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ABSTRACT
A univariate polynomial f over a field is decomposable if it is
the composition f = g ◦h of two polynomials g and h whose
degree is at least 2. We determine an approximation to the
number of decomposable polynomials over a finite field. The
tame case, where the field characteristic p does not divide
the degree n of f , is reasonably well understood, and we
obtain exponentially decreasing error bounds.

The wild case, where p divides n, is more challenging and
our error bounds are weaker. A centerpiece of our approach
is a decomposition algorithm in the wild case, which shows
that sufficiently many polynomials are decomposable.

Categories and Subject Descriptors: F.2.1 [Numerical
Algorithms and Problems]: Computations in finite fields;
G.2.1 [Combinatorics]: Counting problems; I.1.2 [Algorithms]:
Algebraic algorithms.

General Terms: Algorithms.

Keywords: computer algebra, polynomial decomposition,
finite fields, combinatorics on polynomials

1. INTRODUCTION
It is intuitively clear that the decomposable polynomi-

als form a small minority among all polynomials (univariate
over a field). The goal in this work is to give a quantitative
version of this intuition. That is, we want to approximate
the number of decomposables over a finite field, together
with a good relative error bound.

For this task, one readily obtains an upper bound. The
challenge then is to find an essentially matching lower bound.
Von zur Gathen (1990a,b) introduced the notion of tame for
the case where the field characteristic does not divide the
degree n, and wild for the complementary case, in analogy
with ramification indices. Algorithmically, the tame case is
well understood since the breakthrough result of Kozen &
Landau (1986); see also von zur Gathen, Kozen & Landau
(1987); Kozen & Landau (1989); Kozen, Landau & Zippel
(1996); Gutierrez & Sevilla (2006), and the survey articles of
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von zur Gathen (2002) and Gutierrez & Kozen (2003) with
further references. It is not hard to identify the two main
contributions to the decomposable polynomials. These cor-
respond to left components of degree ℓ and n/ℓ, where ℓ is
the smallest prime divisor of the composite number n. An
upper bound on the two contributions is immediate, and
on all decomposables it follows with the method of von zur
Gathen (2008a).

In the tame case, a lower bound on each of the two contri-
butions is again easy, and Ritt’s Second Theorem provides
an upper bound on their intersection. Together this yields
a lower bound on the number of decomposables. It differs
from the upper bound only by a relative error which is ex-
ponentially decreasing.

In the wild case, the methods from the literature do not
yield a satisfactory lower bound. We present in Section 3
a decomposition algorithm which fails on some inputs but
works on sufficiently many ones. The algorithm is a center-
piece of this paper and yields lower bounds on the size of
the two main contributions in the wild case.

The intersection of the two main contributions corresponds
to “collisions”, where different pairs of components yield the
same composition. Ritt’s Second Theorem describes these
collisions. Section 4 provides a normal form for the quan-
tities in this Theorem, yielding the exact number of such
collisions in the tame case, assuming that ℓ2 ∤ n. Further-
more, we give (less precise) substitutes in those cases where
the Theorem is not applicable.

Section 5 presents the resulting estimates in the tame case.
Section 6 puts together all our bounds in the general case,
resulting in a veritable jungle of case distinctions. It is not
clear whether this is the nature of the problem or an artifact
of our approach. Theorem 26 provides a précis of our results.

The upper and lower bounds in the tame case differ by a
factor of 1 + ǫ, with ǫ exponentially decreasing in the input
size n log q, in the tame case and for growing n/3ℓ2. When
the field characteristic is the smallest prime divisor of n and
divides n exactly twice, then we have a factor of at most
2. In all other cases, the factor is 1 + O(q−1) over Fq. It
remains a challenge whether these gaps can be reduced.

Giesbrecht (1988) was the first to consider our counting
problem. He showed that the decomposable polynomials
form an exponentially small fraction of all univariate poly-
nomials. My interest, dating back to the supervision of this
thesis, was rekindled by a study of similar (but multivari-
ate) counting problems (von zur Gathen 2008a) and during
a visit to Pierre Dèbes’ group at Lille, where I received a
preliminary version of Bodin, Dèbes & Najib (2009). Mul-
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tivariate decomposable polynomials are counted in von zur
Gathen (2008b).

We use the methods from von zur Gathen (2008a), where
the corresponding counting task was solved for reducible,
squareful, relatively irreducible, and singular bivariate poly-
nomials. Von zur Gathen, Viola & Ziegler (2009) extend
those results to multivariate polynomials, and also provide
(impractical) exact formulas, and (practical) generating func-
tions. Further work on collisions is reported in von zur Ga-
then et al. (2009a).

2. DECOMPOSITIONS
A nonzero polynomial f ∈ F [x] over a field F is monic if

its leading coefficient lc(f) equals 1. We call f original if its
graph contains the origin, that is, f(0) = 0.

