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z auxiliary parallel algorithms, for factoring
'E)ers and Chinese remaindering. The fact that
toring can be achieved fast in parallel puts the
raint oi "smail prime factors" into perspec-
t is a severe restriction, and for many appli-
¢ the more interesting case is that of large
re lactors. However, the present result is the
one that provides an exponential parallel
-up of the sequential methods for modular
r powering. A slightly different problem -
uting in parallel the high-order bits of a large
&r of an integer - is considered in Alt [1984].
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¢ tc the case of integers. The resulting parallel
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2. Powering polynornials

The idea of the integer powering algorithm is
based on a method which is quite natural for poly-
nomials. In this section, we explain this method
and its inherent limitations.

We work over an arbitrary ground field F of
characteristic zero. The model of computation (for
this section only) is an arithmetic circuit with
inputs and constants from F, and +, -, *, / as opera-
tions. Consider the following four problems, where
wefF, and f,g€F[z] of degree n are inputs, and b
is an n-bit integer.

POWER-1: Compute u®.

POWER-2: Coinpuic f® med g.

POWER-3: Compute f° mmed =™,

POWER-4: Compute f% mod z™, if f has constant

term 1.

Theorem 2.1. Problems POWER-1, POWER-2,
POWER-3 cannot be computed on any family of
arithmetic circuits of depth (Logn)o(l).

Proof. It is well-known that the rational function
accociated with a gate of depth d (in an arithmetic
circuit) has degree at most 297! (Kung [1976]).
Hence the depth d, of any circuit computing u?
satisfies d, >n, and the claim for POWER-1 follows.
POWER-1 is reducible in depth Of{logn) to both
POWER-2 and POWER-3. 0O

This result does not extend to finite fields e.g.
if F/ = Z5 then

ab®=a, Yo=1, a € F.

Allm&ing only constant term 1 in f rules out
the above reduction from POWER-1 to POWER-3, and
in fact we have the following fast parallel algorithm
for POWER-4.

Algorithm PARALLEL POLYNOMIAL POWERING

Input . f € Flz], deg f <n, f has constant term
1, char F = 0, b a n-bit integer.

Output . f®mod z™



1. Compute h = log f mod z™.
Consider f as a power series with only finitely
many non-zero terms and compute the first n
)i+ i
terms of log f = 3. —L—*j,—(f—l)’.
i=1 Y
2. Compute b-h
3. Compute exp(b- h) mod z™.

As in step 1, wusing the fact that

expg = 3, -.1—'gi, where g has zero constant
‘=0’
term: i.e. we compute Y, L gt mod z™.

Osisn?’

Theorem 2.2. Algorithm PARALLEL POLYNOMIAL
POWERING can be implemented on an arithmetic
circuit of depth O(logm).

Proof. In steps 1| and 3 we have to compute
h'mod z™ for various polynomials kA (with A(0) = 0
and i <1 < nj. This can obviously be done in depin
O(log®n), and in fact in depth O(logn) by Reif
[1984] (assuming roots of unity are available), and
Eberly [1984] (for arbitrary fields). 0O

Theorem 2.1 shows that the condition "con-
stant term 1" for substituting into the logarithm
power series is not just technical, but in our con-
text related to the parallel computational complex-
ity.

3. Chinese remaindering

To solve the powering problem, we have to
present parallel computations for some other prob-
lerns, which may be of independent interest.
Inputs are the various mn-bit numbers denoted as
ab.a,,. ..a mm,,. .., m,, and output an mn-bit
number c as below:

POWER: c=a® mod m,

ac= 1 mod m if gcd(a,m) =1,

MODINV: {. otherwise,

("modular inverse’ )

LAGRANGE : ¢ = 0mod my- - my,,

tmodm, if ged(m,my---m,)
c = =1,

0 mod m, otherwise,

("Lagrange interpolation coefficient’),

CHINREM : If gcd(m;,m;) = 1 foralli # j,
then ¢ = a@; mod m, for all 1.
Otherwise c is arbitrary.

(""Chinese remainder algorithm')

FACTCR : compute the prime factors of m

(with multiplicities).

'Using DIV for the problem of integer division with

remainder, we have an NC!-reduction (see Cook
[1983] for terminology):

CHINREM =< LAGRANGE =< MODINV + DIV.

it follows by wusing an inverse d of
my,--m, modm;; then ¢ =d -(m,- - -m,) is
suflicient. The iterated product m, - - m, is redu-
cible to division (see Beame-Cook-Hoover [1984]).

