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Berlekamp’s and Niederreiter’s
Polynomial Factorization Algorithms

SHUHONG GAO AND JOACHIM VON ZUR GATHEN

ABSTRACT. In this paper, we discuss Niederreiter’s algorithm for factor-
ing polynomials over finite fields and compare it to Berlekamp’s algorithm.
Using Kaltofen and Saunders’s version of Wiedemann’s method for solv-
ing systems of linear equations, we present a probabilistic [actorization
algorithm. This approach is particularly interesting in characteristic two,
where it seems somewhat faster than Kaltofen’s adaptation of Berlekamp's
factorization algorithm.

1. Introduction

Niederreiter [30] bases his algorithm for factoring a polynomial f € F,[z] on
the ditferential equation

(1.1) FP(h/F)* + hP =0

where h € F,[z] with deg h < deg f = n is unknown, p = charF,, and (hff)(i“"1J
= §P~1(h/f)/OxP~! is the derivative of order p — 1. This corresponds to a
system of n linear equations in the n unknown coefficients of h; the only nonzero
coefficients in either summand occur at powers z* with i divisible by p. A variant
of this method works directly over F,, replacing the ordinary (formal) derivative
in (1.1) by the Hasse-Teichmiiller derivative. If g is a power of two, the resulting
system of linear equations over [, has a particularly simple format. The current
status of this approach and further references are given in [29].
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In Section 2, we discuss a simple relation between Niederreiter’'s and Berle-
kamp’s algorithms (2, 8], discovered by Fleischmann [10], Lee & Vanstone [23],
and Miller [25]. The novelty is that we turn this relation around and use it
to obtain a short self-contained proof of all the salient features of Niederreiter’s
method.

There are several extensions of Niederreiter’s basic algorithm, via Hasse-
Teichmiiller derivatives and normal bases. Such extensions arc desirable for
a better understanding of the scope of the method. In this paper we only discuss
the basic method. Niederreiter’s algorithm has found application in other areas
such as characteristic sequences [32]. We do not discuss these applications at
all.

Niederreiter was exclusively interested in deterministic algorithms. In this
paper, we present a probabilistic algorithm based on his approach, using Kaltofen
& Saunders’s randomized algorithm [21] founded on Wiedemann's method [41],
which we apply in Section 3 to solve the linear equations (1.1). An important
tool in some factoring algorithms is the “(p—1)/2 power method”; we show how
to apply it in the context of Niederreiter’s approach.

Our algorithm is particularly interesting in the case p = 2, which we discuss
in Section 4. Then the equation (1.1) takes an especially simple form, and the
well-known open problem of even obtaining deterministic polynomial time in
large characteristic does not arise in this situation. Now the obstacle to deter-
ministic algorithms is that at problem sizes near the edge of current feasibility
the “explicit” way of doing linear algebra, where the matrix of a system of linear
equations is stored explicitly (in dense or sparse format), has to be replaced by
the blockbuster method of Wiedemann. Our algorithm gives a solution to Prob-
lem 1 in [28], and seems somewhat faster than Kaltofen’s version [18, p. 297] of
Berlekamp’s algorithm (using about half the time, for a large enough field).

Until recently, the best known factoring algorithms required time either about
n* or about n? log g, ignoring factors log n, and where w is an exponent for matrix
multiplication. Kaltofen [18] and von zur Gathen & Shoup [15] improved this
to about n? + nlogg; the algorithm of Section 4 achieves a similar time bound
in characteristic two.

Since this paper addresses a rather wide, mainly mathematical, andience, we
have considered it useful to include in Section 5 our personal view on algorithm
design and efficiency—a view widely shared in Computer Science.

