generated by ¢), in which case the sets
{a? mod p: g € G} and {(a mod p)pk: k=0,...,f—1} coincide. So,

we obtain the following result.
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Proposition 3.5. Let a be a normal p-integral element of the Abelian
Galois extension L of Q in which p is inert. Then the reduction @ of
a modulo the prime ideal pOr, of Or, is a normal element of Fyn over

F,, where n = [L: Q].

In our applications we will obtain normal p-integral elements of L as
the trace over L of normal p-integral elements of an extension K of L.
The following result shows that these traces are normal p-integral in L.

Proposition 3.6. Suppose that « is a normal p-integral element of the
Galois number field K, and that L is a subfield of K which is Galois

over Q. Then the trace of a over L is a normal p-integral element of

L.

Proof. The relevant rings are:

Or C OK,p c K

| | El
O, € O, € L

| | |a/1

Z < Zyp & Q

Since the trace B of a over L is the sum of certain conjugates of «
and « is normal in K over Q, it follows that the conjugates of 3 are
linearly independent over Q, and hence that 3 is normal in L over Q.
It remains to show that the conjugates of # under the Galois group
of L over Q form a basis of the Zy-module Or,,. We first show that
Orp 1s the intersection of Ok, and L: notice that O = Ox N L,
hence O, C Ok, N L. Conversely, let a = Y a;y; € Ok,p, where
Y15 .-+, form an integral basis of K, and a; € Z(,). Then a = o/ /N
for some integer N coprime to p and some o' € Or. a € L implies
that o/ € L, hence o’ € Of, which shows that o = o//N € Op,. Thus,
OrLpy = Ok, N L, and it suffices to show that any element in Ok,
which is invariant under H := Gal(K/L) is a Z,)-linear combination
of 39, where g runs over a complete set of representatives of the cosets
of Gal(K/Q) modulo H. Any element of Ok, can be represented as
a = ZgEG aga? for some a, € Z,). For any 7 € G we have that
a” = Zg ag,—107. As aresult, a is invariant under H if and only if a, is
constant on cosets of H, i.e.,if and only if a is a Z,)-linear combination
of 39, where ¢ runs over a complete set of representatives of G modulo

H. O

The following is the main theorem of this section. The next section
will contain applications of this result in the case of cyclotomic fields.
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Theorem 3.7. Let K D L D Q be Abelian Galois extensions of Q,
a be a normal p-integral element of K over Q, and p be a prime with
global Frobenius automorphism ¢ € Gal(K/Q). If (¢, Gal(K/L)) =
Gal(K/Q), then p is inert in L, and the reduction B of the trace 3 of

a over L modulo the prime ideal pOy, of L is a normal element in Fpn

where n = [L : Q.

Proof. By Propositions 3.5 and 3.6 we know that if p is inert in L,
then § has the required property. Thus, we only need to show that
the group theoretic criterion stated above implies that p is inert in
L. This happens if and only if the Frobenius automorphism ¢’ of p
in L generates the Galois group of L over Q. But ¢' = ¢|r, and its
image in the isomorphic copy Gal(K/Q)/Gal(K/L) of Gal(L/Q) equals
¢Gal(K/L). Hence, p is inert if and only if (¢Gal(K/L)) = Gal(L/Q).
A simple manipulation yields the result. O

Our main application of the previous theorem is to the case where K
is a cyclotomic field. Let K = Q((), where ( is a primitive rth root of
unity. The Galois group of K over Q is canonically isomorphic to ZX,
where the isomorphism sends the residue class of ¢ modulo r to the
automorphism mapping ¢ to (°. A prime p is unramified in K if and
only if p does not divide r. In that case the Frobenius automorphism
¢ of p is given by ¢: ( — (P, which corresponds to the residue class of
p modulo r in Z. Hence we have the following result.

Corollary 3.8. Letr € N be positive, ¢ be a primitive rth root of unity
over Q, K = Q((), and a be a normal p-integral element in K for some
prime p not dividing r. Let L be a subfield of K and H = Gal(K/L).
If (p, H) = Z), then the ideal pOy, of Or, is prime and the reduction
B of the trace 3 of a over L modulo pOy, is a normal element of Fpn
over F,, where n = [L: Q.

4. NORMAL p-INTEGRAL ELEMENTS IN CYCLOTOMIC FIELDS

In this section we exhibit explicit normal p-integral elements in a cy-
clotomic field generated by a primitive rth root of unity. We call r
the conductor of the field in the sequel. Reductions of these elements
give normal elements in finite extensions of F, via an application of
Corollary 3.8.

In a first step we show how to construct normal p-integral elements in
the compositum of two linearly disjoint number fields. We will need
the following result, a proof of which can be found in [6].
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Fact 4.1. Let K and L be two linearly disjoint number fields over Q
whose discriminants are relatively prime. Then the ring of integers

Okt of KL equals OgOr,.

Proposition 4.2. Suppose that L and K are linearly disjoint Galois
number fields, and that o and [ are normal p-integral elements of L
and K, respectively, for some prime p € N. Then af3 is a normal
p-integral element of K L. If a and 3 are normal integral, then so is
af3.

