This document is provided as a means to ensure timely dissemination of scholarly ~ are maintained by the authors or by other copyright holders, notwithstanding that ing any of these documents will adhere to the terms and constraints invoked by poses. These works may not be posted elsewhere without the explicit written per-

and technical work on a non-commercial basis. Copyright and all rights therein these works are posted here electronically. It is understood that all persons copy- ~each copyright holder, and in particular use them only for noncommercial pur- mission of the copyright holder. (Last update 2016/05/18-14 :16.)

JOACHIM VON ZUR GATHEN (2004). Arithmetic Circuits for Discrete Logarithms. In Proceedings of LATIN 2004, Buenos Aires, Argentina, MARTIN FARACH-COLTON,
editor, volume 2976 of Lecture Notes in Computer Science, 557-566. Springer-Verlag, Berlin, Heidelberg. ISBN 978-3-540-21258-4. ISSN 0302-9743 (Print) 1611-3349

(Online). URL http://dx.doi.org/10.1007/978-3-540-24698-558.

Arithmetic circuits for discrete logarithms

Joachim von zur Gathen
University of Paderborn, Germany
gathen@upb.de

http://www-math.uni-paderborn.de/~aggathen/

Abstract. We introduce a new model of “generic discrete log algo-
rithms” based on arithmetic circuits. It is conceptually simpler than
previous ones, is actually applicable to the natural representations of
the popular groups, and we can derive upper and lower bounds that
differ only by a constant factor, namely 10.

Key words. discrete logarithm, generic algorithm, arithmetic circuit, cyclic
group

1 Introduction

Discrete logarithm computations and their presumed difficulty are a central topic
in cryptography. Let G be a finite cyclic group of order d, p the largest prime
divisor of d, and n the bit length of d (that is, n is the “private key length”).
There are three types of results:

— “Generic” algorithms such as baby-step giant-step, Pollard rho, and Pohlig-
Hellman. Together they provide a solution with O(n,/p + n?) group opera-
tions.

— Algorithms for special groups, such as the index calculus for the group of
units in a finite field, and Weil descent for special elliptic curves.

— Lower bounds f2(,/p) on “generic” algorithms.

This paper proposes a new solution to the last point.

Babai & Szemerédi (1984) first proposed a model in which even a lower
bound 2(p) holds. Then Nechaev (1994) suggested a deterministic model with
an (2(,/p) bound, and Boneh & Lipton (1996) considered finite fields. The most
popular model was invented by Shoup (1997). It is probabilistic, has an 2(,/p)
lower bound, and also works for the Diffie-Hellman problem. Maurer & Wolf
(1998, 1999) continued to work on this, in particular by relating the two questions
of discrete logarithms and the Diffie-Hellman task. See also Schnorr & Jakobsson
(2000) and Schnorr (2001).

An essential ingredient of Shoup’s method is a bit representation of the group
elements, and his lower bound holds for a random description of this form. The
standard “generic” algorithms consist of two phases: first some group calcula-
tions are performed, and in a second phase the resulting lists of group elements

are sorted, with the goal of finding a collision. Of course, when one wants to im-
plement such an algorithm, one has to use some bit representation of the group
elements in computer memory. But the algorithms will use one “natural” repre-
sentation, not random ones. Strictly speaking, Shoup’s result does not apply to
this situation, and thus does not provide a lower bound in the natural setting.

This paper repairs this state of affairs by presenting a new model for “generic”
discrete log computations which is both technically simpler and more powerful.
It has the following properties:

the known “generic” algorithms fit in,

— a lower bound of £2(,/p) holds,

— it does not make assumptions about the representation of groups,
there is a matching upper bound, larger only by a constant factor.

This is basically achieved by ignoring the second phase, where sorting occurs.
Then one can do away with the group representation, and describe the first phase
in a simple arithmetic model.

It is important to note that the goal here is not a way of describing useful
discrete log computations. In fact, our computations do not calculate discrete
logs, but any “generic” discrete log computation yields one of our type. The
asymptotically matching upper and lower bounds are an indication that this
may be the “right” level of abstraction.