Definition 1. For g, h ∈ F [x],

f = g ◦ h = g(h) ∈ F [x]

is their composition. If deg g,deg h ≥ 2, then (g, h) is a
decomposition of f . A polynomial f ∈ F [x] is decomposable
if there exist such g and h, otherwise f is indecomposable.
The decomposition (g, h) is normal if h is monic and original.

Remark 2. Multiplication by a unit or addition of a con-
stant does not change decomposability, since

f = g ◦ h ⇐⇒ af + b = (ag + b) ◦ h

for all f , g, h as above and a, b ∈ F with a 6= 0. Any
decomposition (g, h) can be normalized by this action.

We fix some notation for the remainder of this paper. For
n ≥ 0, we write

Pn = {f ∈ F [x] : deg f ≤ n}

for the vector space of polynomials of degree at most n, of
dimension n + 1. Furthermore, we consider the subsets

P=
n = {f ∈ Pn : deg f = n},

P 0
n = {f ∈ P=

n : f monic and original}.

For any divisor e of n, we have the normal composition map

γn,e :
P=

e × P 0
n/e −→ P=

n ,
(g, h) 7−→ g ◦ h,

corresponding to Definition 1, and set

Dn,e = im γn,e.

The set Dn of all decomposable polynomials in P=
n is

Dn =
[

e|n
1<e<n

Dn,e.

In particular, Dn = ∅ if n is prime. We also let In =
P=

n r Dn be the set of indecomposable polynomials. Over a
finite field Fq with q elements, we have

#P=
n = qn+1(1 − q−1),

#P 0
n = qn−1,

#Dn,e ≤ qe+n/e(1 − q−1).

3. EQUAL-DEGREE COLLISIONS
For decompositions f = g ◦ h over a field of characteristic

p, one has to distinguish between the cases where p does not
divide deg g and where it does. There are linearized polyno-
mials with superpolynomially many “inequivalent” decom-
positions (Giesbrecht 1988).

Fact 3. Let F be a field of characteristic p, and e a divisor
of n ≥ 2. If p does not divide e, then γn,e is injective, and

#Dn,e = qe+n/e(1 − q−1).

In Section 5, we find an upper bound αn on #Dn, up to
some small relative error. When the exact size of the error
term is not a concern, then this is quite easy. Furthermore,
Fact 3 immediately yields a lower bound of αn/2 if p is not
the smallest prime divisor ℓ of n. A result of von zur Gathen
(1990b) implies a lower bound of about αn/4n in general.

Our goal in this paper is to improve these estimates. For
this purpose, we have to address the uniqueness (or lack
thereof) of normal compositions

g ◦ h = g∗ ◦ h∗ (4)

in two situations. We call {(g, h), (g∗, h∗)} satisfying (4)
with h 6= h∗ an equal-degree collision if deg g = deg g∗

(and hence deg h = deg h∗), and a distinct-degree collision

if deg g = deg h∗ 6= deg h (and hence deg h = deg g∗). The
present section deals with equal-degree collisions, and Sec-
tion 4 with distinct-degree collisions.

By Fact 3, there are no equal-degree collisions when p ∤
deg g. In the more interesting case p|deg g, collisions are
well-known to exist. Our goal, then, is to show that there
are few of them, so that the decomposable polynomials are
still numerous. Algorithm 7 provides a constructive proof of
this. For many, but not all, (g, h) it reconstructs (g, h) from
g ◦h. To quantify the benefit provided by the algorithm, we
rely on a result by Antonia Bluher (2004).

Distinct-degree collisions are classically taken care of by
Ritt’s Second Theorem. This is the topic of Section 4.

Von zur Gathen (1990b) presents an algorithm for a“wild”
decomposition f = g ◦ h with

deg f = n = k · m = deg g · deg h

and p | k, under some restrictions. It first makes coefficient
comparisons to compute h, and then a Taylor expansion to
find g. We now take a simplified version of that method. It
does not work for all inputs, but for sufficiently many for our
counting purpose. In the literal sense, it is not an algorithm;
it can be made into one by solving the corresponding system
of polynomial equations in the unknown coefficients in cases
of “failure”, but this is not relevant for the present study.