Proof. The Galois group of KL over Q is canonically isomorphic to
the direct product of the Galois groups of K and L over Q, and hence
af3 is a normal element of K'L. To prove p-integrality, it is sufficient
to show that af is integral, and that any integral basis of KL can
be represented by Zy-linear combinations of conjugates of af3, see
Proposition 3.4. Let (by,...,bs) and (c1,... ,¢) be integral bases of L
and K respectively, and let A and B be the transformation matrices
from the normal bases induced by « and 3 to these integral bases. By
Fact 4.1 the basis D := (b;c;: t,7) is an integral basis of K L, which, in
particular, shows that af is integral. A simple calculation shows that
the transformation matrix from the normal basis induced by a8 to D
is the Kronecker product A @ B, hence has coefficients in Z,. If A
and B have coefficients in Z, then so does A ® B.

Two cyclotomic fields are linearly disjoint over Q if and only if their
conductors are relatively prime. Since the primes dividing the discrimi-
nant of a cyclotomic field always divide the conductor, we see that two
such fields with relatively prime conductors are linearly disjoint and
have relatively prime discriminants. Thus, in view of the last proposi-
tion we only need to find normal p-integral elements in cyclotomic fields
with prime power conductor. This will be done in Proposition 4.4, for
which we need an auxiliary result.

Lemma 4.3. Let ¢ be a prime, t and s be nonnegative integers with
s < t, ¢ be a primitive '-th root of unily, and n be a primitive (*-th
root of unity. Then the trace of ( in Q(n) is zero if t # 1 and is —1 if
t=1.

Proof. Suppose first that s > 1. Then the trace T'(¢) of { equals
Y. (% where ¢ runs over all integers between 1 and ¢ — 1 such that
¢ = 1 mod ¢*, since Gal(Q(¢)/Q(n)) is isomorphic to the group formed
by these ¢’s. Each such ¢ is of the form k¢* 4+ 1, with k£ running from 0
to £'=* — 1. Hence,

T =¢ Y (=,

0<k<et=¢
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since (¥ is a primitive £7%-th root of unity.

Suppose now that s = 0. If ¢ > 1, then the trace of { over the field
generated by a primitive /th root of unity is zero. (Choose s = 1 in the
previous argument.) As a result, the absolute trace of ( is zero as well.
If t =1, then it is straightforward to check that the trace of ( equals
—1. O

Proposition 4.4. Let £ be a prime, t be a positive integer, and ( be a
primitive £*-th root of unily. The element

CH ¢ ¢

is a normal p-integral element of Q(¢) for any prime p # (. Ift =1,
then this element equals ( and is a normal integral element of Q(().

Proof. Let ~ denote the element in question. It suffices to represent
1 and all ¢* as Zpylinear combinations of conjugates of . In fact,
taking Galois-conjugates this implies that all powers of ( are Z,)-linear
combinations of conjugates of v, and we can apply Proposition 3.4.
(Note that any power of ( is a Galois-conjugate of ¢* for some 1.)

For ¢ € Z,; we write 4° for the image of v under the automorphism
corresponding to ¢. Furthermore, Y’ denotes a sum in which the sum-
mation index is supposed to be relatively prime to £ and to lie between 1
and £'—1. Let us first compute Y. v°: by Lemma 4.3, for 0 < k < {—1,
the sum >/ Cékc vanishes, since it is a multiple of the absolute trace of
a *=F-th root of unity. If k = ¢ —1, then this sum is £/~' times the trace
of a primitive /-th root of unity regarded as an element of Q((), hence
equals —¢'~1. Thus, 1 = — " 4°/£!~1 is representable as a Zpylinear
combination of conjugates of ~.

Now consider >/ _, . ~°. By Lemma4.3 we have ' _, e =0if
k #t—1. Ifk = t—1, then this sum simply equals #=*¢*"", which shows
that (¢ is representable as a linear combination of conjugates of ~
with coefficients 0 and 1/£71. Considering the sums >~ _, . ~+¢ with
s=1,... 07! the same reasoning shows that C“7" is representable as
a linear combination of conjugates of v with coefficients in Z,).

If t =1, then /"' =1, and « = ( is in fact normal integral. O

Combining the last two propositions we obtain the following result.

Theorem 4.5. Lel r = ryry be a positive integer with squarefree part
ri, and let ¢ be a primitive rth root of unity. Then the element

C"I"Q H Z Cré_i

Z|T2 lsiSU[(Tg)
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is a normal p-integral element of Q(() for any prime p such that p?
does not divide r. It is normal integral if r is squarefree.

Proof. In the following, ¢ is a parameter ranging over the prime num-
bers. The integeru = 37, r1/{is a unit modulor,. Let v be a positive

integer such that uv = 1 mod ry. If £]ry, then (/¢ is a primitive (th
root of unity, and normal integral by Proposition 4.4. The same is true
for ¢"/*. Applying Proposition 4.2 repeatedly, and noting that two
cyclotomic fields with relatively prime conductors are linearly disjoint,
we find that

H Cru/@ _ Crguu _ C?"Q

£|‘l"1
is normal integral in Q((").
Now, if £|ry, then ZKKW(T) (™" is normal p-integral in Q(C”"rue(r)) for
any p # {. Hence, it is normal p-integral for any prime p such that

p* does not divide r. Applying Proposition 4.2 again, we obtain the
assertion. O

Example 4.6. Suppose that ( € C s a primitive 180th root of unily.
Then

C36(<=45 + (90)((20 + <-60)
is a normal p-integral element of Q(() for any p # 2,3.

