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1. INTRODUCTION

Trinomials are polynomials with three nonzero terms. Their computational ad-
vantages have frequently been pointed out. Ben-Or (1981) writes: In order to make
residue computation mod g(z) easier one looks for special types of irreducible poly-
nomials such as g(x) = 2" +z+a, a € Zjp. In cryptography, Canteaut & Filiol (2001)
attack some stream ciphers via the factorization of trinomials, and trinomials have
been used as a highly efficient data structure for representing nonprime finite fields
in exponentiation and discrete logarithm computations (Schroeppel et al. 1995,
von zur Gathen & Nocker 2002). Schroeppel et al. (1995) write: The irreducible
trinomial T'(u) has a structure that makes it a pleasant choice for representing
the field, and De Win et al. (1996): The reduction operation can be speeded up
even further if an irreducible trinomial is used. Menezes et al. (1997), §5.4.2, say
that choosing an irreducible trinomial [...] can lead to a faster implementation
of the field arithmetic. They now form part of the IEEE Standard Specifications
for Public-Key Cryptography: The reduction of polynomials modulo p(t) is par-
ticularly efficient if p(t) has a small number of terms. [...] Thus, it is a common
practice to choose a trinomial for the field polynomial, provided that one exists. If
an irreducible trinomial of degree m does not exist, then the next best polynomials
are the pentanomials (IEEE (2000), A.3.4, p. 80).

Trinomials over finite fields also occur in other application areas. They are used
for characterization and construction of almost perfect non-linear mappings (Carlet
et al. (1998), Helleseth et al. (1999)) and of orthogonal arrays (Munemasa (1998)).
They are related to words of weight 3 and the minimal distance of certain cyclic
codes (Charpin et al. (1997), Charpin et al. (1999)) and yield linearly recurrent
sequences with special properties (Goldstein & Zierler (1968), Golomb & Gong
(1999)).

The bulk of this literature deals with F» as the ground field, but Albert (1957)
deals with general finite fields, and F5 occurs in Charpin et al. (1999) and Helleseth
et al. (1999). Special trinomials arise in connection with the additive version of
Hilbert’s Theorem 90. As an example, 29 — & — a € Fy[z] is irreducible for any
a € Fy, and if a is a root of it, then 29 — z — aa?™! is irreducible in F,(a)[z];
see Ore (1934) and Kaplansky (1972), Theorems 32 and 52. The degrees of the
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irreducible factors of 229" ! + z9"~! + 1 and of z(¢"*1V/2 4+ ax + b in F,[z] are
studied in Carlitz (1970) and Estes & Kojima (1996), respectively.

The main results here give a necessary (but not sufficient) condition for irre-
ducibility of trinomials over a finite field F,, and its application to ¢ = 3 (Theorems
4 and 8). Somewhat to our surprise, the experiments in Fz[z] (see section 5) did
not find any irreducible trinomial in some classes where the theory allows them.

A classical result of Stickelberger (1897) determines the parity of the number of
irreducible factors of a squarefree polynomial in terms of the quadratic character
of its discriminant. This was taken up by Dalen (1955), and Swan (1962) provides
a simple formula for the discriminant of a trinomial. See also Golomb (1967),
Chapter 5, and Berlekamp (1968), Section 6.6. Loidreau (2000) has applied this to
trinomials " + z* + 1 € F3[z] and found congruences for n and k which, together
with the number of times that 2 divides n and k, characterize the property of
being squarefree and having an odd number of irreducible factors. Any irreducible
polynomial enjoys this property, but not vice versa.

Based on Swan’s results, we show by a different approach that indeed the prop-
erty depends only on the residues of n, k,n1, and k; modulo certain numbers which
are determined by the field size, where n; and k; are n and k, respectively, divided
by ged(n, k). Although these congruences characterize the stated property exactly,
they give, of course, only a necessary condition for irreducibility. In fact, some of
the congruence classes contain only reducible polynomials. Applying this to Fs, we
find a short list of small trinomials whose factorization is sufficient to completely
characterize the property.

These factorizations take a few seconds on a workstation, once programmed.
They even can, in principle, be checked by hand. However, the advantage of dele-
gating the tedious checking of case by case to a machine is underlined by the fact
that we found three corrections to Loidreau’s handcrafted table.

The table plus three easy simplifications, namely reversal, the substitution of
—x for x, and the recognition of “systematic” linear factors, reduce the work for
listing all irreducible trinomials of a given degree to about 8.2% of the number of
test polynomials if we checked each trinomial.