2. Niederreiter’s method

In this section, we give a short stand-alone derivation of those well-known
features of Niederreiter’s algorithm that seem to be necessary for the goal of
an efficient factorization algorithm. In the first part, we only discuss squarefree
polynomials; this may be sufficient for eflicient algorithms (see Section 5). For
the special case ¢ = 2, the proof can be further simplified [29].
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Let f € Fq4lz] be a monic squarefree polynomial of degree n, whose monic
irreducible factors gi,... ,g, € Fy[z] we want to compute. Let p = charF,, and
denote by B’ C Fy[x] the algebra

B' = {h € F,[z] : h* = h mod f},

and by B C R its image in
R = Fy[z]/(f)-

This is the absolute Berlekamp algebra, an r-dimensional vector space over F,,.
Niederreiler considers

. hy (p-1) hye

(2.1) N ={heFa: (3) +(3) =0},

where (h/f)P=Y) = §P~1(h/f)/OxP~! is the derivative of order p — 1. Since
both operations of taking derivatives and pth powers are [F,-linear in the coeffi-
cients of k, N' C F,[z] is an Fp-vector space. The following map, discovered by
Fleischmann [10], Lee & Vanstone [23], and Miller [25], provides a connection
between B and N:

Y Fq[x] =* Fqix]v
h + hf' rem f,

where A f' rem f denotes the remainder modulo f, i.e., the unique polynomial of
degree less than n congruent to hf’ modulo f. Statement (i) of the following
theorem is in [10, 23, 25|, (ii) is in [30], and (iii) is in [30] for @ = 0 and in
[33, Theorem 2] in a more complicated form. Niederreiter & Gottfert [32] show
that the matrices describing Niederreiter's and Berlekamp’s methods are similar;
this is also a consequence of Theorem 2.1. (iv) and (v) seem to he new, as is
our approach of deriving information on A" from B. Although the property of
being an algebra gets lost in the transition from B to N, (v) shows that one can
use the well-known tool (for probabilistic algorithms) of (p — 1) /2-th powers also
directly in N

THEOREM 2.1. Let f € Fy[z] be squarefree.
(i) The restriction of 1 to B' is a surjectwe F,-linear homomorphism onto
N and induces an isomorphism 1 : B — N.

(ii) dimg, N'=r, and {fg./g: : 1 <i <1} is a basis for N over F,,.
(iti) Ifa €Fp and h =3 ., ., a:fgi/9; €N, with a,,... ,a, €Ty, then

ged(f,h—af) = [ o
lsif:r
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(iv) For any h € N, we have
=TT sed(f,h = af).

a€Fy

(v) Ifp is odd, h € N as in (iii), and S C F, the set of nonzero squares,
then

ged(f, RP-1)/2 _ (ff)(p—l}/‘-!) = H 9.
1<i<r
a,e8

Before proving Theorem 2.1, we collect some facts about derivatives. TFor
[ h € Fylz] with f # 0, we write

deg(;) = degh — deg f.

In Lemma 2.1 below, statements (i)—(iii) are from [30], and (iv) is in [10].

LemMMA 2.1. Let f be as above, h € Fqlz], k € N, and dy, = (h/f)*) fh+1,
Then
@) (F1HPD 4 (F'/F)F =0,
(if) deg((h/f)®) < deg(h/f) - k,
(ili) for every h e N, degh < n,
(iv) di € Fylz], and di = (—1)*k! h(f’)* mod f.

Proor. For (i), note that f has no repeated roots. Let W be the set of roots
of f in some extension field of F,. Then

B = (E)"- 2

aeW acW

= (Ue-n Y o= (L)

acW

(ii) is a straightforward proof by induction on &, and (iii) follows from (ii) by
comparing degrees in (1.1). For (iv), one can easily see that dy € F (2], and the
congruence follows inductively from

dif' = dpf' +dif = (dif) =disr + (k+2)dif mod . O
PROOF OF THEOREM 2.1. (i) We first show that ¥(B') € N. So let ge kb,
h = 1(g), and let u,v € Fy[z] such that
g=g"+ fu, and gf =h+ fu.
Then
h=g"f + f(fu—v).
Let w = fP(h/f)P=1). Then w € F,|[z], and