The most natural way of saying that we “only want to use group opera-
tions” is by using arithmetic circuits (a.k.a. straight-line programs) with group
operations. This model was introduced in great generality by Strassen (1972).
However, a circuit computes only group elements and not discrete logs, which
live in the “exponent group”. Success in the usual algorithms is signalled by a
collision, where the same group element is calculated in two different ways. The
basic idea is to declare a circuit as successful if it produces such a collision. One
has to be a bit careful: it is easy to produce trivial collisions, say by calculating
the group element 1 in two different ways. This leads to our notion of a collision
“respecting” a divisor ¢ of the group order: it is not trivial in the “exponent
group modulo ¢”.

In Section 2, we set up the required notions. Section 3 starts with the usual
“nonzero preservation” result modulo a prime power; it is somewhat simplified
in comparison with other generic models by considering only linear polynomi-
als. Technically, this Lemma 7 is the main overlap with Shoup’s method. Then
we prove the main result, a lower bound of £2(,/p) in Theorem 8. The model
is sufficiently powerful (or weak, as you have it) that essentially matching up-
per and lower bounds hold; they differ only by a constant factor, namely 10
(Corollary 10).

The model so far is deterministic; Section 4 extends it to probabilistic com-
putations. The same lower bound holds. This is no surprise, since randomized
algorithms such as Pollard’s rho method do not reduce the computing time.
This method is important because it reduces the required memory to a constant
number of group elements, but we do not consider this resource.

2 Arithmetic circuits for discrete logarithms

We fix the following notation:

G = {g) is a finite cyclic group,d = #G, (1)
p is the largest prime divisor of d, and n is the binary length of d.

We consider algorithms that use only the group operations, starting with
three special group elements: 1, the generator g, and x. From these we build
further group elements by multiplication and inversion.

Example 2. Here is a formulation of the baby-step giant-step algorithm for
d = 20:

instruction trace|trace exponent
Y_o 1 1 0
Yy-14—9g g 1
Yo — T T t
Y1 — Yo Y-1| g t+1
Y2 <— Y1 -yY_1| 29’ t+2
Y3 — Yo - Y_1| 2g° t+3
Ya — y3-y_1| zg* t+4
Ys — Y4 - Y_1| 2g° t+5
Yo < Ys Yo | 9° 5
Y7 <— Y- Ys | 9'° 10
Ys—yr-ys | 9° 15
Yo «— ys-ys | 9°° 20
Yio < Yo - Y6 | 9°° 25

The “trace” gives the group element computed in each step. The “trace
exponent” is explained below. The algorithm is in its simplest form, ignoring
shortcuts like ¢2° = 1.

If log, & = 5b + ¢, with 0 < b,c < 5, then = g°**¢, hence zg®~¢ = g>(+1),
and both elements appear in the computation. If we take G = ZJ; = (2), a group
of order 20, and z = 19 = 28 then we have 18 = 5-34+3 and y» = 292 = ¢?° = ys.

0

How do we express that the algorithm successfully computes log, 7 We are
very generous: we say that the algorithm is successful if a “collision” u = v
occurs for two previously computed results 4 and v for which “u4 = v is not
trivial”. If we computed y; = y_1 - yj, Ya = Yo - yo_l, then y; = y2 would be
trivial. We will make this precise in a minute.

The type of computation shown in the table above could be called an “arith-
metic group circuit with inputs 1, g, and z”. We abbreviate the assignment
Y — Yi - y;-—Ll as (i,j,=*1), and also trace the exponents of g and z in the
circuit. Then we arrive at the following notion.

Definition 3. (i) An arithmetic circuit is a finite sequence C = (I,...,I;)
of instructions I, = (i, j, &), with —2 < i,j < k and € € {1,—1}. The size of
C is £. Note that C is not connected to any particular group.

(ii) If C = (I1,...,1I;) is an arithmetic circuit, G a group and g,z € G, then
the trace of C on input (g,z) is the following sequence z_5,2_1,...,z4 of
elements z;, of G:

2o =1,2.1=9,20 = %,2¢ = 2; - z; for k> 1 and I} = (i, j,€).

(iii) For an arithmetic circuit C = (I1,...,I;), the trace exponents consist of
the following sequence T_2,7_1,...,7; of linear polynomials Ty, in Z[t]:

T 9=0,71=11=tm="1i+¢c-7; for k> 1 and I} = (i, j,€).
We think of g as fixed, and also write z(x) for the trace elements zy, in (ii).