For 2 < n < 1500, we found irreducible trinomials for all but 220 values. For
these exceptions, irreducible quadrinomials were found. It is conjectured that irre-
ducible polynomials with at most four terms exist in Fg[z] for all degrees and all
q=>3.

Some of our experimental findings defy explanation (by this author, at least).
The probability p of being irreducible for uniformly random monic polynomials
in F3[z] of degree at most 1500 is about 1/1500 (see below). But for a random
trinomial, it is larger than 4p, and over 6p in Fy[z]. On the other hand, there are
some congruence classes in which our theory allows irreducible polynomials, but
where there are none (in the range of our experiments).

In characteristic 2, the property is nicely described by the results of Vishne
(1997). It is interesting to note that a similar result holds over Q in a special case:
Selmer (1956) shows that 2™ +xz +1 is irreducible in Q[z] if and only if n # 2 mod 3.

An Extended Abstract of this work has appeared in the Proceedings ACM ISSAC
2001, editor Bernard Mourrain, pp. 332-336.
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2. SWAN’S CONDITION

We fix the following notation.

n >k > 1 are integers, ¢ is a power of the odd prime p, a,b € F,

(1) f=a"+az* + b € Fy[z], r is the number of irreducible factors of
fin F,[z], D € Fy its discriminant, d = ged(n, k), n1 = n/d, and
ki =k/d.

The following two results from Swan (1962) are fundamental for our question.

Fact 2 (Swan 1962). In the above notation, we have the following for odd q.

(i) If f is squarefree, then r = n mod 2 if and only if D is a square in Fy,
(11) D= (_1)n(n—1)/2 Lpk—1. (nnl pri—ki _ (_l)nl (’I’L _ k,)n1—k1 Kk an1)d_

As Swan mentions, (i) goes back to Stickelberger (1897). It provides a necessary
condition for irreducibility, and is, in fact, originally due to Pellet (1878). Dickson
(1906) proves this fact, apparently without being aware of the previous work.

On our way to studying irreducibility, the following more general “Stickelberger”
property of f € F[z] is of central interest:

(S) f is squarefree and has an odd number of irreducible factors.

Corollary 3. In the above notation, we have for odd ¢

f has property (S) <= D(~D/2 = (_1)nt1,

Proof. It is well-known that f is squarefree if and only if D # 0. Now we assume
that D # 0. Then D is a square if and only if D¢~1/2 =1, and

rodd <= (nis odd and DY"Y/2 = 1) or (n is even and D"V/2 = _1). O

We denote by vy(m) the multiplicity of a prime £ in any nonzero integer m. The
following is the main result of this paper.

Theorem 4. Let g be a power of the odd prime p, f = 2™ +ax* +b with a,b € Fy,
n>k>1,d=ged(n,k),n1 =n/d, k1 = k/d, my = p-(g—1), and mq = lem(4,mz).
Then the discriminant of f and property (S) depend only on the following residues:

n mod my, k mod ms, ny and k; mod ¢ — 1.

Proof. We let D = disc(f) € F,. Also, we let n*, k* be two further integers with
n* > k* > 1,7* be the number of irreducible factors of " + az*" + b in F,[z], D*
its discriminant and d*,n}, and k7 analogous to the quantities defined above. We
suppose furthermore that n = n* mod my, £ = k* mod m2,n; = nj mod (¢ — 1),
and ki = kf mod (¢ — 1). The claim of the theorem is that D = D* and, if D # 0,
that r = r* mod 2.

By Fermat’s Little Theorem, we have c¢* = ¢” for any ¢ € F; and positive integers
u,v with u = v mod ¢ — 1. Tt follows that the first two factors in Fact 2(ii) for D
equal those in D*. Furthermore, n = n* mod p and k¥ = k* mod p, and all the
exponents in the third factor in D equal modulo ¢ — 1 their analogues in D*. (We
note that all these exponents are positive integers.) It is now sufficient to show that
d = d* mod g — 1; then D = D*, and Fact 2 (i) implies the second claim.
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Let £ be a prime divisor of ¢ — 1, and A = vy(q — 1), pu = ve(d), p* = ve(d*). If
> A, then n* =n = 0mod £* and k* = k = 0 mod £* imply that p* > X. Now
we suppose that g < A. Then p equals at least one of v,(n) and v,(k). We assume
that g = v¢(n); the other case is analogous. Now n; = n/d is a unit modulo £*,
and so is ny =ny mod £*. Thus we have

d:izn—:d*modﬁk.

n1 ny

Since this holds for any prime power divisor £* of ¢ — 1, we conclude that d =
d* mod q — 1. a

Our assumptions imply that the actual value of D is fixed, while it would be suf-
ficient to fix its quadratic character. But we do not see an interesting way of
weakening the assumptions accordingly.

