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work forms part of an endeavour to
and the power of parallelism in symbolic
computailgon for which problems in algebraic
m@@ul tion with a polynomial-time sequential
solutipn z :ddo fast parallel algorithms exist?
An§w§rs g.e this question may help to understand
th% pewei'nof parallelism in general: one may com-
paz‘\'c he:power of different models of concurrent
co&l@talﬁm by testing on which models these
algorithms can be implemented.

:I% tRis paper we present fast parallel algo-
rlfﬁlﬁq f@g various problems in algebraic compu-
tatiofi Et:soon became apparent that the algo-
rlttms faE all the problems considered here would
foITow tiﬁe same pattern, namely conversion
be&vgen alﬁerent representations of the given
ratioral ;gm,tlon So we start by introducing in

section 2 Ehe notion of representations of rational
fulkﬁong fiin a given "base" of polynomials. This
noglon em:ornpasseq several ways of representing
ratgcmal ignctlons which are especially familiar if
th@ rational function is a polynomial: the
seguénce_ Zof coefficients, a list of values, Taylor
seﬁe‘§ ,aémi a general list of values in "Hermite
fomnat@’f It turns out that if numeralor and
degqﬁu—n tor degrees are correctly specified, then
usuaﬂyg(imt not always) such representations also
dege Eniné a rational function uniquely.

Z Ke&%mnbe in section 3 two fast parallel algo-
rltﬁrﬁ%tinat convert the coefficient representa-
t1c51 EBF u%atlonal function into a ""base represen-
tamdh": gmd vice versa. Combining them we get
anNabg ]3’(311‘[1 that converts the representation of
a S‘a-tlgrﬁai function in one base into that in
angtﬁee tbase. Section 4 discusses the existence
. qu:esgloglgrnr representations. This turns out to be
shgh§1)ﬂ skess straightforward than one might
expé‘c't>and we see e.g. that the rational functions
required in Padé approximation or rational inter-
polation may fail to exist.
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REPRESENTATIONS OF RATIONAL FUNCTIONS
Joachim von zur Gathen
Department of Computer Science

University of Toronto

Extended Abstract b

Section 5 presents as application of the gen-
eral conversion algorithms fast parallel methods
for the following problems in symbolic manipula-
tion: Taylor expansion, partial fraction decompo-
sition, Chinese remainder algorithm, elementary

symmetric functions, Padé¢ approximation, and
various interpolation problems. As our model of
parallel computation we can take a parallel alge-
braic computiation graph, where at each node
each processor can either perform an arithmetic
operation (+,-,%,/,fetching a constant) or a test
(a=0?) or a boolean operation (see von zur
Gathen [83]). The algorithms can also be imple-
mented on an algebraic PRAM. The algorithms all
run in parallel time O(log®n) and use n.%Y) pro-
cessors, where n is the input size. They work
over an arbitrary ground field.

In section B, we generalize this approach to
include representations in a “Laurent format”. As
expected, rational functions then always have a
unique representatior.

The dual relationship between evaluation at
many points and interpolation has been observed
for a long time; also the fact that both computa-
tional problems consist in converting the
representation of a polynomial from one format
to another; see e.g. Strassen [74]. However, one
usually employs two quite different-looking
sequential algorithms to solve the two problems.
Besides the |wunification resulting from our
approach even for polynomials, the fact of includ-
ing rational functions into this framework seems
to be even more interesting from a computational
point of view, making bedfellows of such distinct-
looking problems as Hermite interpolation and
Padé approximation. We leave as an open ques-
tion how well this approach translates into the
sequential setting.



[

2. Representations of rational functions
Let F be an arbitrary field. A sequence

B=(b,,...,by) of pairwise relatively prime polyno-
mials b,,...,bp € F[z] is called a base. A sequence
N=(ny,...,n, € NP with n;>1 is called a precision

