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Factorization of polynomials, factoring polyno-
mials — Since C.F. Gauss it is known that an arbitrary
olynomial over a field or over the integers can be
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factored into irreducible factors, essentially uniquely (cf.
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lso Factorial ring). For an efficient version of Gauss’
theorem, one asks to find these factors algorithmically,
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nd to devise such algorithms with low cost.

Based on a precocious uncomputability result in [13],
ne can construct sufficiently bizarre (but still ‘com-
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putable’) fields over which even square-freeness of poly-
pomials is undecidable in the sense of A.M. Turing (cf.
also Undecidability; Turing machine). But for the
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fields of practical interest, there are algorithms that per-
form extremely well, both in theory and practice. Of
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E’dzstmct degree factorization
equal-degree factorization
Legendre symbol

‘soft O’— soft O

Hensel lifting
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— x is the product of all monic ir-
reducible polynomials in F[z] whose degree divides d.
Thus, fi = ged(z? — z, f) is the product of all linear
factors of f; next, fo = gcd(a:q2 —x, f/f1) consists of
all quadratic factors, and so on. This yields the distinct-
degree factorization (f1, fa,...) of f.

The equal-degree factorization step splits any of the
resulting factors f;. This is only necessary if deg f; > 1.
Since all irreducible factors of f; have degree i, the al-
gebra R; = F,[z]/(f;) is a direct product of (at least
two) copies of F:. A random element a of R; is likely
to have Legendre symbol +1 in some and —1 in other
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copies; then ged (cz(qi’l)/2 -1, fl) is a non-trivial fac-
tor of f;. To describe the cost of these methods, one uses
fast arithmetic, so that polynomials over F, of degree
up to n can be multiplied with O(nlognloglogn) op-

auss’ theorem— Gauss theorem on products of monic irreducible polynomials
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g‘ézcourse factorization of integers and thus also in Z[z] erations in F, or O™ (n) for short, where the so-called
giremalns difficult; much of cryptography (cf. Cryptel- ‘soft O’ hides factors that are logarithmic in n. Further-
: pgy) is based on the belief that it will remain so. The . ¢ i ltinlicati ith
%% factoring univariate nolvnomials over more, w is an exponent for matrix multiplication, wi
52 a:ie c:?seéoil(;:e;‘ns ach gl hp Y the current (in 2000) world record w < 2.376, from [4].
z@ finite fie wit elements, where ¢ is a prime . .

@E@ A first st 3 o th tq | P | All algorithms first compute x? modulo f, with

o g Power. rst step is to make the input polynomia O~(nlogq) operations in F;. One can show that in

2 ff € Fy[z], of degree n, square-free. This is easy to do by an appropriate model, (log ¢) operations are necessar
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g ;} omputing ged(f, f/ p y &P even for n = 2. The further cost is as follows:

J £ xoots, where p = charF,. The main tool of all algo-

%é"?lthms is the Frobemus automorphism o: R - R F 21/ (/) a5 Cost in O~

O|§ :g) n the F-algebra R = F,[z]/(f). The pioneering algo- Berlekamp F,-vector space n¥

§ gzrlthms are due to E.R. Berlekamp [1] [2] who represents Cantor—Zassenhaus multiplicative semi-group n?loggq
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Sf of R. A second approach, due to D. G Cantor and H. Table 1

" £ Zassenhaus [3], is to compute o by repeated squaring. For small fields, even better algorithms exist.
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g%’ aises the so-called polynomial representation of o as its ~ The central tool is Hensel lifting, which lifts a factor-
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one modulo a large power p* of p. Irreducible factors of
f will usually factor modulo p, according to the Cheb-
otarev density theorem. One can then try various
factor combinations of the irreducible factors modulo
p* to recover a true factor in Q[z]. This works quite
well in practice, at least for polynomials of moderate
degree, but uses exponential time on some inputs (for
example, on the Swinnerton-Dyer polynomials). In a cel-
ebrated paper, A.K. Lenstra, H-W. Lenstra, Jr. and L.
Lovész [11] introduced basis reduction of integer lattices
(cf. LLL basis reduction method), and applied this
to obtain a polynomial-time algorithm. Their reduction
method has since found many applications, notably in
cryptanalysis (cf. also Cryptology). A method in [9]
promises an even faster factorizing method.

The next tasks are bivariate polynomials. It can be
solved in a similar fashion, with Hensel lifting, say, mod-
ulo one variable, and an appropriate version of basis re-
duction, which is easy in this case. Algebraic extensions
of the ground field are handled similarly.

Multivariate polynomials pose a new type of problem:
how to represent them? The dense representation, where
each term up to the degree is written out, is often too
long. One would like to work with the sparse representa-
tion, using only the non-zero coefficients. The methods
discussed above can be adapted and work reasonably
well on many examples, but no guarantees of polyno-
mial time are given. Two new ingredients are required.
The first are efficient versions (due to E. Kaltofen and
von zur Gathen) of Hilbert’s irreducibility theorem (cf.
also Hilbert theorem). These versions say that if one
reduces many to two variables with a certain type of
random linear substitution, then each irreducible factor
is very likely to remain irreducible. The second ingredi-
ent is an even more concise representation, namely by
a black box which returns the polynomial’s value at any
requested point. A highlight of this theory is the random
polynomial-time factorization method in [10].

Chebotarev density theorem

Swinnerton-Dyer polynomials— Swinnerton-Dyer polynomial
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Each major computer algebra system has some vari-
ant of these methods implemented. Special-purpose soft-
ware can factor huge polynomials, for example of degree
more than one million over Fs. Several textbooks de-
scribe the details of some of these methods, e.g. [8], [12],
51, [14].

Factorization of polynomials modulo a composite
number presents some surprises, such as the possibil-
ity of exponentially many irreducible factors, which can
nevertheless be determined in polynomial time, in an
appropriate data structure,; see [6].

For a historical perspective, note that the basic
idea of equal-degree factorization was known to A.M.
Legendre, while Gauss had found, around 1798, the
distinct-degree factorization algorithm and Hensel lift-
ing. They were to form part of the eighth chapter of his
‘Disquisitiones Arithmeticae’, but only seven got pub-
lished, due to lack of funding.
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