In the case p = 2, one may assume (using reversion, as below) that exactly one
of n and k is even. Then in the last factor of Swan’s formula for D, one of the
two summands vanishes. This simplifies things considerably, and Vishne (1997)
has given a complete characterization of trinomials with property (S) in this case.
Cazacu & Simovici (1973) deal with roots of special trinomials in characteristic 2.

3. TWO SYMMETRIES
Let s,kg =0 < k1 < --- < ks_1 = n be nonnegative integers, and
S={ > ai": alla; €F},a, =1} CF,[a]
0<i<s

be the set of monic polynomials with support {ko,...,ks_1}. Each f € S is s-
sparse, and its monic reversal f = ag'z"f(z7!) = ag' Y cic, @itk is also
s-sparse. Squarefreeness and the number of irreducible factors are preserved under
this transformation.

For u € F and f € S, we set f, = u™"f(ux). Then f, € S, and u+ (f = fu)

is a group action of F* on S. Again, this preserves squarefreeness and the number
of irreducible factors.

Theorem 5. In the above notation, let g = ged(q — 1,k1,...,ks—1). Then each
orbit of the action of F has size (¢ —1)/g.

Proof. We let z € Fy be a primitive element of the multiplicative group, f € S,
and j € N. Then we have

f=fi <= Z agzki = z7In Z ai(z/ )k

0<i<s 0<i<s

qg—1 . g—1 .
— | ged(f, g — 1) <= — .
g g

= 1=z7Ingk = (k" foralli < s
<~ ord (2)|n—k;foralli<s
< ord (27)|k; foralli< s
g—-1 ;
&< —— = ord (¥’ d(g—1,k1,...,ks—1) =
ng(],q_l) or (Z )lgc (q y V1 5 fvs 1) g
<~

The last condition does not depend on f.
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It follows that the kernel of the action is generated by 2(4=1)/9 and has g elements.
Therefore each orbit has precisely (¢ — 1)/g elements. O

As indicated below, several types of polynomials have property (S) but do not
contain irreducible polynomials, because each member has a root in ;. We might
hope to rule out further types by finding roots in extensions of F,. But the following
result shows that this does not work.

Lemma 6. Let g be a power of the prime p, f € Fy[x], 8 in some algebraic exten-
sion of Fy, and 3 # 0 .

(i) Let ko and m be nonnegative integers with m > 1 and f(8) + gketim =0
for all i > 0, and m' = m/p"»(™. Then g™ =1.
(ii) If furthermore m = my = p(q — 1) as in Theorem 4, then 3 € F,.

Proof. (i) It is sufficient to take ¢ = 0 and ¢ = 1, subtract the two equations
and factor out % to obtain g™ = 1. If e is the degree of F,(3) over F, and
Jj = [vp(m)/e], then by Fermat’s Little Theorem in F, (3)

g = (g = g =,
(ii) The first part implies that 47! = 1. O

4. THE SPECIAL CASE [

The search for irreducible trinomials in F3[z] was the starting point for this
work. This may be considered a worthwhile goal in itself. The special motivation
for us is that irreducible trinomials furnish a representation of non-prime finite
fields which is particularly efficient for exponentiation, which in turn is the primary
operation in several cryptosystems; see von zur Gathen & Nocker (1997), Gao et al.
(2000), von zur Gathen & Nocker (2002). In the last paper, 4(n) is defined as the
minimal number of terms in irreducible polynomials of degree n in F,[z], and it is
conjectured that for all n > 1, g2(n) < 5, and og4(n) < 4 for ¢ > 3. The conjecture
has been verified for ¢ = 2 and n < 10000; see Golomb (1967), chapter 5, Zierler &
Brillhart (1969), Zierler (1970), Fredricksen & Wisniewski (1981), von zur Gathen
& Nocker (2002). The experiments reported in this paper show its truth for ¢ = 3
and n < 1500.

We set

(7) s =(ny mod 2, k; mod 2), where n; = n/ged(n, k), k1 = k/ged(n, k).