@) w=r(eF)" = o) 2 e = - mod
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where we have used the Leibniz rule, the fact that (¢?)®) = 0 for i > 1 in the
second equation, and Lemma 2.1 (i) in the third equation. Now deg(h/f) < —1,
and

degw = np + deg((h/f)“’_”) <np-p,
by Lemma 2.1 (ii). Furthermore, degh? < (n — 1)p and deg f* = np, so that
(2.2) implies that w = —h? and h € N.
To show that ¥ is surjective onto NV, let s € Fy[z] be such that sf’ = 1 mod f,
he N, and g = hs. Then h = (g), and

@#=(hs)? = —(h/H)PVfPsP = (—1)P (p— 1) A(f)P 4P
= h(sf')* 's=hs=gmod [,

by Lemma 2.1 (iv). Hence g € B’ and h € 1(B). Furthermore, 1 gives a bijection
from B to N, since ¥(g) = 0 if and only if g = 0 mod f.
(ii) For 1 <i < r, let s be as above and

e = (s-g-g: mod f) € B.
Then €4,... &, are the primitive idempotents in B, that is, e; = §;; mod g; for

all ¢,j < r, where §,; is the Kronecker symbol. Since we know, say from the
Chinese remainder decomposition of Fylz]/(f), that {e;,... ,e,} is a basis for B
over F,,, it follows from (i) that

{155(6;')ilﬂiST}Z{g{gi:lifigr}

is a basis for N.
(iii) follows from the facts that f' = 37, .., f9;/9: and that g;|(h — af’) if
and only if a; = a, and (iv) follows from (iii).

For (v), since (fg./9:) - (f9}/g;) = 0 mod f if i # j, we have
h* = 3" af(fgi/9:)* mod f,
1<i<r
for any positive integer k. Thus
RO = ()2 = 3 (e P — 1)(f0i/0)®7% mod f,
1<i<r
and so the left hand side is divisible by g; il and only if a; € S. O

FI1C{l,...,r},h=3,c; foi/g; and b= [],; gi, then h = fb'/b. If p=2,
then only a; € {0,1} occur in the representation of Theorem 2.1 (iii), and the
above implies that

N = {fV'/b: b€ F,|z] monic,b| f},

which is Theorem 1 in [28].
Niederreiter proves more general versions of some statements in Theorem 2.1,
where the subfield F), C F, used in (1.1) can be replaced by an arbitrary subfield
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F; of Fy; in this case the derivative (h/f)?=1) has to be replaced by the Hasse-
Teichmiiller derivative H* ) (h/[), or one can use a normal basis of F, over F,.
This is of interest for a most general statement, and possibly also in applications
such as linearly recurrent sequences. The Hasse-Teichmiiller approach seems to
lead to more complicated and less eflicient algorithms.

We now adapt the above results to polynomials that are not squarciree. Let

f =gfl "'g:r'!

where g1, ... , g are the distinct monic irreducible factors of f.andey,...e, €N
positive. Let A" be as in (2.1), fg = g1 -+ g, the squarefree part of f,

Ng = {g € IFylz] : (%)(phl) + (}%)p - U}

the space corresponding to fg, and
p: Ng — Fyla]
g g
Ja
THEOREM 2.2. ¢ is an IF,-linear isomorphism between Ng and N

Proor. Obviously ¢(g) € N for all g € Ng, and ¢ is injective. We claim
that f/fg divides each h € N, from which surjectivity of ¢ follows easily. Let
heN,

v=ged(f, h) = H o
1<i<r
with0<c; <e; for 1 <i<r, and w = fg- (f/v)/(f/v). Then

ei—cC;j !
w= fg Z {qe —=—=/m Z (e — (:z-)& € Fylz].
1<i<r * 9 1<i<r G

For k € N, let dy = fg(f/v)(h/f)*). One sees that dy ¢ F,[z] by induction on
k, using

o vt 57 (1) ()"

(k+ 1)dr fg + wdi + dj41.