The connection between the trace and the trace exponents is clear: if z = ¢®
and 7, =c-t+ b, then

ar(@) = g'a° =g’ - g = g™,

Recall that in the exponents, we may calculate modulo the group order d, once
we consider a fixed group.

Example 4. Here are two more examples of trivial collisions.

(i) We take g,z = g% in a group of order d, and an arithmetic circuit which
computes ¥, = g% with an addition chain of some length m, and also y2,, =
z¢. Then 7, = d and 7o, = dt, Yy = 9% = 1 = 2% = yo,,, and we take
the congruence 7, — T2, = 0 mod d as an indicator for the triviality of this
collision.

(ii) Now let g be an arbitrary prime divisor of d, maybe a small one, and assume
that d # ¢. Again we calculate some y,, = g%/? and ys,, = 2%7. Now both
results lie in the subgroup H = (g%/9) of order ¢, and we can find a collision
with a further ¢ (or even O(,/q)) steps. But we have only calculated a discrete
logarithm in H, not in G. If, say, ¢ = 2, then y,, = g%? # 1 and ya,, is
either y,,, or 1. Thus we have a collision, either y_5 = Y2, OF Yy = Y2rm- €

How do we express that “u = v is trivial”? We certainly want to say that
“the collision y; = y; is trivial” if 7; = 7;, or even if 7; = 7; mod d, but this is
not quite enough. We have to rule out unpleasant cases like the one at the end
of Example 4, where a collision occurs but the discrete logarithm is not really
computed.

Definition 5. Let C be an arithmetic circuit of size £, G = {g), q an arbitrary
divisor of the group order d = #G, and i,j < £.

(i) Then (i, j) is said to respect ¢ if and only if 7; — 7; # 0 mod q.

(ii) If on input some g,z € G, a collision y; = y; occurs, then this collision
respects q if and only if (i, j) respects gq.

Thus we have the linear polynomial 7; — 7; € Z[t] which is nonzero modulo
g, hence modulo d, and if a collision occurs for z = g%, then ¢7(®) = z;(z) =
zj(z) = g%, so that (r; — 7;)(a) = 0 mod d.

If ¢1 | g2 | d, and (4, j) respects g, then it also respects g.

Example 4 continued. (i) For ¢ = 2, we have 7,, = d/2, 12,,, = dt/2, and
Tm — Tam = d/2 - (1 — t) mod d. We assume that d is not a power of 2, and take
a prime divisor ¢ # 2 of d. Then ¢ divides d/2, and 7,, — T2, = 0 mod ¢. Thus
(m,2m) does not respect ¢, and if on some input = from some group G, the
collision g%/2 = 2,,(z) = zam(x) = %2 occurs, then this does not respect g,
either. O

Definition 6. Let G = (g) be a finite cyclic group, C an arithmethic circuit,
and q an arbitrary divisor of the group order d = #G. Then the success rate o¢ 4
of C over G respecting q is the fraction of group elements for which a collision
respecting q occurs:

0C,q = d™'-#{x € G : on input z, a collision respecting q occurs in C}.

Thus 0 < 0¢q < 1, and a circuit, for which a collision respecting ¢ occurs
for every input x, has o¢y = 1. If ¢1|¢2|d, then o¢ 4 < o¢g,. Example 2
indicates that the baby-step giant-step algorithm gives a circuit of size O(v/d),
where d = #G and o¢,q = 1. For simplicity, our notation does not reflect the
dependence of the success rate on the group.

Also, the Pohlig—Hellman algorithm is a generic algorithm. But index calculus
in G = F; is not generic; it makes essential use of the representation of the
elements of G as integers less than p, and the ability to compute with these
integers, say to check whether they factor over the factor base.

3 The deterministic lower bound

“Nonzero preservation” is a generally useful tool. It says that the value of a
nonzero polynomial at a random point is likely to be nonzero. It is well-known
over integral domains; we need a slight generalization here. See Shoup (1997) for
a more general version.

Lemma 7. Let d > 2 be an integer, p° a prime power divisor of d, where p is a
prime, and T = ¢1t + ¢o € Z[t] a linear polynomial with T # 0 mod p®. Then

#{a € Zy: 7(a) =0mod p°} < d/p.