We close this section by remarking that we cannot expect to obtain
normal integral elements in cyclotomic fields of squarefull conductors.
The reason for this is that there exist primes p with wild ramification
in these fields. By a theorem of E. Noether [9] there do not exist
normal integral elements in any p-adic completion of these fields, where
p is a prime divisor of p. More generally, Abelian number fields with
squarefull conductors do not possess normal integral elements for the
same reason.

5. NORMAL MODULAR GAUSS PERIODS

Proof of the Main Theorem. Let n denote the element 3 _g(3%).
Since the condition (¢, K) = Z is necessary for n to be a normal ele-
ment in Fy» by Lemma 2.4, we only need to show the sufficiency of this
condition. In case ¢ = p is a prime, the assertion follows immediately
from Corollary 3.8 and Theorem 4.5. Suppose now that ¢ = p™ and
that (¢, K) = Z). The order of ¢ mod K equals b/ ged(b, m), where b is
the order of p mod K. Hence, (q,K) = Z) implies that ged(b,m) = 1,
and b = n. So (p,K) = Z%, which implies that 7 is a normal element

r

of F,» by the first part of this proof. As ged(m,n) =1, the fields Fpn
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and F, are linearly disjoint over [F,. As a result, the conjugates of 5 are
linearly independent over F, since they are linearly independent over
F,, which shows that 1 is normal over F,. O

The Main Theorem shows that a squarefree Gaufl period of type (n, K)
is always normal in Fyn over F,if (¢, K) = Z.

Can we expect an element of the form ) . 3 to be normal even if r
is not squarefree?

The answer is no, and the reason is as follows: if r is not squarefree,
then the trace of such an element over F, is zero. In particular, the
conjugates of this period are not linearly independent. To prove this,
we use a detour via cyclotomic fields. Recall the Mobius function p
defined by p(1) =1, u(n) = 0 if n is not squarefree, and u(n) = (—1)
if n 1s squarefree and has exactly ¢ prime divisors.

Lemma 5.1. The trace in Q of a primitive rth root of unily equals
p(r).

Proof. Let ¢ be a primitive rth root of unity, G = Z the Galois group
of K = Q(¢) over Q, so that f(r) = > ., is the trace of (. Then
g(r) = Zdv f(d) is the sum over all dth roots of unity, which is 1 if
r =1 and 0 otherwise. Mdbius inversion yields f(r) = u(r). O

This result together with the Main Theorem and Lemma 2.4 implies
the following.

Theorem 5.2. With the above notation, a Gaufi period of the form
a = kB is anormal element of By over By if and only if (¢, K) =
Z) and r is squarefree.

6. SOME EXPERIMENTS

As in the case of prime Gauf} periods, we want to determine for given
n and ¢ the lowest value for k such that a normal Gaufl period of type

(n,K), where #K = k, exists over F,:

Definition 6.1. A pair (n,K) is called a (squarefree) Gaull pair if and
only if the (squarefree) Gauf period of type (n,K) is a normal element
in Fgn over By ; “squarefree” means that r is squarefree. We define

min k (n,K) is a squarefree Gaufy pair with #K = k,
ks(g,n) = if such a K exists,
00 if no such K ezists,
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min k (n,K) is a Gauf pair with #K = k,
Ke(q,n) = if such a K exists,
00 if no such K exists.

The subscripts s and g stand for “squarefree” and “general”, respec-
tively. Obviously, we have k,(q,n) < r4(q,n) < kp(g,n) for all g and n,
see Definition 1.1. We now will see that sometimes k,(q,n) < £,(q,n).

Example 6.2. Let g =2 andn = 20. Then k,(2,20) = 3 > k,(2,20) =
2 > k,(2,20) = 1. Namely, for the squarefree Gaufl period we take r =
55, and the three subgroups from FEzample 2.2. Now 2'° = 34 mod 55
and 34* = 1 mod 55, 2 generates a subgroup of order 20, and (2,K;) =
(2,Kq) = ZZ, but (2,K3) = (2) # ZZX. Thus we have normal el-
ements of type (20,K;1) and (20,K3) of Fyo over Fy. In particular,
ks(2,20) < 2, and equality holds, since 2 is not primitive modulo 21,
and hence k4(2,20) # 1.

For the general Gaufl period we consider r = 25, which is coprime to
2. Then ¢(r) = 20 and with n = 20 and k = 1 we have found a normal
Gauf$ period of type (20,{1}). Hence, £,(2,20) = 1.

More examples for ¢ = 2 are exhibited in Table 2. The [0 in all tables
indicates that the corresponding r is not squarefree. Tables for prime
GauB} periods are in [8], [1], and [4].

GauBl periods also yield normal bases in situations where k,(q,n) =
oo. Table 1 shows all such values for which ¢ € {3,5,7,11} and 2 <
n < 100. More generally, Gao [2] has shown that the values where
ks(g,n) < oo are exactly the following:

(i) ged(m,n) =1, where g = p™ and p = char(F,) # 2,
(ii) 8 fn for char(F,) = 2.

So, compared to Fact 1.2, we have k4(q,n) < oo for ¢ # 2 in many more
cases than in the prime case. Unfortunately, no such improvement
occurs in characteristic 2.