(difw)'

Dividing (1.1) by vP, we find

() - GBI = () e em

For our claim. it is sufﬁcient to prove that ¢, > e; — 1 for all i. So we assume
that ¢; < e; — 2, for some ¢ < r. Then g; does not divide the left hand side, and
its multiplicity in the right hand side is at least

(p-(ei-1-c)2p-121,
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a contradiction. O
Now consider

v: Folz] — Fylz]
g ~ of-Lremf,
f=

where fg is the squarefree part of f as above. Then Theorems 2.1 and 2.2 imply
the following,

COROLLARY 2.1. In the above notation, statements (i) and (ii) of Theorem 2.1
hold for any polynomial f € F,|x]. Furthermore:
(i)’ Ifa€Fp and h =37, ;. aifgi/gi € N with ay,... ,a, € ]Fp, then

ged(f,h —af’) f; I o sed(fin %f&a] Il %
e Tis

(iv) If h € N is as in (iii)’, then

f: }{iwl H ngCd(le—ﬂf f H fE gtd(f|h ﬂffm/f)

aelF, 'w2f fE a€Fy

where wy s the product of all g; with p|e;, and wy is the product of
those g, with p|e; and a; = 0.

PrOOF. We just need to prove the first equations in (iii)’ and (iv)’, since the
others follow immediately from the isomorphism. Note that

f ®
=13 iy gu —af' = > (a; Cza)—f gi-
1<i<r l‘Cz'Cr

The first equation in (iii)’ follows from the fact that g, divides Llu,,(a,
eia) fwag;/g: if and only if ax = exa in F, for 1 < k < r. To prove the first
equation in (iv)’, let S={1,... ,7}, T={i€ §: p| e}, and for a € F,

Us={i€8:pte; and a; = e;a € Fp}.

Then
Tl ] vi=5
aEF,

is a partition of S, and for all a € F,

wr I] 0 = $fmecd(f.h = af’),

iell,
fa=[lo=1lsII II 9:=wr Hfggrdf’f_af} O
ies €S aEF, 1€l, aEF, we

We have included the factorizations involving f’, since f’ is easier to compute
than (f/fg)fg: it is not clear that this gains efficiency.



108 SHUHONG GAO AND JOACHIM VON ZUR GATHEN

3. Wiedemann’s and Niederreiter’s methods

We want to factor a squarefree polynomial
_f = " - f'n—lmn- 3| + o4 fU = ]Fq[x],

where p = chat Fy, ¢ = p* and fi—y,... , fo € F,. We assume that F, is
presented by a monic irreducible polynomial of degree k over F,,.

Let M(n) be such that the product of any two polynomials in F, [z] of degrees
al most n can be computed with O(M(n)) operations in F,. We can choose
M(n) = nlognloglogn [36, 5]. The algorithms of Kaltofen & Saunders [21],
based on Wiedemann’s method [41], produce a random vector in the nullspace
of a matrix, using O(n) multiplications of the matrix with vectors, plus O(nM(n))
arithmetic operations. To make their probabilistic analysis work, they have to
assume that the field contains sufficiently many elements, say at least 50n2 logn
many. I F, has too few elements, one has to work over an algebraic field ex-
tension of degree e = [log,(50n?logn)]; this multiplies the running times by a
factor

. [ M(e) ife>2,
(1) b‘{ 1 ife=1

For our situation, let A4 and B in ]F';‘““" be the matrices of the first and
second summands of (1.1), respectively, and identify a vector i € F;"’ with a
polynomial h € Fy[z] of degree less than n, by presenting Fy = F,» by a monic
irreducible polynomial over F, of degree k. Then the entries of Ah and Bh can
be identified with those of fP(h/f)?~") and hP, respectively. The latter can be
calculated by computing n pth powers in F,, with nlog p M(k) operations in [F,.
(Tt might also be interesting to choose a normal basis of F, over F,.)

'lo be precise, we have taken the map h — AP from the set F of polynomials
with degree less than n Lo the set G of polynomials g of degree less than pn with
g’ = 0, and composed it with the linear map given by z — '/ from G to F;
similarly for the other map. Then A + B describes a mapping from F to ¥ in
the standard basis, and A is its nullspace.