Al thc present time, nicne of thesc provlems is
known to be in NC - i.e solvable in depth ({ogn )2 -
or complete for P. All problems - except possibly
FACTOR - are in P.

In their work on Abelian permutation group
membership, McKenzie-Cook [1983] had to solve
systems of linear congruences with the constraint
that the modulus m was known to have only small
prime power factors, i.e. m = [[p;* with p;* = O(n)
ior ail 2. They then showed that ihis problem is in
RNC3. We now use "SF” to denote the condition that
m,m,,...m, have '"small factors”, i.e. only prime
factors p < n. This is a little more generous than
the conditior in MrKenzie-Cook [1983].

We assume that there exist polynomial-size cir-
cuits of depth div(n) that compute the division
with remainder for m-bit integers. By Beame-
Cook-Hoover [1984] div(n) = O(log n) for P-
uniform circuits, and div(n) = O(log n loglog n)
for log-space uniform circuits, by Reif [1984].
Theorem 3.1. The following problems can be com-
puted by boolean circuits of polynomial size and
the stated depth:

(i) SF-FACTOR in depth O(div (n)),
(ii) SF-MODINV, SF-LAGRANGE, and SF-CHINREM in

depth O(log n - div(n)).

Proof. We leave away the "SF-". First consider FAC-
TOR. The algorithm is obvious: For each number
» <7, test whether p is prime and determine its
multiplicity in m. This can be performed in depth
div(n), by computing p,p%p3 ..., p" and testing
for each i whether p* divides m.

Now consider MODINV in the special case where
m = p®, p prime. We have the following algorithm:

1. Testifp | @, and returnc = 0 if "yes".
2. Find by exhaustive search cg € N such that
l<cg<p
acg = 1 modp.

[

3. Newton iteration: Set k& :llogze, and compute

€y, ...,Ct as follows:
i
c; = R2c;_1 — ac®, mod p%,

i
1$Ci <p2



N

(Then ac; = 1 mod pz‘, by the Newton formula

c,f

ac;—1 =
1 ' <
:5“(0.-—(201—1—0-5;""—1)—(01 —c;_1)?) mod p% )
i-1
4, Returnc = ¢, modp®.

The circuit depth for this algorithm is dominated
by step 3:

O(log e

Next we consider LAGRANGE. If m; = p® for a small
prime p, then we can solve LAGRANGE in depth
O(log m div(n)) by the reduction to MODINV + DIV.
For the general case m =pi‘ - 'p:', with small
pairwise distinct primes pi, ....p, (and no p;
dividing my,---m, ), we compute cq,...,c, such
that

- (log n + div(n))) = O(log n div(n)).

{ mod p;*
€, e .,
9 mod P DT P Py M. M,

Fach ¢; is given by one of the special LAGRANGE
problems already solved, and

c =c¢c,;+ -+ e,

solves the current problem. Therefore LAGRANGE
and CHINREM can Dbe solved in  depth
O(log n div(n)).

Now for the general case of MODINV, where

m :pj‘ s p:' with small primes p;, we have the
algorithm:
1. for i<r compute c; such that
€
ac; = 1 mod p;*,
2. compute c such that for all i<r

e,
¢ =c¢; mod p;".
Then

Vi<r ac =ac; =1 modp;*

i

=»ac = 1modm. O

4. Powering integers

Now we consider the problem POWER: comput-
ing a®mod m. We adopt the algorithm PARALLEL
POLYNOMIAL POWERING to solve this problem in P-
uniform depth O(log®n) if m has only small prime
factors.

Let 1 =g <s be integers, and consider the

truncated exponential and logarithmic power
series:
1 .
Ey)= ¥ iyieqryl
O<i=zq
i+l
L(z) = ¥ U7 o e gfa).
1<i=s v
(Thus E,(y) = ezp(y) mod y?*}, and

Ly(z) = log(1+x) mod z° .) The next three lemmas
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establish the usefulness of these series for integer
powering. Lemma 4.1 has implicitly been used in
Theorem 2.2.

Lemma 4.1. Let 0< g <s and & € N. Then we have
in Qz]:

E,(bLi(z)) = (1+z)*mod z?*%.

Proof. We prove the lemma by induction on g. The
case ¢ =0 (or g = 1) is easily checked. For the
inductive step, we have

2By (bL,(2)) = (142)?)