Tables 3 and 4 show the improvements for ¢ = 3 and ¢ = 5, respectively.
For g = 2, we have 96 values of n between 2 and 400 with x,(q,n) <
kp(q,n). For g = 3, there are 126, and for ¢ = 5 there are 120 such
values, i.e., more than 25% which yield a better result. The largest
improvement we found is x,(5,272)/k,(5,272) = 23.

The (geometric) average improvement ratio for 2 < n < 400 is 1.49 for
g = 2 (including the cases where ,(q,n)=r,(q,n)), while for ¢ = 3 and
g = 5 the (geometric) average ratios are 1.44 and 1.45, respectively. In
the latter two cases we only consider values of n for which k,(¢,n) < co.
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Table 1: GauBl periods for ¢ € {3,5,7,11} and 2 < n < 100 with

Kp(q,n) = oo:

g n T Kg(g,n) | K

3112 35 21T, 6]

3 24 119 41{1, 50, 69, 118}

31 36 95 2| {1, 56}

3| 48 119 2| {1, 69}

31 60 155 2| {1, 61}

3| 72 323 41{1, 18, 305, 322}

3 84 203 2| {1, 1461

3| 96 896 4 {1, 321, 575, 895}

5/ 10 33 2| {1, 10}

5120 176 41{1, 23, 65, 87}

5030 77 2| {1, 76}

5| 40 187 41{1, 67, 120, 186}

5 50 303 41{1, 10, 91, 100}

5| 60 407 6 | {1, 100, 175, 232, 307, 406}

50 70 473 6| {1, 122, 221, 252, 351, 472}

5| 80 187 2| {1, 120}

50 90 297 2| {1, 109}

51100 1616 8 | {1, 111, 313, 495, 697, 807, 1009,
1415}

71 28 145 4 {1,12, 133, 144}

7| 56 493 8| {1, 86, 186, 220, 273, 307, 407,
492}

7| 84 377 4 {1,12, 144, 220}

11| 44 368 41{1,137, 47, 183}

11| 88 391 4| {1, 183, 254, 344}
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Table 2: Improvements for ¢ =2 and 2 < n < 400:

n | ky(2,n) £K4(2,n) ratio r K

6 2 1 2.0 90 {1}
20 3 1 3.0 25 O {1}
21 10 2 5.0 49 O {1, 48}
22 3 2 1.5 69 {1, 68}
27 6 2 3.0 81 O {1, 80}
34 9 6 1.5 309 {1, 46, 47, 262, 263, 308}
42 5 2 25 147 O {1, 146}
44 9 2 4.5 115 {1,91}
46 3 2 1.5 141 {1, 140}
54 3 1 3.0 81 O {1}
55 12 2 6.0 121 O {1,120}
57 10 6 1.67 | 361 O { 1,68, 69,292, 293, 360}
68 9 6 1.5 515 O {1, 46, 56, 356, 366, 411}
70 3 2 1.5 213 {1, 212}

75 10 8 1.25 | 707 {1, 111, 293, 302, 405, 414, 596, 706 }
78 7 2 35 169 {1, 168}
84 5 2 2.5 203 {1, 202}
92 3 2 1.5 235 {1, 46}
102 6 2 3.0 309 {1, 308}
108 5 2 25 405 O {1, 404}
110 6 1 6.0 121 O {1}
111 20 8§ 2.5 1043 {1, 148, 342, 491, 552, 701, 895,

1042}

114 5 3 1.67 | 361 O {1, 68, 292}
116 3 2 1.5 295 {1, 176}
123 10 4 2.5 581 {1, 167, 414, 580}
125 6 4 1.5 625 O {1, 182, 443, 624}
132 5 2 25 299 {1, 298}
140 3 2 1.5 319 {1, 318}
145 10 4 2.5 649 {1, 296, 353, 648}
147 6 2 3.0 343 O {1, 342}
150 19 4 475 | 707 {1, 302, 405, 706}
154 25 4 6.25 | 667 {1, 231, 505, 597}
156 13 1 13.0 | 169 O {1}
159 22 4 5.5 749 {1, 106, 643, 748}
164 5 2 25 415 {1, 414}
166 3 2 1.5 501 {1, 500}
171 12 2 6.0 361 O {1, 360}
190 10 2 5.0 573 {1, 190}
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Table 2: Improvements for ¢ = 2 and 2 < n < 400:

n | ky(2,n) £K4(2,n) ratio r K

195 6 4 1.5 869 {1, 78, 791, 868}

198 22 2 11.0 | 437 {1, 436}

203 12 4 3.0 841 O {1, 41, 800, 840}

204 3 2 1.5 515 {1, 411}

212 5 2 2.5 939 {1, 534}

220 3 2 1.5 575 O {1, 551}

222 10 4 2.5 1043 {1, 148, 342, 552}

225 22 8 2.75 | 1919 {1, 495, 607, 818, 1101, 1312, 1424,
1918}

228 9 6 1.5 |1603 {1, 134, 323, 1280, 1469, 1602}

234 5 4 1.25 | 1007 {1, 476, 531, 1006}

237 10 8 1.25 | 2219 {1, 316, 748, 1065, 1154, 1471, 1903,
2218}

238 7 2 35 717 {1, 716}

242 6 5 1.2 | 1331 O {1, 124, 632, 735, 1170}

246 11 2 5.5 581 {1, 580}

249 8 4 2.0 |1169 {1, 335, 834, 1168}

250 9 2 4.5 625 O {1, 624}

252 3 2 1.5 551 {1, 436}

253 10 2 5.0 529 O {1, 528}

255 6 4 1.5 | 1133 {1, 516, 617, 1132}

258 5 4 1.25 | 1211 {1, 174, 1037, 1210}

260 5 2 25 583 {1, 54}

262 3 2 1.5 789 {1, 262}

267 8 4 2.0 |1253 {1, 538, 715, 1252}

274 9 6 1.5 |2469 {1, 997, 998, 1471, 1472, 2468}

275 14 8 1.75 | 2323 {1, 91, 919, 1011, 1312, 1404, 2232,
2322}

276 3 2 1.5 611 {1, 610}

285 10 4 2.5 | 1337 {1, 190, 1147, 1336}

290 3 2 2.5 649 {1, 296}

294 3 2 1.5 1029 O {1,685}

297 6 4 1.5 1863 O {1, 323, 1540, 1862}

300 19 2 95 707 {1, 405}

301 10 6 1.67 | 1849 O {1, 423, 424, 1425, 1426, 1848}

308 15 2 75 667 {1, 436}

310 6 2 3.0 933 {1, 932}

315 8 4 2.0 |1349 {1, 569, 780, 1348}

318 11 2 5.5 749 {1, 643}
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Table 2: Improvements for ¢ =2 and 2 < n < 400:

n | ky(2,n) £K4(2,n) ratio r K

322 6 4 1.5 |1363 {1, 46, 563, 753}

324 5 2 2.5 815 {1, 651}

332 3 2 1.5 835 {1, 834}

333 24 4 6.0 |1369 {1, 117, 1252, 1368}

335 12 8 1.5 |2959 {1, 351, 725, 1077, 1882, 2234, 2608,
2958}

339 8 4 2.0 |1589 {1, 680, 909, 1588}

342 6 1 6.0 361 {1}

351 10 8 1.25 | 4293 {1, 242, 1295, 1538, 2755, 2998, 4051,
4292}

356 3 2 1.5 895 {1, 536}

357 10 4 2.5 |1673 {1, 477, 1196, 1672}

358 10 2 5.0 |1077 {1, 358}

361 30 18 1.67 | 6859 {1, 333, 623, 956, 1145, 1689, 2819,
2820, 2834, 4025, 4039, 4040, 5170,
5714, 5903, 6236, 6526, 6858}

365 24 8 3.0 |3223 {1, 155, 1310, 1464, 1759, 1913, 3068,
3222}

366 22 2 11.0 | 1101 {1, 733}

369 10 4 2.5 | 1577 {1, 248, 1329, 1576}

370 6 4 1.5 |1639 {1, 595, 1044, 1638}

377 14 8 1.75 | 3127 {1, 235 , 825, 1061, 2066, 2302, 2892,
3126}

380 5 2 2.5 955 {1, 381}

382 6 2 3.0 |1149 {1, 382}

385 6 4 1.5 |1633 {1, 70, 1563, 1632}

390 3 2 1.5 869 {1, 868}

396 11 2 5.5 851 {1, 850}
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Table 3: Improvements for ¢ = 3 and 2 < n < 400:

n | ky(3,n) £K4(3,n) ratio r K
2 2 1 2.0 4 0 {1}
10 3 2 1.5 25 O {1, 24}
12 00 2 35 {1, 6}
20 5 1 5.0 25 O {1}
22 3 2 1.5 92 O {1,91}
24 00 4 119 {1, 50, 69, 118}
32 8 2 4.0 128 O {1,127}
33 6 4 1.5 161 {1, 22, 139, 160}
36 00 2 95 {1, 56}
38 15 9 1.67 | 361 O {1, 28, 54, 62, 68, 99, 234, 245, 292}
40 7 4 1.75 | 187 {1, 21, 67, 98}
46 3 2 1.5 188 {1, 187}
48 00 2 119 O {1, 69}
5 6 4 1.5 253 {1, 45, 208, 252}
58 4 2 20 236 O {1, 235}
60 00 2 155 {1, 61}
62 21 10 2.1 |1244 O {1,305, 317, 621, 717, 881, 897, 969,
985, 1149}
64 4 2 2.0 256 O {1, 127}
66 3 2 1.5 161 {1, 22}
70 3 2 1.5 284 O {1, 283}
72 00 4 323 {1, 132, 208, 305}
80 5 2 25 187 {1, 186}
82 9 2 4.5 332 O {1,165}
84 00 2 203 {1, 202}
85 16 12 1.33 | 1133 {1, 56, 252, 263, 516, 562, 571, 617,
870, 881, 1077, 1132}
90 7 2 35 209 {1, 208}
92 5 2 2.5 235 {1, 46}
96 00 4 896 O {1, 321, 575, 895}
102 11 6 1.83 | 721 {1, 57, 253, 365, 561, 617}
106 10 2 5.0 428 O {1, 427}
108 00 4 545 {1, 76, 251, 326}
114 5 3 1.67 | 361 O {1, 68, 292}
120 00 4 527 {1, 30, 123, 373}
123 6 4 1.5 581 {1, 167, 414, 580}
124 13 10 1.3 | 1555 {1, 6, 36, 216, 259, 1296, 1339, 1519,
1549, 1554}
130 4 2 2.0 524 O {1, 261}
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Table 3: Improvements for ¢ = 3 and 2 < n < 400:

n | ky(3,n) £K4(3,n) ratio r K

132 00 4 623 {1, 90, 533, 622}

144 00 2 323 {1, 18}

145 10 4 2.5 649 {1, 296, 353, 648}

147 10 2 5.0 343 O {1, 342}

150 5 4 1.25 | 707 {1, 302, 405, 706}

153 14 12 1.17 | 1957 {1, 514, 562, 767, 768, 881, 1076,
1189, 1190, 1395, 1443, 1956}

