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.’ Iniroduclion

The problem of factoring polynomials has a
nerable history, and also has seen an exciting
rst of recent activity, overshadowed by the
tilestone result of Lenstra-Lenstra-Lovdsz [82].
1 3s now known that univariate polynomials over
he rational numbers and over finite fields can be

f etored in polynomial time - over finite fields
Qvélih a probabilistic algorithm. The same is true
cfpr taultivariate polynomials in the dense encod-
Sing, so that the running time of the factoring
galgorithm is polynomial in the length d™ of the
=dense representation of a polynomial f of degree
:lés‘:.s than d in each of n variables (Kaltofen [82],

e fmsura [83a] for Q, Chistov-Grigoryev [82], Lens-
tra [83], von zur Gathen-Kaltofen [83] for finite
offslds). Farlier algorithms (Wang-Rothschild [’73],

H'\ilisser [75], Wang_[ 8], Wang [78], Zippel [81])
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In this paper, we present a factoring algo-
thm whose running time is polynomial in the
gth of a sparse encoding, where f is
—ge resented as a list of M monomials, and each
gri"lpnomlal is given by the exponent vector, writ-
,_,teil in unary, and the nonzero coefficient. This is
gpraobably the more important measure from a

Br%ctlcal point of view.

The main results of this paper are two general
Qﬁﬁaorema ar:d two probabilistic algorithms based
ﬁ@rﬁ“ these. The first algorithm is a test for irredu-
_@Elhty, its running time is polynomial in ndM.
D'E}re second algorithm factors the polynomial; its
@I“uénmng time is polynomial in nd#, where M is
~t§1ae number of nonzerc terms in f or any of its
l\li‘redumble factors, i.e. input plus output size. We
Ng;_l;ow in Example 8.A that the output size can be
<#wre than pelynomial in the input size; thus #

sannot be replaced by M.

tncoding the exponents in binary, the length
of the encoding of f could conceivably be propor-
tional to logd rather than d. Then already the
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simplest questions about univariate polynomials,
e.g. whether the gcd of several polynomials is 1,
become NP-hard (Plaisted {77]). Thus we have to
disallow this ultra-compact encoding.

The algorithms rely on two theoretical
results. The first is an effective version of
Hilbert's Irreducibility Theorem. We consider
substituting n—2 variables in feF{z,,...,x,] by
linear expressions in the remaining two variables.
Then for an irreducible f and a randomly chosen
substitution, the resulting bivariate polynomial is
irreducible with high probability. The proof uses
methods of algebraic geometry.

A finite ground field may not have enough ele-
ments to make our probabilistic algorithms work.
The second thecretical result overcomes this obs-
tacle. In general, when one makes algebraic
extensions of fields, irreducible polynomials have
a tendency to split. We prove the somewhat
surprising fact that for certain extensions - easy
to describe and arbitrarily large - this does not
happen.

2. An effective Hilbert irreducibility theorem

We start with a theorem of algebraic
geometry going back to Bertini [1882]. The Ber-
tini theorems come in several flavors. They usu-

ally assert thal if an algebraic variety (embedded
in some affine cr projective space) has a certain
property, then - under suitable conditions - also
the intersection with a general hyperplane has
this property. Properties considered include
smoothness, normality and the case of interest to
us: irreducibility. In the context of algebraic
computations, Bertini's theorem has been used by
Heintz-Sieveking [81] for testing whether integer
polynomials are irreducible over C. We will use
substitutions by linear functions of the first two
variables frequently, and it is convenient to have
a notation for them.



Definition 2.A. If F is a fleld, f € Fz,,....z,] and
t=(u,v,w)=(Uag,..., Uy Ugser ey Up W3y ., Wy )€ F 32
then

St = f(z,,25 usz, + vaZa + wy,...,

UpZT, + v, Tp + Wy, ) € Flz,,25].