For any f ∈ F [xp] there exist g, h ∈ F [x] with f = xp◦h =
g ◦ xp. We call such an f a Frobenius composition and let
D+

n = Dn \F [xp] be the set of non-Frobenius compositions.
To fix some notation, we have integers

d ≥ 1, r = pd, k = ar, m ≥ 2, n = km,

κ with 0 ≤ κ < k and p ∤ aκ,



and polynomials

g = xk +
X

1≤i≤κ

gix
i,

h =
X

1≤i≤m

hix
i,

f = g ◦ h = hk +
X

1≤i≤κ

gih
i,

(5)

with hm = 1, hm−1 6= 0, and either gκ 6= 0 or g = xk; the
latter case corresponds to κ = 0. The idea is to compute
hi for i = m − 1, m − 2, . . ., 1 by comparing the known
coefficients of f to the unknown ones of hk and gκhκ. Spe-
cial situations arise when the latter two polynomials both
contribute to a coefficient. We denote by

h(i) =
X

i<b<m

hbx
b

the top part of h, so that h(m−1) = 0. Furthermore, we write
coeff(v, j) for the coefficient of xj in a polynomial v, and

ci,j(v) = coeff(v ◦ (h − h(i)), j).

Thus cm−1,j(x
k) = coeff(hk, j), and in particular, we have

cm−1,j(g) = fj for all j. To illustrate the usage of these
cij , we consider E1 below. At some point in the algorithm,
we have determined gκ, hm, . . . , hi+1. The appropriate cij

exhibits hi in a simple fashion, meaning that we can compute
it from fj and h(i). Lastly we define the rational number

i0 = m(
κ − a

r − 1
− a + 1) =

κm − n

r − 1
+ m;

thus i0 < m, and i0 is an integer if and only if

r − 1 | (κ − a)m.

Lemma 6. For 1 ≤ i ≤ m and 0 ≤ j ≤ n, we have the
following.

E1: If i < m, then

ci,(κ−1)m+i(gκxκ) = κgκhi,

and cm−1,κm(gκxκ) = gκ.

E2: If i < m, then

ci,n−r(m−i)(x
k) = ahr

i .

If r ∤ j, then coeff(hk, j) = 0.

E3: If i0 ∈ N, then

ci0,(κ−1)m+i0(xk + gκxκ) = ahr
i0 + κgκhi0 .

E4: If m = r and κ = k − 1, then

cm−1,κm(xk + gκxκ) = ahr
m−1 + gκ,

cm−1,κm−1(x
k + gκxκ) = −gκhm−1.

In the following algorithm, the instruction “determine hi

(or gκ) by Eµ (at xj)”, for 1 ≤ µ ≤ 4, means that the prop-
erty Eµ involves some quantity cij(·) which is a summand in
coeff(g ◦ h, j) = fj , the other summands are already known,
and we can solve for hi (or gκ). The main effort in the cor-
rectness proof is to show that all data required are available

at that point in the algorithm, and that the equation can in-
deed be solved. The algorithm’s basic structure is driven by
the relationship between the degrees κm of gκhκ and n − r
of hk − xn. We note that since r is a power of p, any b ∈ Fq

is determined by br.

Algorithm 7. Wild decomposition.

Input: f ∈ Fq[x] monic and original of degree n = km,
where p = char Fq, d ≥ 1, r = pd, and k = ar with
p ∤ a.

Output: Either a set of at most r + 1 pairs (g, h) with
g, h ∈ Fq[x] monic and original of degrees k, m,
respectively, and f = g ◦ h, or “failure”.

1. Let j be the largest integer for which fj 6= 0 and p ∤ j. If
no such j exists then if d ≥ 2 call Algorithm 7 recursively
and else call a tame decomposition algorithm, in either
case with input f∗ = f1/p and k∗ = k/p. If a set of
(g∗, h∗) is output by the call, then return the set of all
Frobenius compositions (xp ◦ g∗, h∗).

2. If p ∤ m then if m ∤ j then return “failure” else set κ =
j/m. If p | m then if m ∤ j + 1 then return “failure”
else set κ = (j + 1)/m. If p | κ, then return “failure”.
Calculate i0 = (κm − n)/(r − 1) + m.

3. If κm ≥ n − r + 2 then do the following.

a. Set gκ = fκm.

b. Determine hi for i = m − 1, . . . , 1 by E1.

4. If κm = n − r + 1 then do the following.

a. Set gκ = fκm.

b. Determine hm−1 by E3. If E3 does not have a
unique solution, then return “failure”.

c. Determine hi for i = m − 2, . . . , 1 by E1.

5. If κm = n − r then do the following.

a. Determine hm−1 by E4, in the following way. Com-
pute the set S of all nonzero s ∈ Fq with

asr+1 − fκms − fκm−1 = 0. (8)

If S = ∅ then return the empty set, else do steps
5.b and 5.c for all s ∈ S, setting hm−1 = s.

b. Determine gκ by E1 and E2 at xκm, from fκm =
ahr

m−1 + gκ.

c. For i = m − 2, . . . , 1 determine hi by E1.