(for B), and n = Y mydegd; is the total preci-

1sisp
sion of (B,N). Asequence

r=(r,0,...,r1‘n‘_ Pt Tpore rp_,,,_l)

such that r;€F[z] and degry; < degb; for all 4,5
with 1<i<p and O<j<n; is called a representa-
tive in base B with precision N, or (B,N)-
representative for short. R(H,N) is the set of all
(B,N)-representatives. R(B,N) can be identified

with F*. If f =g/ heF(z) and for 1<i<p we have
g=h ¥ rijb,j mod bt-"",
0<j<ng
ng(bi,h—) = 1,

then r is called a (B,N)-representation of f. In
other words, if we set

= Y

0<j<ng

"'ij b{ '

then f =r; mod b/ is given with “precision
n;degb;"”, and 7; is developed according to
powers of b;. Let us look at a few familiar
representations that fit into this framework. As
examples we will use n=5 and the two rational
functions

f1=z4-z3+22%-3z -2 € Flz],

—7z24+z 42
=———= "€ F(z
Je= e Fp—Y (=).
When B and N are given, we will write
r=p(f)if r is a (B,N)—representation of f.
1. Sequence of coefficients. In this most fami-
liar of all representations we have p=1, B= (x)
and N=(n). For a polynomial f = Zf, z?

€ Flz], the (B,N)- representatlon
p(f)=(fg....nfn—1) is simply the sequence of the
first n coefficients (irrespective of the degree of
f). For a rational function f, p(f) is an initial
segment of the power series expansion of f
around 0. In the example, N=(5) and
o(f )=p(f 2)=(-2,-3,2,~1,1).

2. List of values. Given are a,,...,a, €F pairwise
distinct, and p=n, PB=(z-a,,...,z—a,) and
N=(1,...,1). Then 7;=f(a;) is the value of f at
a;. For the example, let (ay,...,25)=(-2,-1,0,1,2)
(and assume that charF#5). Then
B=(z+2,z+1,z,x—~1,z-2), N=(1,1,1,1,1), p(f )=

(36,5,~2,-3,8), and p(f 2)=(—28,8,—2,—4, —“—b?i).

s
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3. Taylor expansion. Here some a€F is given,

and p=1, B=(z~a), N=(n), and r=(rq,...,Tn-1)
where
f = ¥ ri(z-a) mod(z—a)",
0gj<n
so that rg,...,7,_; are the first n coefficients of

the Taylor expansion of f at a. (It is assumed
that f can be written with a denominator that

=13y,
my = (@)

The sequence of coefficients is nothing but
the Taylor expansion at 0. In the example, if we
choose a=2 and n=5, then p(f1)=(8,25,20,7,1)

-3 4 -1 1
and o(f == 5 357 25" Ta5 )
4. General I.'Lst of values. As a common generali-
zation of the last two cases, we get the general
list of values of the rational function and some

of its derivatives in “"Hermite format”. We have
@j,....a, €F pairwise distinct, B=(z -a,,...,z—ay)
and N=(ny,...,ny) with n;>1 and
n4+ - - +ny=n. Then

p(F)=(Ti0 Tamgm1i TR0 T my=1)
where

= Y rij(::—a.i)j = f mod (z—a;)™

0%j<ny

is the initial segment of length n; of the Taylor
expansion of f at a;. In the example, we choose
Pp=2,a,=—1,a,=2, B=(z+1,z-2) and N=(2,3).
Thzen p(f1)=(5,-14;8,25,20) and p(f2)=(6,—14
-24 -3 4

5 "5 '24”

3. Conversion algorithms

We now describe two algorithms: the first
one converts a rational function that is given as
the quotient of two polynomials (and these poly-
nomials are represented by their standard
coefficient sequences) into its representation in
base B with precision N, and the second one
performs the inverse conversion. Thus the stan-
dard representation by coefficients plays a spe-
cial role: The basic parts 7y are given by their
coefficients, and all conversions Ifrom one
representation to another pass via this special
representation.

We will make use of the Extended Euclidean
Scheme of two polynomials a2g,a,€F{z]:

ap = gq.a;+ 2, Saag + l22; =g,

Qo= Q1@ t+ g Sii2o t 412y =@y

Q-1 = Qi

sigzg + Lieg=q



where the following conditions are satisfied for

2<k<sl: o, q, s, tx€F[z], dega, <dega,_,,
so=1, £9=0, s,=0, t,=1, S = Sg_z — Qx-15k— and
b=ty 2 — Qe 1l ;. Thus the gq’'s are the quo-
tients and the a's the remainders of Euclid’s
algorithm, the s's and £’s are the "continuants"
or "convergents”, and ged(f.g) is the unique
monic scalar multiple of a;. (By convention, all
ged’s of polynomials in F[z ] are monic.)
Algorithm STATREP. (Standard-coeflicients-to-
representation)

A base B=(b,,..,b,) with a precision
N=(n,,...,n,) and a pair (g,h) of polyno-
mials in Flz] such that
ged(b, - - by,h)=1. All input polynomi-
als are given by their coeflicient vec-
tors.

