
FACTORIZATION AND DECOMPOSITIONOF POLYNOMIALSArti
le for the Handbook of the Core of AlgebraJoa
him von zur GathenJune 15, 2000Carl Friedri
h Gau� proved that (multivariate) polynomials over a �eld or overthe integers form a Unique Fa
torization Domain. The 
omputational versionof this fundamental result asks for an algorithm whi
h, given a polynomial asinput, �nds its irredu
ible fa
tors. And the 
omplexity-theoreti
 version asksto do this as eÆ
iently as possible. This question and its answers form one ofthe su

essful areas of 
omputer algebra.An easy kind of fa
torization is to 
al
ulate the greatest 
ommon divisor(g
d) of two polynomials. Eu
lid's algorithm|the granddaddy of all algorithms(Knuth (1981), p. 318)|does this for univariate polynomials over a �eld. Ithas numerous appli
ations, for example in the Chinese Remainder Algorithm,for modular arithmeti
 and 
omputation in algebrai
 extensions, in 
odingtheory (Berlekamp-Massey algorithm), and for fast linear algebra on \sparse"matri
es. The theory of subresultants gives important stru
tural insights andleads to eÆ
ient algorithms, for example the modular methods for integer andfor multivariate polynomials.If f1; : : : ; fr are the distin
t irredu
ible moni
 fa
tors of f = f e11 � � � f err 2F [x℄ over a �eld F , then f1 � � � fr is the squarefree part of f . It 
an be 
omputedas f= g
d(f; f 0) in 
hara
teristi
 zero, while in 
hara
teristi
 p > 0, also pthroots have to be extra
ted. This is easy over all �elds of pra
ti
al interest, su
has �nite �elds or fun
tion �elds over them, but there are suÆ
iently bizarre(but still \
omputable") �elds over whi
h squarefreeness is unde
idable, in thesense of Turing. The squarefree part is useful in the symboli
 integration ofrational fun
tions.Algorithms for the fa
torization of polynomials are built in a hierar
hi
alway: One starts with univariate polynomials over �nite �elds, then over Q , andthen over algebrai
 extensions and of multivariate polynomials.The �rst modern fa
torization methods for f 2 Fq [x℄ of degree n, where Fqis a �nite �eld with q elements, are due to Berlekamp. His motivation 
amefrom 
oding theory, and he found an algorithm based on linear algebra that
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2 Joa
him von zur Gathenuses O�(n3 + nq) operations in Fq . Here, the \soft Oh" notation O� meansthat we ignore fa
tors of logn. This is ok for small q, su
h as q = 2, whi
h isparti
ularly important in 
oding theory. But for large q, this is not polynomialin the \input length" n log q of f . A milestone was Berlekamp's inventionof a polynomial time algorithm, using O�(n3 + n log q) operations. This is aprobabilisti
 algorithm of Las Vegas type, whose output is always 
orre
t butwhose running time is a random variable whose mean is given above.A de
ade later, Cantor and Zassenhaus presented an algorithm whi
h pro-
eeds in two stages. In the distin
t-degree fa
torization stage, the (squarefree)input is fa
tored into a produ
t of polynomials ea
h of whose irredu
ible fa
torshas the same degree. This is a
hieved by taking the g
d with gi = xqi � x fori = 1; 2; : : : ; and based on the fa
t that gi is the produ
t of all moni
 irredu
iblepolynomials in Fq [x℄ whose degree divides i. This fa
t, and the squarefree andthe distin
t-degree fa
torization are in Gau�' Na
hla� (posthumous works).The se
ond equal-degree fa
torization stage fa
tors a polynomial all of whoseirredu
ible fa
tors have the same degree. This is done by a probabilisti
 algo-rithm, the rudiments of whi
h 
an already be found in Legendre's work. Itremains an open question for the theory whether this 
an be a
hieved deter-ministi
ally in polynomial time.These algorithms have been improved in the 1990's and there is now a va-riety of algorithms whi
h are optimal in a spe
i�
 range of the proportion ofdegree n to �eld length log q. The 
orresponding software 
an atta
k enor-mously large problems; in 2000, polynomials of degree one million (over F2)
an be fa
tored.The next task is to fa
tor integer polynomials. Gau�' Lemma redu
es thisto fa
toring in Q [x℄ and in Z. The latter seems 
omputationally hard (atour state of knowledge). Zassenhaus' algorithm for fa
toring in Q [x℄ works by�rst fa
toring modulo a (small) prime p, then applying Hensel lifting to geta fa
torization modulo a suÆ
iently large power of p, and �nally trying outall 
ombinations of the modulo fa
tors to �nd the true fa
tors. This workswell for small inputs but uses exponential time. Lenstra, Lenstra and Lov�aszgave an eÆ
ient algorithm to �nd \short" ve
tors in integer latti
es. Amongmany other 
omputational appli
ations, this also provides a polynomial-timealgorithm for fa
toring in Q [x℄.The next task are bivariate polynomials. Again, a judi
ious appli
ationof modular fa
torization, Hensel lifting, and an (eÆ
ient) fa
tor 
ombinationyields an eÆ
ient fa
torization algorithm. Fa
torization over algebrai
 exten-sions 
an be handled in a similar way.For polynomials in more than two variables, one may apply the same te
h-



Fa
torization and de
omposition of polynomials 3nology. However, the input length of the dense representation of polynomials,where the 
oeÆ
ient of ea
h term up to the degree has to be spe
i�ed, grows tooqui
kly in size. It is more desirable to use 
on
ise forms su
h as the sparse rep-resentation, where only the nonzero 
oeÆ
ients are given. It is a remarkablea
hievement, mainly due to Kaltofen, to fa
tor polynomials probabilisti
allyin time polynomial in the input length for even more 
on
ise representations,namely by arithmeti
 
ir
uits (a.k.a. straight-line programs) or by bla
k boxes.The main ingredient are eÆ
ient versions of Hilbert's irredu
ibility theorem,as proved by Kaltofen and this author.Fa
torizaton in Zm[x℄, for m 2 N , exhibits a number of unusual properties.For example, there are polynomials with exponentially many fa
torizations intoirredu
ible polynomials, but these 
an all be represented by a polynomial-sizeddata stru
ture.Detailed dis
ussions, referen
es, and reports on implementations 
an befound in von zur Gathen & Gerhard (1999).The 
omposition of two univariate polynomials g; h 2 F [x℄ is gÆ = g(h) 2F [x℄. In the de
omposition problem, we are given f 2 F [x℄ and ask whetherthere exist g; h 2 F [x℄ so that f = g Æ h and 2 � deg g < deg f . The �rstpolynomial-time algorithm was presented by Kozen und Landau in 1986, andthe fastest one, by this author, uses O(n log2 n log logn) operations in F , wheren = deg f and r = deg g is pres
ribed, with 
har F - r (the so-
alled tame
ase). Ritt showed in 1922 that su
h de
ompositions are essentially unique.Many generalizations have been studied: rational fun
tions by Zippel, algebrai
fun
tions by Kozen, Landau, and Zippel, and multivariate de
ompositions byseveral authors. The problem has important appli
ations in the simpli�
ationof parametrizations of algebrai
 
urves and of the inverse kinemati
 equationsin roboti
s. Referen
esJoa
him von zur Gathen & J�urgen Gerhard (1999). Modern Computer Alge-bra. Cambridge, UK.Donald E. Knuth (1981). The Art of Computer Programming, vol.2, Seminumer-i
al Algorithms. Reading MA, 2nd edition.
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