6. If κm < n − r then do the following.

a. Determine hm−1 by E2.

b. If r ∤ m then determine gκ by E1 at xκm (as gκ =
fκm), else by E1 at xκm−1 (via κgκhm−1 = fκm−1).

c. Determine hi for decreasing i with m − 2 ≥ i > i0
by E2.

d. If i0 is a positive integer, then determine hi0 by E3.
If E3 does not yield a unique solution, then return
“failure”.

e. Determine hi for decreasing i with i0 > i ≥ 1 by
E1.

[We now know h.]

7. Compute the remaining coefficients g1, . . . , gκ−1 as the
“Taylor coefficients” of f in base h.



8. Return the set of all (g, h) for which g ◦ h = f . If there
are none, then return the empty set.

The Taylor expansion method determines for given f and
h the unique g (if one exists) so that f = g ◦ h; see von zur
Gathen (1990a).

We first illustrate the algorithm in some examples.

Example 9. We let p = 5, n = 50, and k = r = 5, so that
a = d = 1 and m = 10, and start with κ = 4 = r − 1. We
assume f39 = g4h9 6= 0. Then

h5 + g4h
4 = x50 + h5

9x
45 + (h5

8 + g4)x
40 + 4g4h9x

39

+ g4(4h8 + h2
9)x

38 + x36 · O(x) + (h5
7 + g4(4h5 + h9h6

+ h8h7 + h2
9h7 + h9h

2
8 + h3

9h8))x
35 + O(x34).

Step 1 determines j = 39, and step 2 finds κ = (39+1)/10
and i0 = 15/2 6∈ N. Since κm = 40 < 45 = n − r, we go to
step 6. Step 6.a computes h9 at x45, step 6.b yields g4 at
x39, step 6.c determines h8 at x40 by E2, step 6.d is skipped,
and then step 6.e yields h7, ..., h1 at x37, ..., x31, respectively,
all using E1. Step 7 determines g1, g2, g3, and step 8 checks
whether indeed f = g ◦ h, and if so, returns (g, h).

With the same values, except that κ = 3, we have

h5 + g3h
3 = x50 + h5

9x
45 + h5

8x
40 + h5

7x
35

+ (h5
6 + g3)x

30 + 3g3h9x
29 + g3(3h2

9 + 3h8)x
28

+ x26 · O(x) + (h5
5 + g3(3h5 + 3h9h6 + 3h8h7

+ 3h2
9h7 + 3h9h

2
8))x

25 + O(x24).

Assuming that f29 = 3g3h9 6= 0, the algorithm computes
j = 29, κ = (29 + 1)/10, i0 = 5 ∈ N, goes to step 6,
determines h9 at x45, g3 at x29, h8, h7, h6 according to E2,
then h5 at x25 via the known value for h5

5 +3g3h5 in step 6.d
with E3. Condition (11) below requires that (−3g3)

(q−1)/4 6=
1 and guarantees that h5 is uniquely determined, as shown
in the proof of Theorem 10 below. Finally h4, ..., h1 and
g1, g2 are computed.

As a last example, we take p = 5, n = 25, k = r = m = 5
and κ = 4, so that a = 1 and

h5 + g4h
4 = x25 + (h5

4 + g4)x
20 + 4g4h4x

19 + O(x18).

Again we assume f19 = 4g4h4 6= 0. Then steps 1 and 2
determine j = 19, κ = 4, and i0 = 15/4 6∈ N. We have
κm = 20 = n − r, so that we go to step 5. In step 5.a, we
have to solve (8). The number of solutions depends on the
field. Over F125, we have the following numbers of nonzero
solutions s when f20 6= 0:

8

>

>

>

<

>

>

>

:

6 for 1 · 124 values (f20, f19),

2 for 47 · 124 values (f20, f19),

1 for 25 · 124 values (f20, f19),

0 for 52 · 124 values (f20, f19),

and when f20 = 0:

(

2 for 62 values of f19, namely the squares,

0 for 62 values of f19.

We run the remaining steps in parallel for each value h4 = s
with s ∈ S. This yields g4 in step 5.b, h3, h2, h1 in step 5.c,
and g1, g2, g3 in step 7. ♦

We denote by M(n) a multiplication time, so that poly-
nomials of degree at most n can be multiplied with M(n)
operations in Fq. Then M(n) is in O(n log n loglog n); see
von zur Gathen & Gerhard (2003), Chapter 8, and Fürer
(2007) for an improvement.

For an input f , we set σ(f) = #S if the precondition
of step 5 is satisfied and S computed there, and otherwise
σ(f) = 1.

Theorem 10. Let f be an input polynomial with parame-
ters n, p, q = pe, d, r, a, k, m as specified, g, h, κ, i0 as
in 5 and 3, so that f = g ◦ h, set c = gcd(d, e) and suppose
further that

if i0 ∈ N and 1 ≤ i0 < m, then (−κgκ/a)(q−1)/(pc−1) 6= 1.
(11)

On input f , Algorithm 7 returns either “failure” or a set of
at most σ(f) normal decompositions (g∗, h∗) of f , and (g, h)
is one of them. Except if returned in step 1, none of them
is a Frobenius decomposition. The algorithm uses

O
`

M(n) log k (m + log(kq))
´

or O∼(n(m + log q)) operations in Fq.