Output: The (B,N)-representationr of f =g/ h.
1. For all 7, 1<i<p, do steps 2, 3, 4.
2. Compute s;,t;€F[z] such that

Input:

s;bi% + t;h =1,

degt; < n; degb;.
3. Compute ;€ F[z ] such that

r; = gt; mod bin‘,

degr; < n; degb;.
4. For 0=<j<n; compute wu;;, v,y EF[I]‘ such
that

= wy; b + vy,

degv;; < j degb;,

Ty = Wiy~ Uy jebi

(Division with remainder of 7; by bJ. Use
Ujo =7; and u;, = 0.)
5. Return

T=(T 100 T 1nym1i " Tpo s Tp g ~1)-

Algorithm REPTSTA. {Representation-to-

standard-coefficients)

A base B=(b,,...bp) with a precision
N=(n,,...n,) and total precision n, a
representation r€R(B,N) and deN with
d<n. This number 4 serves as a bound
on the degree of the denominator poly-
nomial. Again all input polynomials are
given by their coefficients.

Input:

Output: The coeflicients of two polynomials

g.heF[z] such that = is a
(B,N)-representation of -Z—, degh=<d,
degg +degh<n, h is monic and

ged(by - - - by,h) divides ged(g ,h).
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1. For 1<i<p computer, = ¥ Ty bi.
osj<mny

2. Compute v € F{z] such that
W,i<i<r, u =7y mod.b:",
degu < Y n;degb;.

3. Compute the length I and the entries a;, s .8,
where 1<k=<l, of the Extended -  Euclidean

Scheme of (ao,a1)=(b';’ e b:”,u).

4. Determine k such that dega,<d <dega, ., and
return g=a; h=4;.

Theorem 3.1. The algorithms STATREP and
REPTSTA work correctly as described. They can
be performed in parallel time O(log?n) on
inputs that have total precision at most n and
(for STATREP) degg +degh<n. 0O

4. Representability

We now want to discuss some of the general
properties of these representations.

Fix a base P and a precision N. Optimisti-
cally, one might hope that every rational func-
tion has a unique (B,N)-representation, and that
algorithms STATREP and REPTSTA compute
functions that are inverse to each other.

Both properties require a little care, how-
ever. If f=g/h with g heF[z], gcd(g .h)=1 and
gcd(by,h)#1, then f has of course no represen-
tation in base F. Namely, if r were a represen-
tation, then

-qu(blrh‘) ' g—hrlr
and hence
ged(by,h) | g,

contradicting the assumption. Therefore we can
only expect a representation if f isin

S(B)=f§{feF(z): 3g,heF[z] such that f=g/h
and gcd (b, - - - by, h)=14.

(This semilocal ring S(B) is the intersection in
F(z) of all localizations F[z]), with g running
through the irreducible factors of b; - - - b,.) In
Theorem 4.1 we show that indeed every f €5(F)
has a unique (B, N)-representation.

For the second property of algorithms
REPTSTA and STATREP computing inverse func-
tions, consider the example p=1, B=(z3-z),
N=(1), d=1 and r=(z?+1). The output of algo-
rithm REPTSTA is (~Rz,—x). Thus
f=—2z/(—z)=2, and if we apply algorithm S74-
TREP to f, the output is (2)#r. This example
makes it clear that the second property will not
hold for all reR(B,N). But we will see that it
holds for "almost all” r.



Theorem 4.1. Let B be a base, N a precision for
B and f € F(z). Then f has a unique (B,N)-
representation iff f € S(B). 0

We now write STATREP(B,N,f)=r and
REPTSTA(B,N,r ,d) = f for the functions com-
puted by the two algorithms STATREP and
REPTSTA, and want to prove that they are
inverse bijections on the following set T(B,n.d)
which is the "degree-bounded version" of S(B):

T(Bn.d)={fecF(z): 3g.heFiz] f=g/h,
ged(by - - - by,h)=1,degg <n —d, degh=<dji.