156 00 2 371 {1, 370}

159 34 4 8.5 749 {1, 106, 643, 748}

164 5 2 2.5 415 {1, 414}

166 3 2 1.5 668 O {1,667}

168 00 4 731 {1, 429, 472, 560}

170 8 6 1.33 | 1133 {1, 56, 263, 870, 1077, 1132}

171 12 2 6.0 361 O {1, 360}

174 9 2 45 413 {1, 176}

178 15 2 7.5 716 O {1, 357}

180 00 2 475 O {1, 151}

182 14 8 1.75 | 1537 {1, 423, 476, 637, 900, 1061, 1114,
1536}

184 7 4 1.75 | 799 {1, 140, 234, 424}

186 15 4 3.75 (1492 O {1, 745, 1015, 1223}

190 3 2 1.5 764 O {1, 381}

192 00 4 1792 O {1, 769, 1023, 1791}

195 10 4 2.5 869 {1, 78, 791, 868}

201 10 8 1.25 | 1883 {1, 351, 456, 806, 1077, 1427, 1532,
1882}

203 12 4 3.0 841 O {, 411, 800, 840}

204 00 4 959 {1, 174, 237, 547}

208 10 4 2.5 901 {1, 30, 871, 900}

212 5 2 2.5 535 {1, 534}

216 00 8 1853 {1, 76, 217, 621, 764, 871, 1341,
1668}

218 15 10 1.5 [4364 O {1, 93, 305, 801, 1381, 1877, 2089,
2181, 2261, 4285}

220 4 2 2.0 575 O {1, 551}

226 15 2 75 908 O {1,907}

228 00 4 1145 {1, 336, 351, 686}

234 5 4 1.25 | 1007 {1, 476, 531, 1006}

238 4 2 2.0 956 O {1,477}
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Table 3: Improvements for ¢ = 3 and 2 < n < 400:

n | ky(3,n) £K4(3,n) ratio r K

240 00 2 527 {1, 526}

245 24 8 3.0 |2167 {1, 395, 408, 802, 1365, 1759, 1772,
2166}

246 3 2 1.5 581 {1, 580}

249 8 4 2.0 |1169 {1, 335, 834, 1168}

250 3 2 1.5 625 O {1, 624}

252 00 2 551 {1, 436}

253 4 2 2.0 529 O {1, 528}

258 5 4 1.25 | 1211 {1, 253, 785, 1037}

261 6 4 1.5 | 1121 {1, 58,, 1063 1120}

262 3 2 1.5 1052 O {1, 1051}

264 00 2 623 {1, 622}

272 5 1 5.0 289 O {1}

273 10 8 1.25 | 2279 {1, 560, 818, 902, 1377, 1461, 1719,
2278}

275 12 8 1.5 |2323 {1, 91, 919, 1011, 1312, 1404, 2232,
2322}

276 00 2 695 {1, 694}

288 00 4 2432 O {1, 191, 2241, 2431}

290 20 4 5.0 |[1475 O {1,707, 943, 1299}

294 5 1 5.0 343 O {1}

300 00 2 707 {1, 405}

301 10 6 1.67 | 1849 O {1, 423, 424, 1425, 1426, 1848}

306 7 6 1.17 | 1957 {1, 767, 1076, 1189, 1395, 1443}

310 15 2 7.5 |1244 O {1, 621}

312 00 4 1343 {1, 475, 868, 1342}

314 14 10 1.4 |6284 O {1,621, 825, 1189, 1953, 2317, 2521,
3141, 3321, 6105}

318 17 2 85 749 {1, 106}

321 18 12 1.5 ]4501 {1, 466, 821, 1108, 1109, 1287, 3214,
3392, 3393, 3680, 4035, 4500}

324 00 2 815 {1, 651}

328 7 4 1.75 | 1411 {1, 84, 1327, 1410}

332 8 2 4.0 835 {1, 834}

333 6 4 1.5 1369 O {1,117, 1252, 1368}

334 15 14 1.07 | 9356 O {1,357, 1065, 2149, 2529, 3613, 4321,
4677, 5693, 5821, 5965, 8069, 8213,
8341}

336 00 2 731 {1, 171}
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Table 3: Improvements for ¢ = 3 and 2 < n < 400:

n | ky(3,n) £K4(3,n) ratio r K

339 10 4 2.5 | 1589 {1, 680, 909, 1588}

342 13 1 13.0 | 361 O {1}

346 3 2 1.5 1388 O {1, 1387}

348 00 4 1631 {1, 232, 1399, 1630}

351 22 16 1.37 | 5777 {1, 76, 796, 871, 1854, 2256, 2649,
2726, 3051, 3128, 3521, 3923, 4906,
4981, 5701, 5776}