Proof. Let i > 0 be the largest exponent with 7 = 0 mod p’. Thus i < e,
and we can write 7 = p’ - (it + ¢p), with ¢y, ¢f € Zgyp and at least one of
them nonzero modulo p®~*. If ¢ = 0 mod p, then there is no a € Z4 with
7(a) = 0 mod p**!, let alone modulo p°. Otherwise there is exactly one ag € Z,,
with cjag + ¢j = 0mod p, namely ay = —c) - ¢; ' mod p. The residue class
mapping Zq — Z, maps any a € Zg to a mod p. Exactly d/p elements of Zg4
are mapped to the same element of Z,. Now if pi(cia + ¢j) = 7(a) = 0 mod p°,
then cja + ¢ = 0 mod p, and hence a mod p = ag. There are exactly d/p such
a, and the claim follows. a

Theorem 8. Let G = (g) be a finite cyclic group, ¢ = p°® a prime power divisor
of the group order d = #G, C an arithmetic circuit over G of size £, and o¢,q its
success rate respecting q. Then

£>\/20¢,4p — 3.

When o¢,, is a positive constant, then £ € 2(,/p).

Proof. On some input z, a collision in C is of the form y;(z) = y;(x) with
—2 < i< j <L There are (£42)(£+3)/2 such (4,). Any (4, j) which respects ¢
leads to a collision for at most d/p values of z, by Lemma 7, since the exponents
a € Zgq4 correspond bijectively to the group elements x = g®. Thus the total
number of possible collisions respecting ¢ is at most (£ + 2)(£ + 3)/2 - d/p, and
hence

oc,g < (£+2)(£+3)/2p,
(€+3)2 > (£+2)(L+3) > 20¢,,p- O

The various well-known algorithms yield an O(n,/p + n?) upper bound for
discrete logarithm computations, and we now have a lower bound (2(,/p) where
p is the largest prime divisor of d. In what follows, we derive upper and lower
bounds that differ only by a constant factor. We start with a lower bound differ-
ent from Theorem 8, namely (2(n). This is not of direct cryptographic interest,
since n & log, d is roughly the “key length” or “input length”—in contrast to /p
which will usually be chosen so that it is exponentially large in n. The interest is
a desire to understand the complexity of discrete logarithms as well as possible.

Theorem 9. Let C be an arithmetic circuit of size £, G = (g) a cyclic group of
order d > 3, with o¢c 4 = 1, and let n = [log, d| + 1 be the binary length of d.
Then

(> = -2,

|3

and hence £ € 2(n).

Proof. Any element a of Z 4 has exactly one balanced representative b € Z with
a= (bmodd),—d/2 < b<d/2.

For —2 < k < ¢, we write the trace exponent 7, € Zg4[t] as 7, = (¢, mod d) - t +
(br mod d), where ci, b, € Z are balanced representatives. By induction on & it
follows that |bg|, |ck| < 2F for 0 < k < £ (and |bg|,|ck| < 1 for k = —2,—1). Now
let ag = L\/EJ, a = (ap mod d) € Zy and & = g* € G. The assumption ¢ q =1
implies that there are 4, j < £ with 7, —7; # 0 mod d and (7; — 75)(a) = 0 mod d.
We let

u= (c,-—c]-)-ao—i—(bi—bj) € 7.

The above implies that © = 0 mod d.
If ¢; = ¢j, then b; = bj mod d and 7; — 7; = 0 mod d, which is ruled out.
Thus ¢; # ¢j. If u = 0, then

VA= 1< fanl = 0 < b= by < b+] <204,
1~ Cj

If u # 0, then |u| > d, and
2€+1(\/E+ 1) = 2“_1\/& + ot+1 > |Cz’ — c]-|a0 + |b,’ — bjl
> |(ci — ¢j)ao + (bi — bj)| = |u| > d,

d
ot+l > >Vd—1.
T Vd+1~

Thus £ > log(v/d — 1) — 1 in both cases. The claim now follows from

1 1 1 1
— > — — > — —_ — = —
log(Vd — 1) > 3 logd 5 2 2|_10ng 5 1

n
2
for d > 12. (One checks the cases 3 < d < 11 separately.) O

For an upper bound in our model, we just compute ¢%/? and z%/?, and then
perform a baby-step giant-step search in the subgroup (gd/ Py of p elements.
The total cost is 2(n + /p), and we have the lower bounds of n/2 and /2p,
approximately. Thus the gap is a factor of about 4 or /2, depending on whether
n or ,/p is larger. We can obtain a specific estimate as follows.

