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Carl Friedrich Gauf} proved that (multivariate) polynomials over a field or over
the integers form a Unique Factorization Domain. The computational version
of this fundamental result asks for an algorithm which, given a polynomial as
input, finds its irreducible factors. And the complexity-theoretic version asks
to do this as efficiently as possible. This question and its answers form one of
the successful areas of computer algebra.

An easy kind of factorization is to calculate the greatest common divisor
(ged) of two polynomials. Euclid’s algorithm—the granddaddy of all algorithms
(Knuth (1981), p. 318)—does this for univariate polynomials over a field. It
has numerous applications, for example in the Chinese Remainder Algorithm,
for modular arithmetic and computation in algebraic extensions, in coding
theory (Berlekamp-Massey algorithm), and for fast linear algebra on “sparse”
matrices. The theory of subresultants gives important structural insights and
leads to efficient algorithms, for example the modular methods for integer and
for multivariate polynomials.

If f1,...,f. are the distinct irreducible monic factors of f = f{*--- ffr €
Flz] over a field F, then f - -- f, is the squarefree part of f. It can be computed
as f/ged(f, f') in characteristic zero, while in characteristic p > 0, also pth
roots have to be extracted. This is easy over all fields of practical interest, such
as finite fields or function fields over them, but there are sufficiently bizarre
(but still “computable”) fields over which squarefreeness is undecidable, in the
sense of Turing. The squarefree part is useful in the symbolic integration of
rational functions.

Algorithms for the factorization of polynomials are built in a hierarchical
way: One starts with univariate polynomials over finite fields, then over QQ, and
then over algebraic extensions and of multivariate polynomials.

The first modern factorization methods for f € F,[z] of degree n, where F,
is a finite field with ¢ elements, are due to Berlekamp. His motivation came
from coding theory, and he found an algorithm based on linear algebra that
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uses O~ (n® 4+ nq) operations in F,. Here, the “soft Oh” notation O~ means
that we ignore factors of logn. This is ok for small ¢, such as ¢ = 2, which is
particularly important in coding theory. But for large ¢, this is not polynomial
in the “input length” nlogqg of f. A milestone was Berlekamp’s invention
of a polynomial time algorithm, using O~ (n?® + nlogq) operations. This is a
probabilistic algorithm of Las Vegas type, whose output is always correct but
whose running time is a random variable whose mean is given above.

A decade later, Cantor and Zassenhaus presented an algorithm which pro-
ceeds in two stages. In the distinct-degree factorization stage, the (squarefree)
input is factored into a product of polynomials each of whose irreducible factors
has the same degree. This is achieved by taking the ged with g; = 29 — 2 for
1=1,2,...,and based on the fact that g; is the product of all monic irreducible
polynomials in F,[z] whose degree divides i. This fact, and the squarefree and
the distinct-degree factorization are in Gau’ Nachlaf (posthumous works).

The second equal-degree factorization stage factors a polynomial all of whose
irreducible factors have the same degree. This is done by a probabilistic algo-
rithm, the rudiments of which can already be found in Legendre’s work. It
remains an open question for the theory whether this can be achieved deter-
ministically in polynomial time.

These algorithms have been improved in the 1990’s and there is now a va-
riety of algorithms which are optimal in a specific range of the proportion of
degree n to field length logq. The corresponding software can attack enor-
mously large problems; in 2000, polynomials of degree one million (over Fy)
can be factored.

The next task is to factor integer polynomials. Gauf3’ Lemma reduces this
to factoring in Q[z] and in Z. The latter seems computationally hard (at
our state of knowledge). Zassenhaus’ algorithm for factoring in Q[z] works by
first factoring modulo a (small) prime p, then applying Hensel lifting to get
a factorization modulo a sufficiently large power of p, and finally trying out
all combinations of the modulo factors to find the true factors. This works
well for small inputs but uses exponential time. Lenstra, Lenstra and Lovasz
gave an efficient algorithm to find “short” vectors in integer lattices. Among
many other computational applications, this also provides a polynomial-time
algorithm for factoring in Q[z].

The next task are bivariate polynomials. Again, a judicious application
of modular factorization, Hensel lifting, and an (efficient) factor combination
yields an efficient factorization algorithm. Factorization over algebraic exten-
sions can be handled in a similar way.

For polynomials in more than two variables, one may apply the same tech-
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nology. However, the input length of the dense representation of polynomials,
where the coefficient of each term up to the degree has to be specified, grows too
quickly in size. It is more desirable to use concise forms such as the sparse rep-
resentation, where only the nonzero coefficients are given. It is a remarkable
achievement, mainly due to Kaltofen, to factor polynomials probabilistically
in time polynomial in the input length for even more concise representations,
namely by arithmetic circuits (a.k.a. straight-line programs) or by black bozes.
The main ingredient are efficient versions of Hilbert’s irreducibility theorem,
as proved by Kaltofen and this author.

Factorizaton in Z,,[z|, for m € N, exhibits a number of unusual properties.
For example, there are polynomials with exponentially many factorizations into
irreducible polynomials, but these can all be represented by a polynomial-sized
data structure.

Detailed discussions, references, and reports on implementations can be
found in von zur Gathen & Gerhard (1999).

The composition of two univariate polynomials g, h € Fx] is go = g(h) €
Flz]. In the decomposition problem, we are given f € F[z] and ask whether
there exist g,h € Flz] so that f = go h and 2 < degg < deg f. The first
polynomial-time algorithm was presented by Kozen und Landau in 1986, and
the fastest one, by this author, uses O(nlog® nloglogn) operations in F, where
n = deg f and r = degg is prescribed, with char F' t r (the so-called tame
case). Ritt showed in 1922 that such decompositions are essentially unique.
Many generalizations have been studied: rational functions by Zippel, algebraic
functions by Kozen, Landau, and Zippel, and multivariate decompositions by
several authors. The problem has important applications in the simplification
of parametrizations of algebraic curves and of the inverse kinematic equations
in robotics.
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