356 11 2 5.5 895 {1, 536}

358 4 2 2.0 |1436 O {1,717}

360 00 8 3077 {1, 19, 162, 361, 705, 1087, 1628,
2191}

361 30 18 1.67 | 6859 O {1, 333, 623, 956, 1145, 1689, 2819,
2820, 2834, 4025, 4039, 4040, 5170,
5714, 5903, 6236, 6526, 6858}

364 7 4 1.75 | 1537 {1, 637, 1061, 1114}

365 18 8 2.25 | 3223 {1,155, 1310, 1464, 1759, 1913, 3068,
3222}

366 3 4 1.25 2932 O {1, 1465, 1819, 2579}

368 11 2 5.5 799 {1, 798}

372 00 4 1865 {1, 477, 1388, 1864}

377 14 8 1.75 | 3127 {1, 235, 825, 1061, 2066, 2302, 2892,
3126}

380 5 2 25 955 {1, 381}

381 20 8 2.5 |3563 {1,510, 1226, 1735, 1828, 2337, 3053,
3562}

382 10 2 5.0 |1532 0 {1,765}

384 00 4 1799 {1, 755, 1301, 1541}

385 6 4 1.5 |1633 {1, 70, 1563, 1632}

387 14 8 1.75 | 3287 {1,172, 1291, 1464, 1823, 1996, 3115,
3286}

390 3 2 2.5 869 {1, 868}

393 10 4 2.5 | 1841 {1, 790, 1051, 1840}

396 00 2 995 {1, 994}
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Table 4: Tmprovements for ¢ = 5 and 2 < n < 400:

n | ky(h,n) kKy(5,n) ratio r K
4 3 2 1.5 16 O {1, 15}

10 00 2 33 {1, 32}

18 2 1 2.0 27 O {1}

20 00 4 176 O {1, 23, 65, 87}

27 4 2 2.0 81 O {1, 80}

30 00 2 7 {1, 76}

32 3 2 1.5 128 O {1,127}

33 10 4 2.5 161 {1, 22, 139, 160}

38 12 10 1.2 573 {1, 49, 109, 152, 184, 389, 421, 464,
524, 572}

40 00 4 187 {1, 21, 67, 98}

44 8 4 2.0 368 {1, 47, 137, 183}

45 12 4 3.0 209 {1, 56, 153, 208}

50 00 4 303 {1, 10, 91, 100}

54 8 1 8.0 81 O {1}

55 6 2 3.0 121 O {1,120}

58 4 2 2.0 177 {1, 176}

60 00 6 407 {1, 100, 175, 232, 307, 406}

63 12 8 1.5 551 {1, 75, 115, 191, 360, 436, 476, 550}

64 3 2 1.5 256 O {1, 127}

66 6 2 3.0 161 {1, 139}

70 00 6 473 {1, 122, 221, 252, 351, 472}

80 00 2 187 {1, 186}

81 10 2 5.0 243 O {1, 242}

84 8 4 2.0 688 O {1, 257, 431, 687}

90 00 2 297 O {1, 109}

100 00 8 1616 O {1, 111, 313, 495, 697, 807, 1009,
1415}

104 9 8 1.12 | 901 {1, 30, 52, 242, 659, 849, 871, 900}

110 00 2 253 {1, 208}

114 13 4 3.25 | 687 {1, 457, 565, 580}

120 00 6 803 {1, 65, 210, 593, 738, 802}

123 10 4 2.5 581 {1, 167, 414, 580}

126 6 4 1.5 783 O {1, 28, 244, 568}

130 00 2 393 {1, 392}

134 14 4 3.5 807 {1, 268, 620, 725}

140 00 8 1243 {1, 131, 208, 747, 835, 903, 1002,
1145}

144 3 2 1.5 323 {1, 18}
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Table 4: Tmprovements for ¢ = 5 and 2 < n < 400:

n | ky(h,n) kKy(5,n) ratio r K

145 10 4 2.5 649 {1, 296, 353, 648}

147 10 2 5.0 343 O {1, 342}

150 00 2 453 {1, 452}

159 20 4 5.0 749 {1, 106, 643, 748}

160 00 4 1408 O {1, 65, 1343, 1407}

162 11 1 11.0 | 243 O {1}

164 14 4 3.5 1328 O {1,663, 831, 1161}

170 00 6 1133 {1, 56, 263, 870, 1077, 1132}

171 12 2 6.0 361 O {1, 360}

174 3 2 1.5 413 {1, 176}

178 12 2 6.0 537 {1, 536}

180 00 2 407 {1, 186}

183 22 12 1.83 | 2569 {1, 283, 450, 451, 817, 1100, 1469,
1752, 2118, 2119, 2286, 2568}