Theorem 2.B. (Bertini) Let K be an algebrai-
cally closed field, n=2 and f €K[z,,...,z, ] irredu-
cible. Then there exists an algebraically closed
field L containing K and teL3™® such that
ftieL[z,,z5] is irreducible. O

Hilbert [1892] proved in his famous Hilbert
Irreducibility Theorem that in an irreducible
f€Q[z,,...,z,] one can substitute integers for
Zg,....z, and preserve irreducibility. However,
no effective version of precisely this theorem is
known. We now present an effective result,
involving a more general linear substitution for
the variables. The approach to this effective Hil-
bert irreducibility theorem is as follows. First
we consider algebraically closed fields, so that
we can apply the powerful methods of algebraic
geometry, in particular the Bertini theorem.
Within the set of all bivariate polynomials, the
reducible ones form a subvariety of small
dimension and small degree. We view the substi-
tutions z; = w;z; + v;z5 + w; as a morphism to
bivariate polynomials, and then the "unlucky
substitutions” are contained in the set of zeros
of a polynomial of small degree. Now take an
arbitrary field F and an irreducible multivariate
polynomial f over F. If f factorsas f;---f,
over an appropriate algebraically closed field X
containing F, then by the above almost all sub-
stitutions z; = w;z, + v;zo + w; leave each f;
irreducible. The Galois group of K over F pro-
vides additional conditions that hold almost
everywhere and ensure that the substitutions
leave f irreducible, which is the desired result.
For the case F = Q, Kaltofen [82] has a similar
result.

So for a field K and d=0, denote by X; the
vector space of polynomials in K[z,y] of degree

d+2
at most d. X; has dimension ag = [ 2 ] Also
let

Yy = {f €X3: f is reducible §.

Lemma 2.C. Let K be algebraically closed. Then
Y3<CX, is a closed proper (reducible) subvariety,
and degYy <2%. 0O

Let FCK be a normal field extension,
feF[z,,..z,] squarefree, and f = f,- - f, an
irreducible factorization of f in Kl=z,,....z,].
Then G = Gal(K/ F) operates coefficientwise on
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K[z,,...,z, ], and G also operates on
T=1f1..f

Proposition 2.D. In this situation, f is irreduci-
ble in Flz,,...,z,] iff G operates transitively on

r. O

Theorem 2.E. Let F be an arbitrary field, n>=0
and fe€F[xz,,..,x,] irreducible and of total
degree d. Then there exists a fleld X containing
F and a nonzero polynomial

S EK[ Us....,Un,Va,...,Vn,Wa,...,Wn]

of total degree at most 192¢° such that for all
t = (u,v,w)eF3™2 yith s(¢)# 0 the polyno-
mial

Sty = f(zq, 3 usz) + v3Ze + wy,..,,
Up Ty + UpZy + Wy )EF[Z), 7]

is irreducible. O

Remark 2.F. It would be nice to have an analo-
gue of Theorem R.E involving only the simple
substitutions z; = w; with w;€F. For algebrai-
cally closed F this is not always possible, but for
the computationally important case of the
rational numbers there is still hope for an
effective version of Hilbert's irreducibility
theorem. For practical purposes (see Remark
6.E), it would be convenient to use only the sim-

" ple substitutions, but, alas, it is still consistent

with our present knowledge - although conjec-
tured to be false - that for all d there exists
some irreducible polynomial in Q[z,y] of degree
d and with small coefficients such that all sub-
stitutions y=w with weZ and |w| = 2% say,
yield a reducible polynomial. The {ollowing
result gives some strength to the conjecture
that an effective version of the Hilbert Irreduci-
bility Theorem may hold over some infinite
fields.

Theorem 2.G. Let F be an infinite field, n=2 and
d=1. Then for almost all feF[z,,..,z,] of
degree at most d and almost all
(ws,...,w, )EF™ 2, the bivariate polynomial

f(zy,zaws,..., wy)EF[Z,,25]

is irreducible. 0O

3. The irreducibility test

Based on the results of the previous section,
we now present a probabilistic polynomial-time
irreducibility test for sparse multivariate poly-
nomials. We assume that a (probabilistic)
irreducibility test for bivariate polynomials is
known. All polynomials are supposed to be given
in the "sparse representation”, consisting of a
list of coefficients and exponent vectors.
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Algorithm IRREDUCIBILITY TEST.

Input: A polynomial f €F[z;,...,Z,] and a finite
set ACF. ’

Output: Either "irreducible” or 'reducible"” or
"failure".