We write N(n, p, k) for the number of operations in F,, required to calculate Ah.
One way to do this is to calculate A explicitly, and then apply it to 2. According
to Niederreiter (31, Theorem 1], this can be done with O(n“M(k)) operations
in IF,, where w < 2.376 is an exponent for matrix multiplication, and we assume
that 2 < w for simplicity. This method involves, besides other operations, the
calculation of the Berlekamp matrix. The method we now describe is of interest
only if N(n, p, k) is much smaller than above, say roughly linear in n. This is the
case for p = 2, as explained in Section 4.

A single application of Kaltofen & Saunders’s method [21] can be done with
O(nk - E - (N(n,p,k) + M(nk) + nlogpM(k))) operations in F,. It returns a
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random element of AV, ie.,

U= Z aii_g; € Fylz]

1<i<r F

with a = (a1,...,a,) € F) random. When p = 2, let

va = ged(fiua) = [] s

I€i<r

a, =0

This is a proper factor of f if and only if m = #{i : a; = 0} satisfies 0 < m < r.
This occurs with probability 1 — 27("=Y, When p is odd, let

v = god(f,uf /2 - (£)-113)

By Theorem 2.1 (v), this is a proper factor of f if and only if m = #{i : 0, € §}
satisfies 0 < m < r. This occurs with probability

| —9 (r 1)(1 _p—l)r _p—r‘

which is about 1 —2~"*+! when p is large. The (p—1)/2-th powers modulo f can
be computed in O(M(n) log p) operations in F, or O(M(n) log p M(k)) operations
in Fp. The calculation of the ged can be done with O(M(n)logn) operations in
Fy, or O(M(n)logn M(k)log k) operations in F,. We use nkM(nk) as an upper
bound for the latter.

THEOREM 3.1. Lel p be prime, k € N, ¢ = p* and f € F,|z| of degree n.
Then the above method finds  proper factor of [ with probability at least 1/2,
using an expected number of

O(nk - E - (N(n,p, k) + M(nk) + nlogp M(k)))
operations in Fp, where E is defined in (3.1).

For implementations, the substantial reduction of the space requirement from
n? to O(n) is probably more important than the reduction of the number of
operations.

For small problems, when eflliciency is not an essential concern, one may want
to compute and store explicitly the matrices B and N in F**"* describing B
and N, respectively. In the case p = 2, no computation is necessary for N, and
O(nM(n)) operations in F, are sufficient for B. In both cases, one then computes
a basis for the solution space; the time for this phase will dominate the total
cost. Just as every basis for B is a separaling sel in the sense of Camion [4],
Shoup [37], and von zur Gathen & Shoup [15, Section 9], each basis of A is a
separating set in the sense that each pair (g4, g;) of irreducible factors, with ¢ # j,
is “separated” by some clement h of the basis (i. e., g; divides & —af’ and g; does
not, for some a € IF,), since the transition matrix to the basis of Theorem 2.1
(ii) is nonsingular and thus does not have two identical columns. Then the
usual procedure of refining partial factorizations by successive ged's with h — a
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and h — af’, respectively, yields a complete [actorization. A somewhat more
complicated version of this argument and algorithm is given in [33, 16], yielding
a total of O(nk?® + (nk)* + r2M(n) log nM(k) log k) operations in Fa, where w is
an exponent of matrix multiplication. The running time of both deterministic
algorithms is proportional to p, and can be reduced to O(y/p) ([37] and [39, §1.1]
by computing the ged of f with (h—a)®~1/2—1 and (h—af’)®-1/2_(f)(p-1)/2,
respectively.

Note also that our probabilistic approach reduces the number of clements of
N required from r to only 2logr (random elements). This advantage is reflected
in the analysis of the running time for complete factorization, which is log r times
the estimate in Theorem 3.1.

4. Characteristic two

The algorithm is particularly simple in characteristic two, where q = 2* for
some k € N. Equation (1.1) simplifies to

(4.1) (fR) +h%=0.