= %—(bLs(z)) b By ) _L—.l__):l_zi)
dy T 1<iss T
—b(1+z)®"!

LbL, ) -6 - (3 (-1)i*1zimy

y ¢
v 1<iss

( ¥

Osisg~1

~b(1+z)b?

il

b(1+z)° Y (1+z)( D (—1)i~2zi"1) — 1)

1=iss

t

b(1+z)*"1. (-1)*"1. 2% = 0 mod 279,

where we have used the induction hypothesis in the
third transformation. Now one verifies that

(Bq (bLs(x)) — (1+2)°)(0) = E,(bL;(0)) — 1 = 0,
and the claim follows. D

From now on we will always have s = q. The
idea is now essentially to substitute a prime
number p for z in the congruence of Lemma 4.1,
and hope to obtain a similar congruence in Z. The
problem is that the left hand side has denomina-
tors in the terms of order greater than n. Lemma
4.2 bounds the multiplicity of p in integers of the
form i! and j, - - - j;, and Lemma 4.3 states that we
do not lose ioo much of lhe initial precision g+1
given by Lemma 4.1.

We will have to consider ¢ = .QTL where p” | ¢!
P

and p™*! + ¢! We write ¢t = —q!ﬁ——, and note
ged(qt,p?)

that ged(p,£)=1.

Lemma 4.2 Let d,i,p,t € N such that p is prime,

and ¢t = 9!—. Then
ged(q!,p?)
(i) '] ptt,
.. d . .
(ii) If = =, and i1 =21 with
Ji+ -+ j, <d, then
J1 “Fi | Phti~ ;



Prool. (1) The fnuliiplicity of p in 4!is

1+L2+. <i+_t_2_+...=1._p__
P P P p p p-1
= i <1
p—1

(ii) We have to bound the multiplicity of p in
J1° "+ J;- We use induction on d. The base case
d < p is clear. We can assume that d and each js is
divisible by p, since otherwise the claim follows by
induction. Furthermore, we can assume that

Zi, o fi are not divisible by p,
P P
M—, ..., 1% are divisible by p,
D
for somem,0<m < 4. Then
m < i< i:h.,
P
pi-m) € it - +5y=d —pm =plh-m),
is=m + hom ,
j)
Jidm | BT,
'7'"—+1+ R .‘h.sh —m
P
Set t = |B=m| By the induction hypothesis,
jm+l ji lgi-m
L0 S | p't ,
o P
Jmar o g | PEETRET,
J1 0 Fi | P“'iti,
[N IS ot N N (h—m)(l—]%) <h
P

(In fact, the exponent h = 4 is required when

j1= - =ji=pandd =pi. )0

Lemma 43 lLet bp.g,t.,z €N, k= 9%1— such

that p is prime, { = ___g___ and p | b and
: ged(gtp?)’

» | z. Then

t9E (b1, (2)) €4,
tIHE (b1, (2)) = t9*(1+2)%mod p?**1
Proof. Write
Eg(blg(z)) = %

O=dsgqg?

eqzr? € Q[z]

with e; € Q, and

Sz)= Y eqz® e Qz].

O<d=<g

From Lemma 4.1, we know that
z9*1 | E (bLy(x)) — (1+2)® in Q[z]
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and hence

:q+]

| S(z) ~ (1+2)® in Q[z],
S(z) € Z[z],
Sg(z) e Z[z] g(z)z?*'=S5(x) - (1+z)*,
5(z) = (1+2)® mod p?*!,

t9*+15(2) = t9*(1+2)% mod p9+!.

It remnains to prove that

tq+ledzd —k+1

= 0 mod p?
for any @ with g <d<g?.

E,(bL,(z) = ¥ 1. b ¥ K_L__x;)z

O=isg 1sj=q
+ +3,+1
61 J1
= P { - -(—)—-—-————— T
osd<q®  Osisg ! Ji G
1854, ii=q
It L=
= edzd .
Osd=<q?
. d
Fix some d, g<d=<g?, and set A = |=-|. Then
p
PRSI 5 '8 ]
b”‘ (=1)
eq = . 2 e EDNER
Osisgq il Ji 71

b.’“t €z

!
—L—-———E Z
.71 ) .71

for any 1,74,....5; in the sum for e4. It follows that

phtq+led € Z,
p"t9%%e,2¢ = 0 mod p?

Also, p? | 29 and t%7+'ey2? € Z, and hence

t9%ley2% = 0 mod p%~".
Furthermore,
d—-h =d - g— zq+1—ll;—1— =g+1—k.