Using a concise notation, s can take the three values 11,10, and 01, since n; and
k1 are not both even.

Theorem 8. Let f = 2™ + 2% + 1 € F3[x] be a trinomial.

(i) f has property (S) if and only if the value of k mod 6 appears in Table 1,
in column f and row n mod 12, possibly with a condition on s.

(ii) If f is irreducible, then the value of k mod 6 appears non-italicized in Table
1.

Proof. We have 12-6-3 = 216 values of (n, k, s) to consider for each form of f. Some
simplifications are possible. We assume that n = n* mod 12 and k& = k* mod 6.
If n is odd, then vy(n) = va(n*) = 0, and v»(k) > 0 if and only if vy (k*) > 0.
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nmod12 | z” +zF + 1 " + k-1 " —zk +1 " —zk—1

0 — 2,4 — 2,4

1 0,1,3,4 0,1,3,4 0,1,3,4 0,1,3,4

2 0,2,8,5 1 0,2,8,4,5 1

3 4,5 2,5 1,2 1,4

4 — 0,1,3,4,(2;01,10) — 0,1,3,4,(2;01,11)
5 — 4 1,4 1

6 1,2,4,5 1,5 1,2,4,5 1,5

7 — 2 2,5 5

8 — 0,2,3,5,(4;01,10) — 0,2,3,5,(4;01,11)
9 1,2 1,4 4,5 2,5

10 0,1,3,4 5 0,1,2,3,4 5

11 0,2,8,5 0,2,8,5 0,2,3,5 0,2,3,5

TABLE 1. The values of k mod 6 for which the polynomial in F3[z]
at the column head with 1 < k < n has property (S). The entry
(2;01,10) means that ¥k = 2mod 6 and s = 01 or s = 10 are
possible. Values in italics correspond to reducible polynomials.

Thus s = s*. Similarly, if k£ is odd, then s = s*. In these 54 cases, there is only
one relevant value of s. If n = 2 mod 4 and % is even, then v3(n) = 1 and vy (k),
v2(k*) > 1, so that s,s* € {11,10}. In these 9 cases, there are two values of s, and in
the remaining nine cases, three values of s. The total comes to 54-1+9-2+9-3 =99
possibilities for (n, k, s). Then we factor 99 - 4 polynomials, one for each case, on
a computer algebra system. (Each of them takes only seconds on a workstation.)
The value is entered into Table 1 if and only if the test polynomial has property
(S). Finally, we put those values in italics where the polynomial has 1 or —1 as a
root, namely the whole column z" + z*F + 1 with 24 entries, and 18 further cases
with the factor z — 1.

Now for an arbitrary trinomial f = 2™ + z* £+ 1 over F3, Theorem 4 guarantees
that our test polynomial for (n mod 12,k mod 6, s) has property (5) if and only if
f has it, and then the corresponding value appears in the table. O

It is no surprise that Table 1 is invariant under monic reversal and the oper-
ation of F3', that is, the negation of z. Each column is also invariant under the
substitution of (n, k) by (—n, —k) mod (12, 6); this is easy to explain.

Proposition 9. Assume the notation (1), my and ms as in Theorem 4, and further-
more 1 < k* < n* withn* = —n mod my, k* = —k mod may, nf = —ny mod (¢—1),
k¥ = —ky mod (¢ — 1), and f* = ™ + az*” +b. Then f has property (S) if and
only if f* does.

Proof. We use the notation (1) also for the starred values. It is sufficient to show
that if f has property (5), then so does f*. So we assume (S) for f; in particular,
D # 0. By Fact 2, it suffices to see that D* = D. We denote by

uw=n"b""% and v = (=1)™(n — k)"rklk’“a"1

the two summands in the last factor of Fact 2 (ii), and similarly for the starred
quantities. As in the proof of Theorem 4, we find d = d* mod (¢ — 1). Fermat’s
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Little Theorem now implies that
wt = (_n)n{bn{—ki‘ — (_1)n1nn1bn1—k1 — (_1)711“’

and similarly v* = (—1)"tv. Thus

D (20) = oy =1 0
D u—v n o

Loidreau (2000) took Swan’s result over F3 and worked out, for general n and k,
the necessary case distinctions. He found that the property under consideration
depends only on n mod 12 and k£ mod 6. We turned this around, and first proved
the latter result, then ran an experiment for each case. In order to compare with
Loidreau’s results, we first note that v2(n) > v2(k) corresponds to s = 01, v2(n) =
va(k) to s = 11, and va(n) < va(k) to s = 10. We find that our table agrees with his
results, except that for £ —xz* +1 his values (3,4) and (3,5) for (n mod 12, k mod 6)
should not be included, and that (7,2) is missing.