Corollary 10. Let G be a cyclic group with d elements, n = |log, d| + 1 the
binary length of d, p the largest prime divisor of d, e the multiplicity of p in d,

m = max{/2p — 3,n/2 — 2},

and assume that m > 37. Then there exists an arithmetic circuit C with success
rate ocp- = 1 over G and size at most 10m. Any circuit C with oc pe = 1 has
size at least m.

Proof. The last claim follows from Theorems 8 and 9. For C we take the circuit
described above. Then o¢ ;- = 1, and its size £ is at most 2 - 2log(d/p) + 2./p.
Thus

(<4logd+2/p<8n/2-2)+V2-(\/2p—3)+17+3V2
< (8+V2)m + 17+ 3V2 < 10m. O

In usual models of computation, upper bounds come from algorithms—the
real thing—and lower bounds impose barriers on improving these. But here,
the lower bound is the real thing, and the upper bound a barrier on deriving
better ones. As stated before, the above circuit cannot claim to actually compute
discrete logarithms in G.

4 Probabilistic arithmetic circuits

We now have a model for discrete log computations with essentially matching
upper and lower bounds. However, Pollard’s rho method works in any group,
but does not fit into our model because it makes random choices. The method
does not make progress over the baby-step giant-step method in terms of time
(= size of circuit), but cuts the space dramatically down to a constant. Space
is not accounted for in our model, but we now adapt it to allow probabilistic
choice. Once the model is appropriately set up within our framework, it is easy
to obtain the same lower bound as before. Thus random choices do not help, in
this specific sense.

We allow two types of random choices in our algorithms: random group ele-
ments, and random exponents. For the first, we might allow a new instruction

y «— rand(G)

which assigns an element of G to y;. On executing the circuit, this element
is chosen uniformly at random, independent of other executions of the circuit.
Actually, this feature is not used in any discrete log algorithm that we are aware
of. For the corresponding trace exponent, we take new variables ¢i,...,t; if s
instructions rand(G) occur. Thus 7, = ¢; if ¢1,...,%;—1 have been used so far.
But actually this feature is not required, because the next one subsumes it.

We also want to allow random exponents, that is, an element y® with random
e and previously computed y. When y = g, this may be thought of as a random
element of G with known discrete logarithm. So, as a new feature we allow our
circuits to use a string

b= (b1,...,b,) € {0,1}"

of random bits, via assignments
b .
Yk < yiJ
with i < k and 1 < j < r. The corresponding trace exponent is

Tk :bj-Tz'.

Example 11. In a probabilistic version of Pollard’s rho method, the next ele-
ment yg41 is calculated as one of yi - g, y2, or yx - z, each with probability 1/3.
This is easy to simulate, using two random bits b and c. If we set
e S (12)
then yg11 will take one of the three required values for (b, ¢) = (0,0), (0,1),(1,0),
respectively. We set the probability of (b,¢) = (1,1) to 0. The formula can be
implemented with an arithmetic circuit of size 11. In another version of Pollard’s
rho method, one divides the group into three parts and makes the three-fold
choice according to where y;, has landed. This does not fit into our model. ¢

Definition 13. (i) A probabilistic arithmetic circuit is a pair C = (C,,u)
consisting of a probability distribution u on {0,1}" for some nonnegative in-
teger r and an arithmetic circuit C, as in Definition 3 except that in addition
the following type of assignment is allowed:

Y — y? (14)

with —2<i<kandl<j<r.

(ii) The size £ of C is the number of group operations performed. Operations of
the type (14) are not counted. (Formally, we might give appropriate rational
indices k to their results.)

(iii) If b € {0,1}" is provided, then we obtain a circuit C(b) of size £ as follows.
If y, is given by (14), then we replace all references to yy, by a reference to
y—2(=1) if b; = 0, and by a reference to y; if bj = 1. This replacement is
performed recursively starting at the beginning of the instruction list until
no more references to an assignment of type (14) exist. The new instructions
are denoted as yr (b) «— yi(b) - y;(b)°.