Putting this together with the above congruence
for S(z), we get

tIHIE (bLy(2)) ~ t9* 1 (1+2)b

= t9*(S(2) + Y egz?) — t9t (1+2)?
d>q
= 0 mod p9~%+1,

which is the claim of the lemma. O

We now describe a parallel algorithm which, on
input »-bit numbers a.b,m, computes a® mod m,
if m has small prime factors.



Algorithm PARALLEL INTEGER POWERING
1. Factor m = p';‘ o vp:', By the assumption, we
have p; < n. It is sufficient to compute

e
a®’mod p;*

for each 1, since we can then use CHINREM. So
from now on assume m = p¢ with p prime.

2. Find! = 0 such that
ol e, pttlta.
It is sufficient to compute
(ff)brnod gl
Replacing a by _a.l_’ we now assume that p + a,

and compute a® mod p®.
3. Find bg such that 0<by<p and b =bgymodp.
Compute
Cg = 2’ mod p®.
It is now sufficient to compute a®"be mod p®,
and we can assume thatp | b.

4. We assume that u?" ' mod p® is given (“hard-
wired") for 1= w < p. Find ag f.9,2 € N such
that 1= ey <p and0< f.,9,2 <p®, and

ay =a mod p,
g =ak'” mod p°,

fg = 1 mod p¢,
z =of — 1 mod p°®.

(Theng = a2 mod p,andz = 0 mod p.)

5. Cornrpute (1+z)®mod p®* as follows. Set

q =‘e;ﬂl—. Using binary search, compute
r,t € N such that

]
P" gl p™titgl t = ﬁj.

Forall j, 1 <j =< g, compute 27, then

s=b- E (—l)j*'lt—-z?.j— (= tqu(Z)),

l=j<gqg

ve 3 Bl (=g G, ))
Osi<gq 1!

Compute w € Nsuch that 1 = w < p® and

wt¥*! = 1 mod p°,

8. Compute d,y € N such that
1<y <pf, and

0<d=<p-2

b=dmod p—1,
y = g% mod p*.
Return

c = vwy mod p°.

Theorem 4.4, The above algorithm correctly com-
putes ¢ such that

¢ =aPmod m.

The algorithm can be performed by a P-uniform
family o, of boolean circuits, where a, has depth
O(log?n) and size n.%(), and works for inputs a,6,m
which have at most n bits each, and where each
prime factor p of m satisfiesp <n.

Corollary 4.5.
SF—POWER € NC? (P—uniform). O

Proof of Theorem Correctness: First note that
each summand in s is an integer, p | s, and by
Lemma 4.2, also each summand for v is integral.

Set & = |4 By Lemma 4.3,
Pl

v = t9%1(142)% mod p77F*1L,

-1 -1
~k+1>g-L=g Bl LB = e,
7 7 p 7 P p-1 b

wy = wtI*(142)® = (af ) mod p°® .

There exists h € Z such that b =d + (p—1)h, and
the order of the multiplicative group of units in Zp,

is ¥(p®) = p Y(p—1). Therefore
ef* P~k = | mod p°,
ab=ab(fg)?= (af )’ g® = vuwgdtr-1h

= vwy o' 'P-D" = yuwy =c mod p°®.

It remains to estimate the circuit depth and
size. In step 4, we assume that w®'  mod p® is
given. This can be hard-wired for all p <n,

l<=u <p, and e <n in size n?M  The resulting

circuit family is P-uniform, i.e. the n-th circuit
can be constructed by a polynomial time bounded
Turing machine on input = in unary. (See Ruzzo
[1981], Cook [1983], Beame-Cook-Hoover [1984] for
discussions of uniformity.) Beame-Cook-Hoover
[1984] have O(logn) P-uniform circuits for division
with remainder and iterated product of =n-bit
integers, and the size for each step of the aigo-
rithm is polynomial. We get the following estimates
for the circuit depth:

Step 1:  O(log®n).

Step 2:  O(logn).

Step 3:  bgcp: O(logn) .

Step 4:  ag,z : O(logn),
g : O(logn) (tabte look-up),
[ O(log?n). .