Is ours an “elegant” proof? Well, Theorem 8 refers to a messy table and therefore
cannot be considered elegant. Seiden (2001) writes: In the best of circumstances,
the computational method allows us to give the inelegant part of a proof, at which
we would turn our noses up, to a computer for verification. In some sense, we may
have achieved this goal, by proving Theorem 4 and leaving the messy calculations
to a computer.

5. EXPERIMENTS

We computed all irreducible trinomials in F3[z] of degrees n < 1500, and found
some for each n > 2 except for 220 values of n. Some statistics are given in Figure 1.
It is no surprise that the residue classes of n mod 12 with sparse rows in Table 1 are

i J]01 2 3 4 5 6 7 8 9 10 11 12 13 14
#n |6 10 14 9 17 18 17 15 17 17 18 15 20 12 14

nmodl12| 0 1 2 3 4 5 6 7 8 9 10 11
#n |27 12 7 34 7 34 5 31 12 33 12 6
#k 4 8 5 4 9% 4 6 4 93 4 5 8

FIGURE 1. The number #n of n with o3(n) = 4 and 100 < n <
100(i +1) (top) and in each congruence class modulo 12 (bottom).
The last row #k gives the number of non-italicized values of k in
each row of 1.

represented frequently. For each “exceptional” n, we found an irreducible quadri-
nomial.

Ree (1971) proves that for any n, the number of irreducible trinomials ™ + x +
a € F,[z] with a € Fy tends to p/n for large p. Just like general polynomials,
these special trinomials are irreducible with probability about 1/n. Can we expect
something similar for general trinomials over F3 and growing n? Is irreducibility
equidistributed except for the constraints imposed by Theorem 8?7 The answer is:
no; there seem to be conditions that do not follow from the present theory. It is
also quite unexpected that the probability to be irreducible is over four times as
high for trinomials than for general polynomials, in our experimental range.
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"+ k-1
n\k 0 1 2 3 4 b)

0 145,0,0, 145,0,0,

1 161,_ 149, _

2 137,

3 188,

4 231,00, 251, 121,0,0, 251,._ 231,0,0,

5 158,

6 158, 158, _

7 160, _

8 1229,0,0, 229,0,0, 241,._ 106,0,0, 241,_

9 170,

10 108, _

11 143,_ 179, _

" —zF +1
n\k 0 1 2 3 4 5

0
I | —@o,4) T—(@0,4) T—(1,4,4) —(1,4,%)
2 84,767. T(2’07¢) 81,81
3 T—(3,2,4) —(3,2,4)
4
5 T=(5,4,4) —(5,4,4)
6 72,977- r(6,2,:F)
7 —(7,2,%) T—(7,2,%4)
8
9 —(0,4,4) TT(9,4,%)
10 79,87T 75,75 T(IO,O,:F)
11 —(11,0,4) —(11,2,4) T—(@1,2,4) T—(11,0,4)

FIGURE 2. Irreducible trinomials in F3[z] with degree n < 1500.

Figure 2 counts the irreducible trinomials. A table entry is indexed by

(10) €= (nOakOaSOaaa b)
with row index 0 < ng < 12, column index 0 < kg < 6, so € {01,10,11} and a,b €
{1}.

We have condensed the table by applying the symmetries of Section 3. It turned
out that only (a,b) = (1,—1) (top table) and (a,b) = (—1,1) (bottom table) have to
be considered. The subscript r means that monic reversal yields another entry with
the same numerical value, and the subscript r— corresponds to three other entries
obtained by monic reversal and the negation of . The values of s are ordered as
01, 10, 11, and the values of k£ mod 6 are split into six columns 0, ...,5. Thus the
first entry 145,0,0, means that we found 145 irreducible trinomials 2™ + 2* — 1 with
n = 0mod 12, k = 2 mod 6, and s = 01, so that e = (0,2,01,1,—1), and none for
s =10 or s = 11. The subscript r points to another entry given by monic reversal
and not shown in the table, namely 145,0,0 for 2™ — 2% — 1 with n = 0 mod 12 and
k = 4 mod 6. Similarly, the entry 161,_ says that 161 irreducible polynomials were
found for e = (1,0,10,1,—1), and the subscript r— points to the other three entries



IRREDUCIBLE TRINOMIALS OVER FINITE FIELDS 9

(1,1,11,-1,-1), (1,0,10,—1,1), and (1,1,11,-1,1) obtained by monic reversal,
by substituting —z, and by applying both symmetries, respectively. For each of
these three entries, we also have 161 irreducible trinomials.