Now Bh can be computed with n squarings in F,. For the first summand Ah,
we write

Il

£t (f+2f)Vz)= Y fiz'/? € F,la],

120
i1 EVEeT

= = (V3 =) £282 R [,

izl

i odd

for the “contracted” even and odd parts of f, and similarly A*, A~. Then
f=f*?) +zf~(z?), f'= f~(2?), and
(42)
(fh) = (F7(®) +2f (2?)) - h~(2?) + £~ (z?) - (h*(2?) + zh—(z?))
= TR+ h) et

As Niederreiter [80] points out, there is no sct-up cost for the matrix A, if one
wants it explicitly. From our point of view, (fh)’ can be calculated by two
multiplications of polynomials of degree at most n/2, and the linear operator
in (4.1) can be applied to an h with O(M(n)) operations in Fq, or O(M(nk))
operations in Fy [15, Lemma 2.2].

Furthermore, v, is the product of some g;’s, where each g; is included in
the product with probability 1/2. Thus v, is a “random factor” of f, and the
standard method of producing finer and finer partial factorization by repeated
choice of random factors (see e.g., von zur Gathen & Shoup [15]) shows that with
at most 2 logr applications one can expect to factor f completely. We therefore
have the following result.
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THEOREM 4.1. Let k € N, g = 2% and f € F,|z] of degree n. Then the above
method factors f completely with an expected number of O(nkM(nk)logr - E)
operations in Fy, where r < n is the number of distinct monic irreducible factors
of f, and E is defined in (3.1) with p = 2.

Both in our and Kaltofen’s method, the dominant cost is that of applying
the matrix to various vectors. Tor a single application, both methods need n
squarings in F,—at no cost if ¢ = 2—plus two multiplications of degree n/2
in our case, and one division with remainder by f in the Berlekamp-Kaltofen
approach. The former cost is lower than the latter, by a factor of about two in
fast arithmetic.

The so-called “classical arithmetic” assumes M(n) = n?; it'is an intuitive
modecl, but does not allow a rigorous definition. In this model, a ged caleulation
on polynomials of degree at most n takes O(n?) operations, and the present
factorization method in Fax [2] an expected number of O(n®k® log r- E) operations
inF. If f is a “sparse” polynomial with at most ¢ < n nonzero coefficients, then
each (fh)’ — h? can be calculated with O(nt) operations in Fox. Then we have
to compute the remainder of a polynomial of degree less than 2n modulo f; this
can also be done with O(tn) operations. This leads to a complete factorization
algorithm with O(n%tk®logr - E) operations in F». This secems to be the first
factorization algorithm that has smaller asymptotic running time for sparse (t =
o(n)) polynomials than for arbitrary polynomials. Berlekamp’s algorithm enjoys
the same advantage in this sitnation. Of course, this is mainly of interest when
an O(nt) multiplication algorithm is faster than an FFT-based multiplication,
which seems to restrict it to rather small inputs [38]. The possibility of exploiting
sparseness was observed by Niederreiter & Géttfert [33], in the framework of
fast explicit lincar algebra, where however no specific asymptotic savings can be
proved in our situation.

REMARK 4.1. The trick of (4.2) can be generalized. For p = 3, we write
h = hy(2®) + zh1(23) + 22ha(2*), and similarly for f. Then

FAR/ID)" = (fofz +2f)ho + (fofy + 22° f3)hy + (2° fufa + 2f3)ha.

For p =5, the corresponding expression has 70 terms.

REMARK 4.2. The matriz-vector producl corresponding to the nonzero terms
in (fh) is

In 0 0 0 0
fn_g ‘fﬂ'_ : Jr'”‘ i 0 £ T X T
Tt Jnid Fuid Jaa T = ]Fq £
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After reordering the columns, this becomes the Sylvester matriz of the contracted
even and odd parts of f; this is also obvious from (4.2). It would be inleresting
to see whether subresultant techniques can be applied to this situation.