Proof. Since r = pd | k, we have coeff(hk, j) = 0 un-
less r | j. Furthermore gκhκ = gκxκm + κgκhm−1x

κm−1 +
O(xκm−2) and κgκhm−1 6= 0, so that j from step 1 equals
κm (if p ∤ m) or κm − 1 (if p | m). Thus κ is correctly
determined in step 2. In particular, f is not a Frobenius
composition.

We denote by G the set of (g, h) allowed in the theo-
rem. We claim that the equations used in the algorithm
involve only coefficients of f and previously computed val-
ues, and usually have a unique solution. It follows that most
f ∈ γn,k(G) are correctly and uniquely decomposed by the
algorithm. The only exception to the uniqueness occurs in
(8).

In the remaining steps, we use various coefficients fj for
j = (κ − 1)m + i with 1 ≤ i ≤ m or j = n − r(m − i) with
i0 ≤ i < m. The value i0 is defined so that n − r(m − i0) =
(κ − 1)m + i0, and thus

n − r(m − i) ≥ (κ − 1)m + i if and only if i ≥ i0,

since the first linear function in i has the slope r > 1, greater
than for the second one. Since i ≥ 1, it follows that j >
(κ − 1)m for all j under consideration. For the low-degree
part of g we have

deg((g − (xk + gκxκ)) ◦ h) ≤ (κ − 1)m < j,

so that

fj = coeff(g ◦ h, j) = coeff(hk + gκhκ, j)

for all j in the algorithm.
We have to see that the application of E3 in steps 4.b

(where i0 = m−1) and 6.d (where m−2 ≥ i0 ≥ 1) always has
a unique solution. The right hand side of E3, say asr +κgκs,
is an Fp-linear function of s. The equation has a unique
solution if and only if its kernel is {0}. (Segre 1964, Teil
1, § 3, and Wan 1990 provide an explicit solution in this
case.) But when s ∈ Fq is nonzero with asr + κgκs = 0,
then −κgκ/a = sr−1. Writing z = pc, so that z − 1 =
gcd(q − 1, r − 1), we have

(−κgκ/a)(q−1)/(z−1) = (sr−1)(q−1)/(z−1) = 1,

contradicting the condition (11).



For the correctness it is sufficient to show that all re-
quired quantities are known, in particular ci,j(gκxκ) in E1

and ci,j(x
k) in E2, and that the equations determine the co-

efficient to be computed. We have

deg(hk − xn) = deg((ha − xam)r) ≤ (am − 1)r = n − r,

so that gκ = fκm in steps 3.a and 4.a. The precondition of
step 3 implies that for all i < m we have

(κ − 1)m ≥ n − r − m + 2 > n − rm + (r − 1)i,

n − r(m − i) < (κ − 1)m + i.

Thus from E1 we have with j = (κ − 1)m − i

f(κ−1)m+i = coeff(hk, j) + coeff(gκhκ, j)

= coeff((h(i))k, j) + κgκhi

with κgκ 6= 0, so that hi can be computed in step 3.b.
The precondition in step 4 implies that i0 = m − 1, and

hence (r−1) | (a−κ)m. E3 says that fκm−1 = cm−1,κm−1(x
k+

gκxκ) = ahr
m−1 + κgκhm−1. We have seen above that un-

der our assumptions the equation fκm−1 = asr + κgκs has
exactly one solution s. By an argument as for step 3.b, also
step 4.c works correctly.

The only usage of E4 occurs in step 5.a, where κ = (n −
r)/m = k − r/m. Since p | k, r is a power of p, and p ∤ κ,
this implies that r = m and κ = k − 1. We have from E4

fκm = ahr
m−1 + gκ,

fκm−1 = gκhm−1 = ahr+1
m−1 − fκmhm−1.

Thus hm−1 ∈ S as computed in step 5.a and gκ is correctly
determined in step 5.b. The precondition of step 5 implies
that i0 = m − 1 − 1/(r − 1), which is an integer only for
r = 2. In that case, i0 = m − 2 = 0 and no further hi is
needed. Otherwise, m − 2 < i0 < m − 1 and step 5.c works
correctly since i < i0.

The precondition of step 6 implies that i0 < m − 1. If r ∤
m, then coeff(hk, κm) = 0 by E2, and otherwise coeff(hk, κm−
1) = 0. Thus gκ is correctly computed in step 6.b. Correct-
ness of the remaining steps follows as above.