184 9 4 225 | 799 {1, 140, 234, 424}

190 00 6 1713 {1, 109, 110, 1604, 1603, 1712}

194 8 4 2.0 |1167 {1, 388, 893, 1052}

195 10 4 2.5 869 {1, 78, 791, 868}

200 00 8 1717 {1, 203, 596, 798, 919, 1121, 1514,
1716}

201 10 8 1.25 | 1883 {1, 351, 456, 806, 1077, 1427, 1532,
1882}

203 12 4 3.0 841 O {1, 41, 800, 840}

207 24 4 6.0 893 {1, 189, 704, 892}

208 9 4 225 | 901 {1, 30, 871, 900}

210 00 2 473 {1, 87}

212 8 4 2.0 |1712 O {1,215, 1497, 1711}

218 12 10 1.2 | 3273 {1, 79, 1012, 1090, 1381, 1396, 2089,
2275, 2968, 2983}

220 00 4 1936 O {1, 727, 1209, 1935}

228 9 8 1.12 | 3664 O {1,809, 1375, 1481, 2183, 2289, 2855,
3663}

230 00 2 517 {1, 142}

237 10 8 1.25 | 2219 {1, 316, 748, 1065, 1154, 1471, 1903,
2218}

238 4 2 20 717 {1, 716}

240 00 4 1037 {1, 72, 965, 1036}

243 12 2 6.0 729 O {1, 728}

246 22 2 11.0 | 581 {1, 167}




NORMAL BASES VIA GENERAL GAUSS PERIODS 25

Table 4: Tmprovements for ¢ = 5 and 2 < n < 400:

n | ky(h,n) kKy(5,n) ratio r K

250 00 6 2253 {1, 73, 679, 823, 1429, 1501}

253 4 2 2.0 529 O {1, 528}

254 9 4 225 | 1527 {1, 208, 301, 508}

259 18 16 1.12 | 4321 {1, 552, 597, 1148, 1491, 1683, 2042,
2087, 2234, 2279, 2638, 2830, 3173,
3724, 3769, 4320}

260 00 2 583 {1, 582}

264 8 6 1.33 | 1679 {1, 137, 300, 804, 1013, 1103}

270 00 2 891 O {1, 406}

272 23 1 230 | 280 O {1}

275 14 8 1.75 | 2323 {1, 91, 919, 1011, 1312, 1404, 2232,
2322}

280 00 4 1243 {1, 98, 241, 903}

286 7 4 1.75 | 1219 {1, 507, 553, 1059}

290 00 4 1947 {1, 296, 353, 1297}

294 9 1 9.0 343 O {1}

297 8 4 2.0 (1863 O {1,323, 1540, 1862}

300 00 4 2416 O {1, 303, 2113, 2415}

301 10 6 1.67 | 1849 O {1, 423, 424, 1425, 1426, 1848}

310 00 2 933 {1, 932}

314 14 10 1.4 |4713 {1, 382, 1189, 1570, 1750, 2317, 2521,
3763, 3967, 4534}

315 20 12 1.67 | 4009 {1, 197, 210, 407, 1280, 1281, 2728,
2729, 3602, 3799, 3812, 4008}

318 17 2 85 749 {1, 643}

320 00 4 2816 O {1, 639, 2177, 2815}

321 30 12 2.5 | 4501 {1, 466, 821, 1108, 1109, 1287, 3214,
3392, 3393, 3680, 4035, 4500}

324 9 4 2.25 (3888 O {1,487, 1457, 1943}

328 7 4 1.75 | 1411 {1, 84, 1327, 1410}

330 00 2 847 {1, 846}

333 6 4 1.5 [1369 O {1,117, 1252, 1368}

334 24 14 1.71 | 7017 {1, 1015, 1052, 1196, 1274, 1982,
2149, 4868, 5035, 5821, 5743, 5965,
6002, 7016}

339 8 4 2.0 |1589 {1, 680, 909, 1588}

340 00 4 1507 {1, 648, 958, 1407}

342 6 2 3.0 [1083 OO {1, 1082}

348 7 4 1.75 | 1631 {1, 232, 1399, 1630}
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Table 4: Tmprovements for ¢ = 5 and 2 < n < 400:

kp(B,n) Ky(D,n) ratio

r

K

350
351

354
356
357
358
360
361

365
366
368
369
370
377
380
385
387

390
392

400

00 4

10 8 1.25
8 4 2.0
6 4 1.5
6 4 1.5
4 2 2.0
00 2

30 18 1.67
18 8 2.25
11 6 1.83
9 2 4.5
10 4 2.5
%) 6

14 8 1.75
00 12

10 8 1.25
14 8 1.75
00 2

18 8 2.25
00 4

2103
4293

2127
2864
1673
1077

803
6859

3223
2569

799
1577
2453
3127
5027
3509
3287

917
3349

1717

{1, 700, 1267, 1537}

{1,242, 1295, 1538, 2755, 2998, 4051,
4292}

{1, 1322, 1417, 1514}

{1, 1431, 1791, 2505}

{1, 477, 1196, 1672,}

{1, 358}

{1, 439}

{1, 333, 623, 956, 1145, 1689, 2819,
2820, 2834, 4025, 4039, 4040, 5170,
5714, 5903, 6236, 6526, 6858}
{1,155, 1310, 1464, 1759, 1913, 3068,
3222}

{1, 83, 650, 1184, 1469, 1751}

{1, 798}

{1, 248, 1329, 1576}

{1, 263, 485, 1968, 2190, 2452}

{1, 235, 825, 1061, 2066, 2302, 2892,
31261

{1, 133, 780, 1695, 1827, 2419, 2608,
3200, 3332, 4247, 4894, 5026}
{1,969, 1090, 1451, 2058, 2419, 2540,
3508}

{1,172, 1291, 1464, 1823, 1996, 3115,
3236}

{1, 785}

{1,577, 1378, 1393, 1956, 1971, 2772,
3348}

{1, 596, 919, 1514}
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