In the bottom table of Figure 2, the first entry —(; o +) means that we have 161
irreducible trinomials for e = (1,0,10,—1,1), just as for (1,0,10,1,—1) obtained
by negating z. The entry 7(3,0,¢) in the row n = 2 points to the (84, 76) irreducible
trinomials 2 — 2% + 1 for n =2, k =0, and s = (10,11). The condensation makes
the tables somewhat shorter; for example, all 2™ — z¥ — 1 are obtained from some
P | by symmetry. Furthermore, necessarily duplicated values are eliminated
and “accidentally” duplicated values (see below) are clearly visible. The two tables
together correspond to the two middle columns in Table 1. Because of the condition
1 < k < n, entries corresponding to each other according to Proposition 9 are not
necessarily equal, but have reasonably close values.

All entries are such that Theorem 8 allows them to be positive. Thus the 16
entries equal to zero (actually corresponding to 32 entries) came as a big surprise.
For n < 1500 they say that

(11) n=0mod 4, k =2mod 6, ™ + az® + b irreducible
= s =01 (that is, va(n) > va(k)).

We have no explanation for this phenomenon. We also observe several repeated
values in Figure 2; namely,

the entries for (n,k, s,a,b)

(12) n=0mod 4 = and (n, (n — k) rem6, s, a,b) are equal.

Again, we do not know whether this is a coincidence.

Open Question 13. Are (11) or (12) true in general?

We also observed that trinomials are over four times as likely to be irreducible
than general polynomials, in the range of our experiments. If I,(n) denotes the
number of irreducible monic polynomials f € F,[z] of degree n, then

Zu( )atm L
n ?
and the probability for a random monic f of degree at most N to be irreducible is

I,(n —
(V) = Licnen o) 1\?+111 T —M()

Lo<nn @ 1<neN
“din
g-—1 1 _Ne+m
= m Z Eﬂ(k)'q Nt 8¢(m),
k<N
m=[N/k|

where s4(m) = 3y ¢ y<,, ¢~ ™ /d. We have s4(m) = ¢~ s4(m—1)+m~" form > 2,
m~! < s,(m) <1, and for large N
1
Pyg(N) = (1 - E) sq(N).
We find
p3(1500) & 0.00066 ~ 1/1499.5.
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On the other hand, there are 4- )", y(n —1) = 2N(N — 1) monic trinomials
in F3[z] of degree at most N, and 12498 monic irreducible trinomials of degree at
most 1500, so that in this range a trinomial has a chance of

. 12498
~ 21500 - 1499
to be irreducible. We have

~ 0.00278 =~ 1/359.82

r/ps(1500) = 4.16739.

Thus a random trinomial is over four times as likely to be irreducible than a random
polynomial, in this range.

For g = 2, we have
4575
T 1124250
with r as above for F instead of F3. Hence for polynomials of degree up to 1500 in
Fy [z], trinomials are more than six times as likely to be irreducible as general ones.

p2(1500) ~ 0.00067 ~ 1/1499, r ~ 0.004, /p2(1500) ~ 6.1,

Open Question 14. What happens in general?

For an e = (ng, ko, $0,a,b) and n = ng mod 12, the set of all trinomials corre-
sponding to e is

Sp(e) = {z™ +az® + b € F3[z]: k = ko mod 6,5 = 5o},
with s as in (7), and the number of irreducible ones is
tn(e) = #{f € Sn(e): f irreducible}.

Theorem 8 says that ¢,(e¢) = 0 unless e appears non-italicized in Table 1. Is
irreducibility evenly distributed among these e?
For N € N and an entry e as in (10), we set

Tne) = )" Y )/ Y #5a)
2<n<N 2<n<N
n=ng mod 12 n=ng mod 12

so that trinomials in S, (e) are irreducible with probability p3(N) - T (e), averaged
over n < N. Figure 3 gives the relevant values of Ti500(e). The missing values are
given by the pointers in Figure 2, or else are zero. For every ng < 12, there is some
e as in (10) so that the proportion of irreducible polynomials in T}, (e) is at least
fifteen times as high as in the set of all polynomials, within our experimental range.