For the cost of the algorithm, two contributions are from
calculating (h(j))κ for some j < m and the various rth roots.
The first comes to O(m · log κ · M(n)) and the second one
to O(m · logp q) operations in Fq. E3 and E4 are applied
at most once. We then have to find all roots of a univari-
ate polynomial of degree at most r + 1. This can be done
with O(M(r) log r log rq) operations (see von zur Gathen &
Gerhard (2003), Corollary 14.16). The Taylor coefficients in
step 7 can be calculated with O(M(n) log k) operations (see
von zur Gathen & Gerhard (2003), Theorem 9.15). All other
costs are dominated by these contributions, and we find the
total cost as

O
`

M(n) log k · (m + log(kq))
´

. �

Our next task is to determine the number N of decom-
posable f obtained as g ◦ h in Theorem 10. Since (8) is an
equation of degree r + 1, it has at most r + 1 solutions, and
σ(f) ≤ r + 1. N is at least the number of (g, h) permitted
by Theorem 10, divided by r + 1.

Fortunately, Bluher (2004) has studied the equation (8)
and determined exactly its solution statistics. Her results
can be used to derive the following lower bounds.

Corollary 12. Let Fq have characteristic p with q = pe,
and take integers d ≥ 1, r = pd, ℓ = ar with p ∤ a, m ≥ 2,
n = ℓm, c = gcd(d, e), z = pc, µ = gcd(r − 1, m), r∗ =
(r − 1)/µ, and let G consist of the (g, h) as in Theorem 10.
Then we have the following lower bounds on the cardinality
of γn,ℓ(G).

(i) If r 6= m and µ = 1:

qℓ+m(1 − q−1)(1 − q−ℓ)(1 − q−1(1 + q−p+2 (1 − q−1)2

1 − q−p
)).

(ii) If r 6= m:

qℓ+m(1 − q−1)

`

(1 − q−1(1 + q−p+2 (1 − q−1)2

1 − q−p
))(1 − q−ℓ)

− q−ℓ−r∗−c/e+2 (1 − q−1)2(1 − q−r∗(µ−1))

(1 − q−c/e)(1 − q−r∗)

(1 + q−r∗(p−2))
´

.

(iii) If r = m:

qℓ+m(1 − q−1)2(
1

2
+

1 + q−1

2z + 2
+

q−1

2
− q−ℓ 1 − q−p+1

1 − q−p

− q−p+1 1 − q−1

1 − q−p
).

The algorithm works over any field of characteristic p
where each element has a pth root; in Fq, this is just the
(q/p)th power.

Example 13. When n = p2, then we have ℓ = r = m = p in
Corollary 12(iii), and including the Frobenius compositions
xp ◦ h, we obtain

#Dn ≥ αn ·
`1

2
(1 +

1

p + 1
)(1 − q−2) + q−p´

.

In characteristic 2, the estimate is exact, since we have
accounted for all compositions and a monic original poly-
nomial of degree 2 is determined by its linear coefficient.
Thus

#D4 = α4 · (
2

3
· (1 − q−2) + q−2) = α4 ·

2 + q−2

3
,

#D4 =
3

4
α4 over F2,

#D4 =
11

16
α4 over F4. ♦

Bodin et al. (2009) state without proof that Dn ≈ 3
4
αn over

F2 for even n ≥ 6.

4. DISTINCT-DEGREE COLLISIONS
The following are examples of collisions:

xkwn ◦ xn = xknwn(xn) = xn ◦ xkw(xn),

for any polynomial w ∈ F [x], where F is a field (or even a
ring), and

Tm(x, yn) ◦ Tn(x, y) = Tmn(x, y) = Tn(x, ym) ◦ Tm(x, y),

where Tn is a Dickson polynomial.



Ritt’s Second Theorem is the central tool for understand-
ing distinct-degree collisions. It says that under certain con-
ditions the above examples are, up to composition with lin-
ear functions, the only distinct-degree collisions. They are
called the First Case and Second case, respectively. We use
the precise version of Zannier (1993), and the following no-
tation:

deg g = deg h∗ = m, deg h = deg g∗ = ℓ, (14)

gcd(m, ℓ) = 1, g′(g∗)′ 6= 0, (15)

f = g ◦ h = g∗ ◦ h∗, all monic original, (16)

where g′ = ∂g/∂x is the derivative of g. We have the fol-
lowing normal form for these collisions.

Theorem 17. Let F be a field of characteristic p, let m >
ℓ ≥ 2 be integers and n = ℓm. Furthermore, we have monic
original f, g, h, g∗, h∗ ∈ F [x] satisfying (14) through (16).
Thus either the First or the Second Case of Ritt’s Second
Theorem applies.