5. Conclusion

In the design of polynomial factorization algorithms over finite fields there
are several legitimate goals, each of which leads to a yardstick for comparison of
different algorithms. A basic distinction is between

1. theoretical, and

2. practical
results. For “practical” results, one can aim at,

2.a. extending the range of currently feasible problem sizes,

2.b. new algorithms for the currently feasible range.
Clearly, 2.a is more interesting than 2.b. “Practical” claims will often be sup-
ported by actual implementations; the present paper offers nothing in this di-
rection. As to “theoretical” results, the standard is a worst-case analysis. (A
different question is average-casc analysis, where the problem is to choose a con-
vincing input distribution.) The most interesting and powerful results are those
where all algorithmic techniques are allowed. A very basic goal is to achieve
polynomial time.

One can then restrict to special types of algorithms by disallowing certain
techniques. Usually this is done either for practical or for historical considera-
tions:

l.a. Algorithms without restrictions,
L.h. algorithms that disallow:
«. some types of fast arithmetic,
3. probabilistic choice.
As an example of 1.b.q, it seems that “fast explicit” linear algebra, using O(n*)
operations with w < 3, is not practical within current ranges, and so it may be
quite reasonable to work with O(n®) “classical” linear algebra. In applications
such as our factoring problem, both methods are no match for “fast implicit”
probabilistic linear algebra a la Wiedemann, mainly because of memory require-
ments. For polynomial arithmetic, one can either use “classical” O(n?) or “fast”
FFT-based O(nlognloglogn) methods. The “classical” model is intuitive but
has no rigorous definition. The popular belief that “fast” arithmetic is impracti-
cal was disproved, in a sense, by Shoup [38] who showed its superiority already
for degree 25 modulo a 100-bit prime. A popular approach to killing two birds
with one stone is by using some notation such as M(n) in Section 3, into which
the reader can substitute the cost of her favorite polynomial arithmetic.

One is tempted to use a similar notation, say L(A), for the cost of linear

algebra on a matrix A € F**" given implicitly by a “black box”. Thus if the
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product of A with any vector in F™ can be computed with P(A) operations, then

O(nP(A) +n?) with classical linear algebra,
L(A4) = ¢ O(nP(A) + nv) with fast explicit linear algebra,
: O(nP(A) + n*lognloglogn) with fast implicit linear algebra,

where the first summands for the “classical” and “fast explicit” cases correspond
to computing the n* cntries of A by applying A to the unit vectors. Unfortu-
nately, the last line of L(A) has not yet been validated, in that some problems,
such as finding a basis for the nullspace, have not been solved by these methods,
and there is the extra factor E from (3.1) for very small fields. Furthermore,
this will not apply to matrix multiplication, but, at best, to problems like solving
linear equations, computing characteristic or minimal polynomials, and maybe
normal forms.

The restriction 1.b.3 to deterministic algorithms comes from a long tradi-
tion. These algorithms are conceptually simpler than general algorithms (with
probabilistic choice), and the model has a rigorous mathematical definition. We
expand on the history of probabilistic algorithms below. There are several types
of probabilistic algorithms; the ones for factoring polynomials over finite fields
are all of the “Las Vegas” type and in practice as good as deterministic ones.
However, the question of deterministic polynomial-time algorithms for factoring
polynomials over finite fields of large characteristic remains a major theoretical
challenge in the area. There are some results for special fields [1, 13, 24, 26] and
for special polynomials [17, 34, 35], but the most spectacular recent progress is
Evdokimov's algorithm [9] with time (n'°8™ logq)©(!), under the Extended Rie-
mann Hypothesis. It is well recognized that even a complete solution of this
challenge may very well not have any impact on practical algorithms.

What are the implications of Niederreiter’s method —including the observa-
tions presented here—for practical computations? In response to the Polynomial
Factorization Challenge (von zur Gathen [14]), Monagan [27] has shown that
MAPLE can factor a polynomial of degree 200 modulo a prime with 200 bits in a
“routine calculation”, i.e., a day’s time on a current workstation. Such a problem
is given by about 40 000 bits of input, and it is reasonable to ask: can we factor
routinely polynomials of degree 40 000 over Fy? Of degree 100 000? Approaches
using explicit linear algebra seem hopeless. Kaltofen [19] and Diaz et al.[8] re-
port on solving sparse systems of 100 000 linear equations in F3 on a network
of computers, using a Wiedemann approach. An “explicit” approach of storing
such a matrix densely, with over 1 GByte, and operating on it, is infeasible in
practice. Kaltofen & Lobo [20] have factored polynomials of degree 10 001 over
Fy27, corresponding to about 70 000 input bits, in about four days on a network
of eight Sun 4 workstations. Berlekamp’s and Nicderreiter’s matrices have Q(n?)
nonzero eutries for most inputs f. It is not even clear how to use sparseness of
[ to speed up substantially an algorithm like Gaussian elimination. However,
we consider it quite likely that in the not too far future we will routinely solve
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gigantic factorization problems such as the one above.