1. Choose

t = (ua,...,'u.n,vs,...,'u,,,,ws,...,wn)EAat""z) at
random, and set

g = fit}= f(z1,25usT; + V3T + ws,

U Ty + Up T2 + wn)EF[zl,Iz].

2. If the total degree of g is less than the total
degree of f, then return "failure”.

3. Use the irreducibility test for bivariate poly-
nomials with input g, and return the answer
"irreducible” or ‘reducible” or "failure”
according to the outcome of that test.

In order to estimate the running time and
error probability of this algorithm, we assume
that the test for a bivariate polynomaial
heF[x;z5] of degree at most d uses not more
than 7(d) operations in F and either returns the
correct answer "irreducible"” respectively "redu-
cible”, or else "failure'; the latter with probabil-
ity at most e. We also assume that a random
element of 4 (with respect to the uniform distri-
bution) can be chosen in O(log (#4)) "random bit
choices".

Theorem 3.A. Let feF[z4,....z,] have total
degree d and M nonzero terms, and ACF with
#4 =55n2%°  Then algorithm IRREDUCIBILITY
TEST has the following properties:

(i) U f is irreducible, it returns "irreducible”
with probability at least 1—(e+279%.

(ii) If f is reducible, it either returns “reduci-
ble” or "failure”. The latter happens with
probability at most £ + 279",

(iii) It uses O(d3M) + 7(d) operations in F, and
O(n(d? + logn)) random bit choices. 0O
For a number field F, Theorem 3.A gives a

random polynomial-time irreducibility test for
sparse multivariate polynornials.
presented as F = Q[z]/ (k) with A€Q[2z] monic
irreducible of degree rn.. As is usual, we write an
element of F as a polynomial in z of degree less
than m with rational coefficients, and a rational
number as a pair of integers. Assume that the
integers occurring in h all have absolute value
at most H. Now let fe€F[z,,...z,] have total
degree d and M nonzero terms, and let B be the
largest absolute value of the integers that
appear in the representation of the coefficients
of f. We then call

s(f) = M(dn + mlogB) + logH

Let F be .

174

the size of f. Clearly, the "sparse representa-
tion” of f - given by a list of all nonzero
coefficients in f - can be represented by a bit
string of length O(s(f)),
Q(M(nd+mlogB)) bits are
represent f in this way.
Corollary 3.B. Let F be a number field. Irredu-
cibility of a polynomial f over F can be tested
in random polynomial time in s{f). DO

and in general
necessary to

4. Field extensions and factorization

The irreducibility test for multivariate poly-
nomials in the last section assumes that one
can make random choices from a sufficiently
large finite subset of the ground field. This may
not be possible over a small finite fleld. This
section presents a somewhat surprising result,
namely that one can make arbitrarily large alge-
braic extensions of a field without changing the
factorization of a given polynomial.

Theorem 4.A. Let F be an arbitrary field,

f € Flz,,...,z, ] of total degree d¢, and FC K a

finite algebraic extension of degree m such that

ged(m ,d) = 1. Then

(i) f irreducible in F[z,,....2p] <> f irredu-
cible in K[z,,....z, ].

(ii) If each prime factor of . is greater than d,
then f has the same irreducible factoriza-
tion over Fand K. O
Using this theorem, it is now easy to put the

irreducibility test of section 3 to work over a

finite field F. In order to check a bivariate poly-

nomial g of total degree at most d in step 3 of

IRREDUCIBILITY TEST for irreducibility, we use

the probabilistic algorithm BIVARIATE FACTOR-

ING from von zur Gathen-Kaltofen [83].

Algorithm IRREDUCIBILITY TEST OVER A FINITE
FIELD.

Input: A polynomial f € Flz,,...,z,] of total
degree d over a flnite fleld F with g ele-
ments.

Output: Either "irreducible"” or ‘reducible” or
"failure”.

1. Seta =55n2%" If g>a, then set K = F and
goto step 3. Else set m = 2d? + {logqﬁﬁnl,
with

and choose number [

m<l=<2m.

2. Choose monic polynomials hq,....hy € F[z]
of degree [ at random, and test them for
irreducibility. If none is irreducible, return
“failure’’. Otherwise choose an irreducible
h;, and set K = F[z]/ (h;).