Of the 288 = 12 - 6 - 4 possible values of (n,k, f) for Table 1, only 114 appear,
4 of them with a restriction on s. These restrictions occur in four cases, where
n =4 mod 12 and k = 2 mod 6, or n = 8 mod 12 and ¥ = 4 mod 6. In Theorem 15,
we will show the following statistics for these restrictions. If we fix such an n and
consider all such k& with 1 < k < n, then s = 11 and s = 10 occur equally often,
and s = 01 about four times as often as each of the other two values. Thus the four
restrictions on s rule out about 1/6 in each case, for a total of about 2/3. Thus we
are left with about 1133 cases.

Removing those with 1 or —1 as a root leaves only 71% candidates. Lemma 6
says that we do not have to look for other systematic factors. Now monic reversal
makes about half of the candidates superfluous, since we may restrict to k <n/2.
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z" +zF —1 " —zF+1
n\k 0 1 2 3 4 5 0 2 4
0 20.7,0,0 20.7,0,0
1 15.6 14.4
2 13.1 16.3,14.7 15.7,15.7
3 18.0
4 133.5,0,0 24.1 17.4,0,0 24.1 33.5,0,0
5 15.2
6 15.2 15.2 13.9,18.5
7 15.4
8 |32.7,0,0 32.7,0,0 23.1 15.3,0,0 23.1
9 16.3
10 10.4 | 15.3,16.6 14.3,14.3
11 13.7 17.0

FIGURE 3. The relevant values of Ti500(e).

The action of F; has orbits of size 2/ gcd(2, k,n), and it is sufficient to consider
only one representative from each orbit. The size is 2 unless both k£ and n are even,
when it is 1. The former occurs in 48 non-italicized entries, the latter in 23% entries.
Thus on average we have a reduction by a factor of 473 /713 = 71/107 ~ 66.4%.
The total number of candidate trinomials will be close to

11 7 2
372 107 23
out of the 288 possibilities, a reduction to about 8.2%.

We next determine the gain that results from ruling out one of the possibilities
s =11 or s = 10 in four entries of Table 1. For ¢ € {01,10,11}, we denote by ¢;(n)
the number of integers k with 1 < k < n, k = 2 mod 6, and (n; mod 2, k; mod 2) =
i. For N € N, we let

T(N)= Z t(n), T (N) = Z t11(n).
<n<N <n<N
néi rnan 12 néZ &Ed 12

The first part of the next theorem shows that t19(n) = t11(n), and the ratio
t(n)/t11(n) is about 2v2(" (if 2"2(") « n). Tts second part shows that this ratio is
close to 6 on average. Thus the proportion tg; : t19: t11 is about 4: 1: 1, on average.

Theorem 15. (i) Let n be a positive integer with n = 4 mod 12, and e = v3(n).
Then
_ _n—(=2)
tlo(n) = tu(n) = 6. 2e .
(ii) The ratio T(N)/T11(N) tends to 6, and more precisely

6(1— jv—2+0(1(}$§v)) < Ti(g\;) §6<1+%+O(10§—£V)>.

The proof is omitted. For 76 < N < 4000, the values of N - (T(N)/T11(N) — 6)
are between —60 and 20. The corresponding results also hold in the other case of
interest, where n = 8 mod 12 and £ = 4 mod 6.

A heuristic estimate goes as follows. For a randomly chosen monic polynomial of
degree n in F,[z], the probability of it being irreducible is about 1/n. If we choose
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nt many independently, then the probability that none is irreducible is about

1 nt
(1 — —) ~e b
n

There are roughly n(g—1)? monic trinomials of degree n in F, [z], and if irreducibility
occurred about as often as for random polynomials (which it does not), we would

find e~(==D” for the “probability” that oq(n) > 4. (Of course, o4(n) is a well-
defined integer, with no random choices involved.) The value e=?’ ~ 1.8% is much
smaller than the rate of almost 15% we found for n < 1500, and shows that this
heuristic is not worth much.

Not even slightly discouraged by this, we also apply the heuristics to quadrino-
mials, and find the following upper bound for the “probability” that o4(n) > 5 for
some n:

- L2172 o 3 enla-1/2 gy o312,

n>3 n n>3

The last number evaluates to about 0.6 - 10~ for ¢ = 3.
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