(iv) For a divisor q of d, the success rate of C with respect to q is

ocg= D, u) ocw) -
be{0,1}"
Thus o¢,, is the average success rate of the C(b) for random b. Recall that

ocy,e = A" - #{z € G : there is a collision y;(b)(z) = y;(b)(z) respecting ¢},

and such a collision respects g if and only if 7;(b) —7;(b) # 0 mod g, with the usual
trace exponent 7;(b), 7;(b) € Z[t]. These are defined only when some b € {0,1}"
is fixed, not for C itself.

Theorem 15. Let G = (g) be a finite cyclic group, p a prime divisor of the
group order d = #G, C a probabilistic arithmetic circuit of size £, and o¢ p it
success rate respecting p. Then

12 Z w/2Uc,pp -3.

When o¢,, is a constant, then £ € £2(,/p).

Proof. 'The probabilistic circuit C = (Cr,u) and each (deterministic) circuit
C(b) have size £. From the proof of Theorem 8, we have

(¢ +3)2
T 20¢(b),p

for each b € {0,1}". Hence

2 2
(£+3)* _ (£+3) Z u(b) > Z u(B)oem).p = 0c.p- O

2p 2p be{0,1}" be{0,1}"

References

1. LAszLO BaBAI & ENDRE SzZEMEREDI (1984). On the complexity of matrix group
problems I. In Proceedings of the 25th Annual IEEE Symposium on Foundations of
Computer Science, Singer Island FL, 229-240. IEEE Computer Society Press. ISBN
0-8186-0591-X. ISSN 0272-5428.

2. DAN BONEH & RICHARD J. LIPTON (1996). Algorithms for Black-Box Fields
and their Application to Cryptography. In Advances in Cryptology: Proceedings of
CRYPTO ’96, Santa Barbara CA, NEAL KOBLITZ, editor, number 1109 in Lecture
Notes in Computer Science, 283-297. Springer-Verlag. ISSN 0302-9743.

3. UELI MAURER & STEFAN WOLF (1998). Lower Bounds on Generic Algorithms
in Groups. In Advances in Cryptology: Proceedings of EUROCRYPT 1998, Santa
Barbara, CA, KA1SA NYBERG, editor, number 1403 in Lecture Notes in Computer
Science, 72-84. Springer-Verlag. ISSN 0302-9743. URL http://link.springer.de/
link/service/series/0558/bibs/1403/14030072.htm.

4. UELI M. MAURER & STEFAN WOLF (1999). The relationship between breaking
the Diffie-Hellman protocol and computing discrete logarithms. SIAM Journal on
Computing 28(5), 1689-1721.

5. V. I. NECHAEV (1994). K Bompocy O CIOKHOCTY JEeTE€PMUHUPOBAHHOIO AJ-
rOpuUTMa IJsi AUCKpeTHOro jgorapu¢ma. Poccuiickas Axanmemus Hayk.
Maremaruueckue 3amerkn 55(2), 91-101, 189. ISSN 0025-567X. Complexity
of a determinate algorithm for the discrete logarithm, Mathematical Notes 55(2)
(1994), 165-172.

6. CLAUS PETER SCHNORR (2001). Security of DL-encryption and signatures
against generic attacks-a survey. In Public-Key Cryptography and Computational
Number Theory Conference 2000, 257-282. URL http://www.mi.informatik.
uni-frankfurt.de/research/papers.html.

7. CLAUS PETER SCHNORR & MARKUS JAKOBSSON (2000). Security Of Discrete
Log Cryptosystems in the Random Oracle and the Generic Model. Technical re-
port, Universitdt Frankfurt/Main and Bell Laboratories, Murray Hill, New Jer-
sey. URL http://www.mi.informatik.uni-frankfurt.de/research/papers.html.
The Mathematics of Public-Key Cryptography, The Fields Institute, Toronto.

8. VICTOR SHOUP (1997). Lower Bounds for Discrete Logarithms and Related Prob-
lems. In Advances in Cryptology: Proceedings of EUROCRYPT 1997, Konstanz,
Germany, SPRINGER- VERLAG, editor, number 1233 in Lecture Notes in Computer
Science, 256-266. ISSN 0302-9743. URL http://wuw.shoup.net/papers/.

9. V. STRASSEN (1972). Berechnung und Programm. I. Acta Informatica 1, 320-335.