3. Call algorithmm IRREDUCIBILITY TEST with
input f € K[=z,,...,x,] and some ACK with
#A=a.

a prime



Theorem 4.B. Let F be a finite field with q ele-
ments, and f € F[z,,...z,] have total degree d
and M nonzero terms. With this input, algo-
rithm IRREDUCIBILITY TEST.OVER A FINITE FIELD
has the following properties:

(i) If f is irreducible, it returns "irreducible”
with probability at least 1—2-%.

(ii) If f is reducible, it either returns "reduci-
ble” or "failure”. The latter happens with
probability at most 2-9.

(iii) Let k = mozid, logn,logg]. The algorithm
can be performed in O(k® + k8M) bit opera-
tions, and O(k®) random bit choices. DO

5. The factoring algorithm

Our probabilistic algorithm {for factoring
sparse multivariate polynomials proceeds as fol-
lows. First, one makes a random substitution to
obtain a bivariate polynomial. We assume
existence of a factoring algorithm for bivariate
polynomials, and factor the substituted polyno-
mial completely. Then this factorization is
lifted variable by variable via a Hensel tech-
nique. At each lifting step, one has to solve a
system of linear equations. Two points now are
crucial to ensure polynomial running time: one
has to keep the number of indeterminates
(corresponding to monomials in the factors) and
the number of equations small throughout the
algorithm. The first is fairly straightforward,
along the lines of Zippel [79].

Zippel [79] first used this type of approach
for an interpolation problem, and he also pro-
posed to employ it for factoring polynomials
(Zippel [81]). Although the algorithm seems to
work well in practice, for lack of an effective Hil-
bert irreducibility theorem of the form needed,
no bound at all can be proven for the expected
time of his (probabilistic) approach. We start
with a definition that allows us to concentrate
on certain monomials and on certain equations.

Definition 5.A. We write x¢ for the monomial
. z;" with e € N®. Given a polynomial
S = % fox® € Flz,,....%, ]
e EN™

with f, € F, we call
Supp(f) = te eN™: f,#0}

e
zll..

the support of f. In our algorithm, the first two
variables play a special role, and we will use

Suppa(f) = feeN™: } e; <deg f and

isisn

Ja,,acN such that (a;,25.eg,....e, )ESupp(f )i.

-
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Here deg f is the total degree of f. For a set
EcCN™ we write

f |E' = 2 fex.
el
for f restricted to E. Thus
J |g =0 mod zX*!

is equivalent to
Je =0 fore =(ey,....e,) € E withe, <k. O

Procedure LIFTING.
Input: j.,k,m,,..,m, € N, ) h,g94...9, €
Flz,,..z;,y], and ECN’ such that

deg,g9; < k and

(h = TI 9™ |Exio..k; = O mod y*+1,

1<i<r
Output: Either g;,...,9, € F[z,,....%;,¥] such that
(h = T1(@:)™) | Exqo,...k+1; = O mod y**2,

and, if £ =0, also some E°CE, or "failure",
1. SetS; = Suppa(g;(z;.....z;,0)) cN .
2. The congruence ;
(h =TI (@ + ¥ gaex*y**)™) | pxpesyy
Isi=r eES

= 0 mod y**?

corresponds to a system of #£ many linear
equations over F in the Y} #S, many unk-
nowns g;. If k=1 and the system is not
square (square meaning that #F = Y 4S5, )
and nonsingular, return “failure”. If k=0,
find a set £°CE such that the #E° many
linear equations corresponding to E*x{k +1}
form a square nonsingular system. If no
such £* exists, return "failure’.

3. Returng=g; + Y gi;x°y**!, given by the

sES

solution of the square nonsingular system
in step 2.

Procedure HENSEL. ;

f € Flz,,....xz, ] with n=22, m,....m, € N,

9109y € Flz1,22] irreducible and

t e F3"-3) gych that £ (¢ = [ gi ™

1sisr

Input:

Qutput: Either frofr € Flzq,....70 ] or
"failure”. We expect that each f; is

irreducible, f,{t} = g;, and f = [ fi™.