(i) In the First Case, there exists a monic polynomial w ∈
F [x] of degree s = ⌊m/ℓ⌋ and c ∈ F so that

f = (x − ckℓwℓ(cℓ)) ◦ xkℓwℓ(xℓ) ◦ (x + c),

with k = m − ℓs. If p ∤ n, then both w and c are
uniquely determined by f and ℓ. Furthermore we have

kw + ℓxw′ 6= 0 and p ∤ ℓ, (18)

g = (x − ckℓwℓ(cℓ)) ◦ xkwℓ ◦ (x + cℓ),

h = (x − cℓ) ◦ xℓ ◦ (x + c),

g∗ = (x − ckℓwℓ(cℓ)) ◦ xℓ ◦ (x + ckw(cℓ)),

h∗ = (x − ckw(cℓ)) ◦ xkw(xℓ) ◦ (x + c).

Conversely, any (w, c) for which (18) holds yields a col-
lision satisfying (14) through (16) via the above formu-
las.

(ii) In the Second Case, there exist b, z ∈ F with z 6= 0 so
that

f = (x − Tn(b, z)) ◦ Tn(x, z) ◦ (x + b).

Now (b, z) is uniquely determined by f . Furthermore
we have

p ∤ n, (19)

g = (x − Tn(b, z)) ◦ Tm(x, zℓ) ◦ (x + Tℓ(b, z)),

h = (x − Tℓ(b, z)) ◦ Tℓ(x, z) ◦ (x + b),

g∗ = (x − Tn(b, z)) ◦ Tℓ(x, zm) ◦ (x + Tm(b, z)),

h∗ = (x − Tm(b, z)) ◦ Tm(x, z) ◦ (x + b).

Conversely, if (19) holds, then any (b, z) as above yields
a collision satisfying (14) through (16) via the above
formulas.

(iii) When ℓ ≥ 3, the First and Second Cases are mutually
exclusive. For ℓ = 2, the Second Case is included in
the First Case.

This normal form can be generalized to the case where
g′(g∗)′ = 0.

Corollary 20. Let Fq be a finite field of characteristic p,
let ℓ and m be integers with m > ℓ ≥ 2 and gcd(ℓ, m) = 1,
n = ℓm, s = ⌊m/ℓ⌋, and t = #(Dn,ℓ ∩ Dn,m ∩ D+

n ). Using
Kronecker’s δ, the following hold.

(i) If p ∤ n, then

t = (qs+3 + (1 − δℓ,2)(q
4 − q3))(1 − q−1).

(ii) If p | ℓ, then t = 0.

In the case disallowed in the above, namely when
gcd(ℓ, m) 6= 1, we find the following bounds.

Theorem 21. Let Fq be a finite field of characteristic p, let
ℓ be a prime number, m 6= ℓ a multiple of ℓ with p ∤ m and
without a prime divisor less than ℓ, and set n = ℓm and
t = #(Dn,ℓ ∩ Dn,m). Then the following hold.

(i) If n 6= ℓ3, then

q2ℓ+n/ℓ2−1(1 − q−1) ≤ t

≤ 2q2ℓ+n/ℓ2−1(1 − q−1)(1 + q−n/3ℓ3).

(ii) If n = ℓ3, then t = q3ℓ−1(1 − q−1).

Theorem 22. Let Fq be a finite field of characteristic p, ℓ a
prime number dividing m > ℓ, assume that p | n = ℓm, and
set t = #(Dn,ℓ ∩ Dn,m ∩ D+

n ). Then the following hold.

(i) If p 6= ℓ, then

t ≤ qm+⌊ℓ/p⌋+1(1 − q−1).

(ii) If p = ℓ, then

t ≤ qm+p−m/p+⌊m/p2⌋+1(1 − q−1).

Giesbrecht (1988), Theorem 3.8, shows that there exist
polynomials of degree n over a field of characteristic p with
superpolynomially many decompositions, namely at least
nλ log n many, where λ = (6 log p)−1.

5. COUNTING TAME DECOMPOSABLE
POLYNOMIALS

Giesbrecht (1988) was the first work on our counting prob-

lem. He proves an upper bound of d(n)q2+n/2 (1 − q−1) on
the number of decomposable polynomials, where d(n) is the
number of divisors of n. This is mildly larger than our bound
of about 2qℓ+n/ℓ(1−q−1), with its dependence on ℓ replaced
by the “worst case” ℓ = 2.

Theorem 23. Let Fq be a field of characteristic p and with
q elements, n ≥ 2 with p ∤ n, ℓ and ℓ2 the smallest and
second smallest nontrivial divisor of n, respectively (with
ℓ2 = 1 if n = ℓ or n = ℓ2), s = ⌊n/ℓ2⌋, and



αn =

8

>

<

>

:

0 if n = ℓ,

q2ℓ(1 − q−1) if n = ℓ2,

2qℓ+n/ℓ(1 − q−1) otherwise,

(24)

c =
(n − ℓℓ2)(ℓ2 − ℓ)

ℓℓ2
,

βn =

8

<

:

0 if n ∈ {ℓ, ℓ2, ℓ3, ℓℓ2},

q−c

1 − q−1
otherwise,

β∗
n =

q−ℓ−n/ℓ(qs+3 + q4)

2
.