Theorem 4.2. The functions computed by S74-
TREP and REPTSTA give inverse bijections
between the set T(8,n,d)CF(z) and its image in
REB,N). O

5. Applications

We can now reap the fruits of the work spent
in setting up the previous notation. By putting
together algorithms REPTSTA and STATREP
(using different bases) we obtain a fast parallel
algorithm for conversion from one base to
another. This yields fast parallel algorithms for
a number of important computational problems
(and also clarifies how these problems are
related to each other).
INTERPOLATION(n.) has as input a pair (a,r)
where a=(o,,...,a, ) and r ={r,,...,r,) have entries
from F, and a;#a; for 1<i<j<n. The output are
the coefticients of the unique f € Flz] such that
degf <n and f (e;)=7; for 1=<i=<n. This function
is nothing but the conversion from
((z -a4,....2~ay,),(1,...,1))- representation to
((z).(n))-representation. In order to obtain the
unique monic f €F[z] of degree n such that
f (a;)=r; for all i, one uses the above interpola-
tion for the values r; —a*.

TAYLOR EXPANSION(n) has as input € and the

coefficients (g¢,....9n -d—1; Pos-- - Fg—1) Of

J= 3 gj:tj /¥ h;zi eF(x)
0sj<n—d O0sj<d
where Yh;a?#0. The output are the Taylor
coeflicients fq,...fn-1€F of f at a, so that
f= Y filz—a) mod(z—a)*. This is the
0<j<n

conversion from coefficients to ((z—a),(n))-
representation.

For ‘a polynomial f, TAYLOR EXPANSION can be
computed by calculating binomial coefficients
and evaluating universal Taylor coefficients of f
(see e.g. von zur Gathen [B3], section B). This
can be performed in parallel time O(logn), so
that the statement of Theorem 5.1 below is not
interesting in this case.
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HERMITE INTERPOLATION(n) has an input of the
form (2,71,....7p) where a=(a,,...,ay),
7:=(Tig- - Tymy=1), all a;,7y;€F, and a;#a; for
1=i<j<p, and n,+ - - +n,=n. The output are
ithe coeflicients of the unique polynomial
f €F[z] such that degf <n and
f= Y rj(z-o) mod(z-a)™
0<j <ny

for 1<i<p.

Thus the first n; coefficients of the Taylor
expansion of f at a; are prescribed. If charF=0,
this is equivalent to prescribing the values of
the first n; derivatives of f at a; as

(%’ (@) = 717y,

HERMITE INTERPOLATION(n) is the conversion
from ((z~e,,....z —a,), (n4,...,ny))-representation
to ((z).(n))-representation. Both INTERPOLA-
TION and TAYLOR EXPANSION for polynomials are
special cases of this problem. Again, one can
also compute the unique monic interpolating
polynomial of degree n.

CHINESE REMAINDER ALGORITHM(n) has as input
a sequence (bl,...,bp,rl,...,rp) of polynomials
from F[z] such that deg(b, --by)=n,
degr; <degb; and gcd (b;,b;)=1 for 1<i<j<p. and
ged(b;,b;)=1 for 1<i<j<p. The output are the
coefficients of the unique fe€F[z] such that
f =r;modb; for 1<i<p and degf <n. This is
the conversion from ((by....bp), (1,...,1))-
representation to ((z),(n))-representation.
ELEMENTARY SYMMETRIC FUNCTIONS(n) has as
input a sequence (c,,...,c,) with ¢;€F. Output
are the elementary symmetric functions
sj=0;(cy,...,e,) for 1=j=<n. Thus

P —s1x™ 74 - - - H(—1)Ps, = (T=¢1) - - - (T—C,).

This can be viewed as a special case of the monic
version of HERMITE INTERPOLATION: Set
C={cy,..utpl, p=#C, {@;,...,0,3=C, and 7r;;=0 for
0=j <n;, where n; occurs exactly n; times among
C1,...,€n. The inverse function - root-finding -
cannot be computed by a rational algorithm.

PARTIAL FRACTION DECOMPOSITION(n) has as
input the coefficients of polynomials b&;,...,b,
and g, and n,,...,n, €N such that by,....by are

pairwise relatively prime and
degq <de_q(b’lll - b:’)=n. Output are the
coefficients of the unique polynomials 7y

(1=i=p,1<j<n;) such that
9 -y M

Ty g™ asisp Of
bl bp ls}<1£ *

degry; < degb;.