1sisr

1. Let d be the total degree of f, and set
t = (ug,...,Up Vg VUn , Wa,e.., Wy ),
Eig = {0,....d}.



2. For j=2 ton—1 do steps 3 through 5.
3. Set

hy = f(x1, T840 + Vi1 T2 + Wiy — Y,
UjspTy + VjspTo + Wisa,.. UnT + U Tp + wy),
9470 = Fij1,d(T 1 Tj 1, U5 Ty + VT + Wy — T;)
for 1=i<r (with g;;0 = g; if 7=2),
Ejp = feeN7: ¥ e; <d and

1<1<5

Jea,,az € N such that (a;,aze3,....65-1) € Ej_y 4t

4. For k=0tod-1 do step 5.

5. Call procedure LIFTING with input p

(7.kmy,....mp i G 1500 Grike Bl )
to return either (g9;;k+1..-.9r.jk+1) and, if
k=0, also Ej; C Ejq, or "failure”. If k=1, set
Ejps1 = Ejp.
8. For 1<i<r, set
fi=9i,n—l.d(zl""ﬁzn-—l'unzl+vn:2+wn _:n)v
and return (f,....f¢)-

The following algorithm assumes a proba-
bilistic method for factoring bivariate polynomi-
als over F, and a finite set ACF with a procedure
for picking elements of 4 at random (with
respect to the uniform distribution).

Algorithm SPARSE FACTORING.
Input: f € Flz,,...z,] and a finite subset ACF.
Output: Polynomials f,....f, € F[Zy,...2,], and
m,,...m, € N. With high probability,
¢ f = f'ln‘ e -f,m" is the irreducible fac-
torization of f in Fz4,....T, .

1. Choose t € A%"~3 at random.

2. Compute the irreducible factorization
FiB =97 - g of f{t}in F[z,z,), where
m;=1, each g; is irreducible and
ged(g;.g;) =1 fori#j.

3. Call procedure HENSEL with input

(f.m,,...m..g,,....95.t ), and return the out-
put (fq....fs). If "failure” occurs at any
stage, goto step 1.

For the correctness proof, we have to
assume that the finite set 4 is large enough, and
we set B, = 560+26n, B;= 720, B, = 103, and
fa = 9 for d=5. In step 2 of SPARSE FACTORING
we call a probabilistic procedure for factoring a
bivariate polynomial of degree at most d. We
assume that this Las Vegas algorithm correctly
returns the complete factorization of the input
polynomial, and has an expected running time
of 0(d1% operations in F.
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- Theorem 5B. Let F be a 'fleld, n>3,

f € F[z,,...,z, ] of total degree d and such that
the number of nonzero terms in f or any of its
irreducible factors is at most M. Assume that
no irreducible factor of f occurs with a multi-
plicity that is an integer multiple of charF’. Let
ACF with #4 = B4n5¢ 29", With this input, algo-
rithm SPARSE FACTORING has the following pro-
perties.
(i) It correctly computes the irreducible fac-
torization of f with probability at least
1 —n~3¢
(ii) The expected running time is O(nd!°#3)
operations in 7.

(iii) The expected number of random bit choices

is O(nd(d + logn)). O
Remark 5.C. We want to point out a somewhat
unsatisfactory aspect of the timing and error
behavior. In Example 6.A we show that the out-
put size may be more than polynomial in the
input size, so that we do not have an a priori
time bound (even though we can estimate expli-
citly all the constants in the time bounds). Now
if the substitution is not lucky, then the bivari-
ate factorization of f{t{ might not reflect the
true factorization of f, and the running time
could conceivably be more than polynomial in
the input plus output size. (We only know that it
is 0(d*n3%*1)) And for lack of an a priori time
bound, we could not even realize this during
execution of the algorithm. All we could do in
SPARSE FACTORING was to make the probability
of this unlucky event so small that the expected
running is polynomial.

Also note that there does not seem to be a
feasible way of checking deterministically
whether the output is correct, i.e. whether
f = T] f{* or not. If the substitution was

I1<i<r

lucky, then this equation holds. However, if the
substitution was unlucky, then the algorithm
might produce a wrong output for which this
equation does not hold. The two obvious
methods for checking the equation - multiplying
the product out or checking at evaluation points
- both may require more than polynomial time.
One may of course run a few checks at randomly
chosen evaluation points and get arbitrarily
large confidence in the correctness (resp. dis-
cover incorrectness with large probability).