A drawback of Kaltofen & Saunders’ method [21] is that one has to work
over a field with €2(n? log n) elements, thus requiring an extension of degree about
2log, n if one wants to factor over Fo. We hope that this is just an artifact of our
current state of knowledge, since Wiedemann'’s original algorithm—which does
not solve our problem—and Coppersmith’s variant work [7] also with random
choices from Fz. It would be interesting to see whether this is also possible for
the problem at hand.

Both Berlekamp's (see [12]) and Niederreiter's method can be applied to
polynomials that are not squarefree; Berlekamp’s algorithm yields the primary
factors, the maximal powers of irreducible polynomial divisors. It is not clear
to us whether or not this is preferable to starting with the squarefree part of
an arbitrary input polynomial. The latter is easily calculated, at not much
more cost than a ged (see [42]), and the more costly general algorithms will be
applied to a smaller input. When there is a reason to suspect the presence of
small factors, as is the case for random inputs, it may be interesting to extract
these by an efficient distinct-degree procedure (as in [15]) that computes the ged
with 29" — z for small i, say i < logn or i« < \/n. Then one has problems of
two different types: small degree with many factors, and large degree with few
factors. For the latter, say with r factors, the difference between r and 2logr
might not be too large any more. This approach will not be fruitful when the
input has special structure, as will usually be the case when it is produced by
some resultant or norm computation.

Some parts of Niederreiter’s algorithm work for arbitrary fields of positive
characteristic [28]. We only discuss finite fields here. One reason is that over
sufficiently general “computable” fields, without some restriction such as per-
fectness, even the question of squarefreeness is undecidable [11, 5.10].

We conclude with some philosophical remarks about probabilistic algorithms.
Their introduction in the mid-70’s amounted to a “scientific revolution™ [22] in
Computer Science, though Monte Carlo methods in numerical computing had
been used since the 1940's. Berlekamp’s (1970) algorithm for factoring polynomi-
als over finite fields of large characteristic was the first instance where they solved
a problem probabilistically in polynomial time that has no such deterministic so-
lution (until today!). Unfortunately, the fundamental importance of Berlekamp's
methodology was not generally recognized, and the technique only gained pop-
ular acceptance when Solovay & Strassen [40] applied it to the more intuitive
problem of testing integers for primality. Today they are ubiquitous in algorithm
design, where they arc often either (exponentially) more efficient or much easier
to program than deterministic algorithms. The probabilistic methods discussed
here are of the “Las Vegas” type genius loci-and return either “failure” or the
correction answer. For probabilistically solved problems, it remains a theoretical
challenge to see whether they can also be solved deterministically without too
much loss in efficiency. Neither for implicit linear algebra nor for factoring in
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large characteristic are such solutions in sight.

From a practical point of view, the fairest comparison of an algorithm’s ef-
ficiency is to the best known algorithms, as in 1.a, for the problem at hand.
(Besides methods based on lincar algebra, the competition here are the algo-
rithms of Cantor & Zassenhaus [6] and von zur Gathen & Shoup [15].) We have
to wait for careful and comparable implementations to see which method per-
forms best for which range of inputs. Several new ideas have emerged recently,
and exciting times lie ahead for the polynomial factorizer.

Acknowledgement. Many thanks go to Erich Kaltofen and Harald Niederreiter
for useful discussions on polynomial factorization, and to Jiirgen Gerhard for
correcting an error in one of our estimates.
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