Then the following hold.

(i) #Dn ≤ αn(1 + βn).

(ii) #In ≥ #P=
n − 2αn.

(iii) If p 6= ℓ, then #Dℓ2 = αℓ2 .

(iv) If p ∤ n and ℓ2 ∤ n, then

αn(1 − β∗
n) ≤ #Dn ≤ αn(1 − q−1β∗

n + βn).

(v) If p ∤ n, then

αn(1 − q−n/ℓ+ℓ+n/ℓ2−1(1 + q−n/3ℓ3))

≤ #Dn ≤ αn(1 − q−1β∗
n + βn).

6. COUNTING GENERAL DECOMPOS-
ABLE POLYNOMIALS

b

I b

n = ℓ2

A b

p 6= ℓ

b B

p = ℓ

b II

n 6= ℓ2

A b

p ∤ n

b i

ℓ2 ∤ n

ii b

ℓ2 | n

a b

n 6= ℓ3

b b

n = ℓ3

b B

p | n

i b

ℓ2 ∤ n

a b

p 6= ℓ

b b

p = ℓ

b ii

ℓ2 | n

a b

p 6= ℓ

b b

p = ℓ

α b

p3 ∤ n

b β

p3 | n

Figure 1: The tree of case distinctions for estimating

#Dn.

In the wild case p | n, we have to deal with an annoy-
ingly large jungle of case distinctions. To keep an overview,
we reduce it to the single tree of Figure 1. Its branches
correspond to the various bounds on equal-degree collisions

(Corollary 12) and on distinct-degree collisions (Section 4).
Since at each vertex, the union of all branches includes all
cases, the leaves cover all possibilities.

leaf in up-
Figure 1 lower bound on #Dn/αn per
I.A 1 1
I.B 1

2
(1 + 1

p+1
)(1 − q−2) + q−p > 1/2 1

II.A.i 1 − β∗
n ≥ 1 − q−n/ℓ−ℓ+n/ℓ2+3

II.A.ii.a 1 − 2q−n/ℓ+ℓ+n/ℓ2−1

II.A.ii.b 1 − q−n/ℓ+ℓ+n/ℓ2−1 1

II.B.i.a 1 − (q−1 + q−p+1 + q−n/ℓ−ℓ+n/ℓ2+3)/2
II.B.i.b 1 − (q−1 − q−p)/2
II.B.ii.a 1 − (q−1 + q−p+1 − q−p + q−ℓ+1)/2 1

II.B.ii.b.α 1
2
( 3
2

+ 1
2p+2

− q−1 − q−2

2
(1 + 1

p+1
)

− q−p+1

1−q−p
− δn,12 · q−1)

II.B.ii.b.β 1 − q−1 − q−p+1 1

Table 1: The bounds at the leaves of Figure 1.

Theorem 25. Let Fq be a finite field of characteristic p, and
ℓ the smallest prime divisor of the composite integer n ≥ 2.
Then we have the following bounds in Table 1 on #Dn over
Fq.

(i) If the “upper” column in Table 1 contains a 1, then
#Dn ≤ αn.

(ii) The lower bounds in Table 1 hold.

The multitude of bounds in Table 1 is quite confusing.
Theorem 26 provides simple and universally applicable esti-
mates.

Theorem 26. Let Fq be a finite field with q elements and
characteristic p, let ℓ be the smallest prime divisor of the
composite integer n ≥ 2, and αn as in (24). Then the fol-
lowing hold.

(i) q2
√

n/2 ≤ αn < 2qn/2+2.

(ii) αn/2 ≤ #Dn ≤ αn(1 + q−n/3ℓ2) < 2αn < 4qn/2+2.

(iii) If q ≥ 5, then #Dn ≥ (3 − 2q−1)αn/4 ≥ q2
√

n/4.

(iv) If ℓ 6= p or p2 ∤ n or p3 | n, then #Dn ≥ αn(1− 2q−1).

(v) If p ∤ n, then |#Dn − αn| ≤ αn · q−n/3ℓ2 .

Open Question 27. • In the case where p = ℓ and
p2 divides n, can one tighten the gap between upper
and lower bounds in Theorem 26(ii), maybe to within
a factor 1 + O(q−1)?

• Can one simplify the arguments and reduce the num-
ber of cases, yet obtain results of a quality as in The-
orem 26? The bounds in Corollary 12 are based on
“low level” coefficient comparisons. Can these results
be proved (or improved) by “higher level” methods?
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