We spell out the theorem for the case of a
number field F, using the notation from Corol-
lary 3.B. For any f € Flz,,....z,], let # denote
the maximal number of terms in f or any of its
irreducible factors, and set
S(f) = nmd# logB logH . Let
A=1§01,.,83n%2%) cZ CF.



' Corollary 5.D. In the above situation, algorithm
SPARSE FACTORING has the following properties:
(i) It correctly computes the irreducible fac-
torization of f with probability at least
1 —n34,
(ii) The expected number of bit operations is
polynomial in s (f ).
(iii) The expected number of random bit choices
is O(nd(d + logn)). O
It is not hard to describe an algorithm FAC-
TORING IN POSITIVE CHARACTERISTIC that han-
dles the two cases in characteristic p > 0 that
were left open in SPARSE FACTORING: a small
finite ground field F, and factors with multipli-
city m;, where p divides m;.

Theorem 5.E. Let F be a finite field with g ele-
ments, n=3, f € Fl[z,,...,.x,] of total degree d
and such that the number of nonzero terms in

f or any of its irreducible factors is at most M.

With this input, algorithm FACTORING IN POSI-

TIVE CHARACTERISTIC has the following proper-

ties: )

(i) It correctly computes the irreducible fac-
torization of f with probability at least
1 —n"34,

(ii) Let & = mazxi{d,n]. The expected number of
bit operations is O(log®gq (k%logk logg +
,C15M3)).

(iii) The expected number of random bit choices
is O(k*ogq). O

6. Examples and remarks

We first present a few examples that
highlight some of the unpleasant phenomena
that may occur when factoring sparse multivari-
ate polynomials, then, in section 6.D, parallel
versions of the irreducibility test and the factor-
ing algorithm. We make in 6.E some remarks
about factoring algorithms of practical interest.
Example 6.A. Short polynomials with a long
irreductble  factor. Let mn=>3 be prime,
@)=z '+ 2" %+...+1€Q[z] and

In = fa(@)fn(z2) - Sa(zn),
hp= (z,~1)(zo—1) - - - (z, 1),
Pn= hn(gn"'n) e

in Z[z,,....xz,] € Q[z4,....7,]. Then g, has n™
terms, both h, and hp,g, = (z7-1) - (z3-1)
have 2" terms, and each coefficient of p, is at
most n+i in absolute value. Note that
n™ = (2")"%" is not polynomial in the number n
of variables, the degree m? and the number
<2n+1 of terms in Pn- Also, g, +n is irreducible,
and hence p, is a polynomial where the number
of terms in the irreducible factorization is not
polynomial in the input size.
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In view of this example, it may be unfeasible
to factor even reasonably short polynomials.
Erich Kaltofen has proposed the following ques-
tion: Do the reducible polynomials at least have
short certificates?

Example 6.B. Short polynomials with a long
squarefree part. Using the notation from 8.4,
we set

Th =hign 1 fa-i(z)= II @-1@E1-1).

1<i<n I<i<n

Then 7, has 4" terms, and the irreducible fac-
torization of 7, has 0(n?) factors, each with at
most n terms. The squarefree part

Sp = hngn H fn.—l(zi) = H (z?-l)fn—l(zi)

1<isn 1<i<n
of r, has (2n—2)" terms. This number is not
polynomial in the input plus output size (for fac-
toring 7,), and thus no polynomial-time algo-
rithm for factoring 7, can first compute the
squarefree part of r,,.

Example 6.C. Short polynomials with no short

monic version. In factoring algorithms, life gets
easier if one reduces to the case of a monic
polynomial, by replacing the input polynomial f
by g%~f (;i), where f has degree d and leading

coefficient g with respect to the variable x. This
reduction is not possible for sparse polynomials.
Let n > 2, and consider the symmetric polyno-
mial

f=Y 21+ ¥ z;)eQzy...2zq]
1<i<n ls_J:n
j

f is irreducible and has n® nonzero terms, and

the monic version of f with respect to z; is
- z
gr lf(?lﬂz'--»-lu)
=z} +g"? ¥ zMg(g-=)+xy),

2<i=n
which has more than [2:'__23]
This is an exponential number, and by the sym-
metry of f, its monic version with respect to
any variable has exponential size.

nonzero terms.