PARTIAL. FRACTION DECOMPOSITION(n) is the
conversion from ((z),(n))-representation to
((b1,....65),(n1,...,ny ))-representation.

PADE APPROXIMATION(7) has as input a polyno-
mial feF[xz] of degree <n, and deN with
0=<d <n. The output consists of the coefficients
of polynomials g heF[z] such that
g = fh mod z™, degg<n-d, and degh<d. Thus
g/h = f modz™ is a Padé approximant to f
(provided h(0)#0). This function is computed by
algorithm REPTSTA with input B=(z), N=(n)
and r=(fg,....f n-1) Where f =Y f;z*.

CAUCHY INTERPOLATION(n ) has as inputd € N
with 0=<d<n and a pair (z,r) where a=(aq,...,2,)
and r=(r,,...,r,) have entries from F and o;#a,
for 1<i<j=n. The output consists of the
coefficients of the unique polynomials g,h €
Flz] such that g(e;)=h(a)r; for I1<i=n,
degg<n—d, degh<d, and h is monic. Thus
f=g/h is a rational function with prescribed
denominator degree that interpolates the given
values r; at a;, i.e. f (e;)=r; (provided h(a;)#0).
Cauchy [1821] had first considered this problem
and given an explicit solution by a closed for-
mula similar to the Lagrange interpolation for-
mula. Algorithm REPTSTA with base
B=(z-a,,..,z—-0,) and precision N=(1,..,1)
computes a solution, if one exists.

RATIONAL HERMITE INTERPOLATION(n) has an
input of the form (d,a,ry,...,7p), Where 0=d<n,
e=(2y,....8), Ti=(Tig,...Tin,—1), all T EF,
o;#a; for 1<i<j<p, and n;+ - +n,=n. The
output are the coefficients of the unique polyno-
mials g ,h€ F[z ] such that

g=h- ¥

0=y <ny
degg <n —d, degh=<d, and h is monic. Thus the
initial segments of the Taylor expansion of the
rational function f=g/h at a; are prescribed,
e L f= ¥ 7y (z-a) mod(z—ay)™

0=j <ry

_(provided h(e;)#0). This problem simultane-
ously generalizes HERMITE INTERPOLATION
(which has d=0), PADE APPROXIMATION (which
has p=1 and a,=0), and CAUCHY INTERPOLATION
(which has ny= - .. =n,=1). It can be computed
by algorithm REPTSTA with input
B=(z~-a,,..,2-a,), N=(ni,...ng) and
7=(7rq,...7p).
Theorem 5.1. The following nine functions can
be computed in parallel time O(log?n) using
n%1)  processors: INTERPOLATION, TAYLOR
EXPANSION, HERMITE INTERPOLATION, CHINESE
REMAINDER ALGORITHM, ELEMENTARY SYM-
METRIC FUNCTIONS, PARTIAL FRACTION DECOM-
POSITION, PADE APPROXIMATION, CAUCHY INTER-
POLATION, RATIONAL HERMITE INTERPOLATION.

rii(z -a;) mod (z—a;)™,
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Remark 5.2. Theorem 4.1 has described the
rational functions with unique representation.
For a "bad case” for Padé approximation, let
n=5 and r=z""1—z™®?4+1. Then g=h=z? is the
only solution of the conditions

g,heF[z], g =hr modz™,
degg <n —2, degh=<2, h monic.

In particular, there does not exist a Padé
approximant f=g/heF(z) satsifying the above
conditions and ged (g ,h)=1. This phenomenon of
nonexistence of solutions to the Padé approxi-
mation problem and for rational interpolation
was discovered by Kronecker [1881], who illus-
trated it with an example. In Padé's work
[1892], this fundamental limitation does not
appear.

Remark 5.3. A natural extension of the present
notion of representation would be to allow

"rational” representations, either by allowing

. §4 X .
fractions r; = ?L' or by having r; in a Laurent

1
format r; = Y, ryf{ with d;€Z  With the
dyj <ny+dy

latter approach, it turns out that indeed, given a
base and precision, every rational function has a
unique Laurent representation. Another direc-
tion would be to consider other Euclidean
domains, for example the ring of integers,

instead of Fz].

In order to obtain good parallel algorithms, it
was sufficient to consider the general case of
base conversion. It might be interesting to
know how well this general approach carries
over to the well-understood sequential algo-
rithms.
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