Remark 6.D. A parallel version. We want to
describe parallel variants of our algorithm. For
our model of parallel computation, we can take
parallel algebraic computation graphs (see von
zur Gathen {83]), where at each step each pro-
ressor can execute one arithmetic operation
(+,-.*./, fetching a constant), or one test (a=07?)
in the ground field F, or a boolean operation on
those test results. (The algorithms also work on
algebraic PRAM’s.)



Theorem 6.D. Let n=3, d=1,
b =maz {f4n592¢° 55n 229"}, and let F be an arbi-
trary field with at least b elements. For polyno-
mials in F[z,,...,z,] of total degree d with M
nonzero terms, and at most # terms in either I
or any of its irreducible factors, we have

(i) Testing for irreducibility can be reduced
probabilistically to testing a bivariate poly-
nomial of degree at most d for irreducibility
using parallel time O(log2d + logM). The
number of processors is 0(d3M).

(ii) Factoring can be reduced probabilistically
to factoring bivariate polynomials of degree
at most d. The reduction can be performed
in parallel time O(n logd log?(d#)), and also
in parallel time O(dlog?(nd#)). In both
cases, the number of processors is polyno-
mial in ndff. O

Over a finite field F of characteristic p and
with ¢ =p™ elements, we use the parallel
bivariate factoring algorithm from von zur

Gathen-Kaltofen [83], and obtain
Corollary 6.D. In the above notation, we have:
(i) The irreducibility test can be performed in

O((log?d log?(d m logn) logp +log M) log?logq)
parallel bit operations.

(ii) Let L = logd maxz {logd loglogn loglogq i
The factoring algorithm can be performed in

O(L (n. log®nd#l) + logd logp)) or in

O(L logd (d log?(nfd) + logp Llog?(dm)))

parallel bit operations. O
Remark 6.E. From a practical point of view, it
would be nice if the following head-on approach
worked: To factor a polynomial f € Flz,,...,z, ],
perform some initial simplifications, then select
a special variable, substitute randomly chosen
constants for the other variables, factor the
resulting univariate polynomial, and lift a fac-
torization via a sparse Hensel technique. This
factorization might either be complete or into
just two factors. Zippel [81] had proposed such
an algorithm and concluded that "for all practi-
cal purposes it does not exhibit exponential
behavior''. However, if one wants the worst-case
running time to be truly polynomial in the input
size, then the following problems arise:

1. The initial simplifications may yield too
large intermediate expressions.
a) See Example 6.B for the squareiree
part.
b) See Example 6.C for the monic version.

2. The substituted polynomial may not refiect
the true factorization.
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" a) There might be a factor involving only
one, say, variable. Thus clearly each
variable has to be selected as the spe-
cial variable at some point in the algo-
rithm.

b) As pointed out in remark 2.F, it is still
conceivable that for some irreducible
polynomial all reasonable substitutions
give a reducible result. The various tri-
als of combining the fake factors might
.require exponential time, as was the
case with the original Berlekamp-
Zassenhaus procedure for univariate
integer polynomials.
3. During the lifting process, one has to keep
the number of monomials and the number
of linear equations small.

a) If a factorization into two factors is
lifted, one of them may be too large,
e.g. the factor'g, of f,g,, in the nota-
tion of 6.A.

b) Zippel [79, 81] suggested how to keep
the number of monomials (= unknowns
in the linear equations) small; we fol-
lowed his approach.

¢) In order to get a small, yet restrictive
enough, set of linear equations one
might search at certain points of the
algorithm systematically through all
the available equations. It is not clear
how to guarantee polynomial time for
this approach. Our method maintains a
polynomially-sized set of equations
throughout the algorithm, from which a
restrictive enough subset is chosen
from time to time.

d) The output size may not be polynomial
in the input size (Example 8.A). That's
nature’'s ways, and we (will have to live
with it.
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