Step 5: g : O(loglogn),
g'r.t,s,v: 0(ogn),

‘ w : O(log?n).
Step6: c,y :O(ogn). 0O



Renarss 1.0, The ™ aigerithm reqiires-
w? ' rusd p° Lard-wired for 1=uwp, s =wn. Dode
not knoew heow o soive this special powering prob-
lemn fasi in parallei, and SF-POWEK is not known to
be in NC under jog-space unuosrmiily. iiowever,
when m = 2% ihen .= 1. siepn 4 only uses w = i
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Fanai with  depth
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mare than O(logn) depth.
ferm  algorithm of Poif
Oflaan laaloon) and volvnomial size - for division
with remainder and iterated product, it follows that
2% moad 20 can he comnited in log-space uniform
depth O(log®n-loglogn) aud polynomial size. The
aluorlthm similarly simplifies for the case m = 3%,
10 YAy
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47. We know that the numbover of uniis mnod p° is

#25 = ¢(p®) = (p—1)p*7"

In fact, if e = 2, and p = 3, then
G={uf" "'modp®  1=<u <pj .-
= jv mod p*® : i=v<p® and v = i mod p{

are subgroups of Z;u, with order p-—1 (namely
G = Z7) resp. p®7!, and Z). = GxH. The algorithm
essenlially powering probiem  iii {f.
Since ( is small, cne 2can compute powers in ¢ in
depth O(leg p), but in Remark 1 we ask to actually
compute G.

SOLVES L€

4.8. An obvious question is to remove the condition
of m having only small prime factors. Allan Boro-
din has proposed the foillowing: can we compute fast
lit puiailel the -l Biv of 2”, given n-Zit numbers
a,b,i? Alt [1984] shows that this is the case for the
high-order bits of a®

Example 4.9. Let ¢=3,p=2 in Lemma 4.3. Then

t=3, k=2, t371=61. Let
F(z) = E5(2La(z)) = (1+x)7
_ 1 4 5 5 23 & 7.7 _ R, 8 4 g
= - S5 - 2= g8y +
6r Y 3T T8 Yyt~ Bl

We knew from Lemma 4.2 tnat ii 2 is even, ihen
81-F(z) € Z, and from Lemma 4.3 that

81-F(z) =

In fact, 81-F(2) = 8:373. However, for z =1 we find
81-F(1) = 67; therefore the exp-log-approach does
not cmem Lo werk directly to selve the problem we
nard-wired in step 4.

0 mod 2% .
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Abstract

A Iasi parallel computation for large powers of
an integer modulo another integer is presented,
assuming that the modulus has only small prime
tactors.

1. Introduction

Consider the problem of computing a® mod m
in parallel, where a,b,m are n-bit integers. This
problem comes up as a subroutine in many compu-
tational problems, e.g. factoring integers, primality
tests, cryptographic schemes, and factoring polyno-
mials over finite fields. The method of "repeated
squaring" does not yield fast parallel computations,
i.e. of parallel time (logn )W),

We present boolean circuils for this problem.
Provided that the modulus m has only small prime
faciors p=n, the depth is O{log”n} with polynomial
size.

In section 2 we present the technique to be
used, 1 ine setiing ¢ poiynomiais. Secliocn 3 has
some auxiliary parallel algorithms, for factoring
numbers and Chinese remaindering. The fact that
factoring can be achieved fast in parallel puts the
constraint of "smail prime Ilactors” into perspec-
tive: 1t is a severe restriction, and for many appli-
cations the more interesting case is that of large
prime Jactors. However, the present result is the
first one that provides an exponential parallel
speed-up of the sequential methods for modular
integer powering. A slightly different problem -
computing in parallel the high-order bits of a large
power of an integer - is considered in Alt [19841.

In section 4 we then adapt the polynomial tech-
niquec ic the case of integers. The rzsulting parallel
algorithm for computing a; mod m requires a spe-
cial case of this preblem to bz "hard-wired”, and
vields a FP-uriform family of boolean circuits cf
depth C(log?n).

0272-5428/84/0000/0031301.00 © 1984 IEEE
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2. Powering polynomials

The idea of the integer powering algorithm is
based on a method which is quite natural for poly-
nomials. In this section, we explain this method
and its inherent limitations.

We work over an arbitrary ground field F of
characteristic zero. The model of computation (for
this section only) is an arithmetic circuit with
inputs and constants from ', and +, -, *, / as opera-
tions. Consider the following four problems, where
werF, and f,geF|z] of degree n are inputs, and &
is an n-bit integer.

b

POWER-1: Compute w°.

POWER-2: Computc 7° med g.

POWER-3: Compute f¥ mod =™

POWER-4: Compute f® mod =™, if f has constant
term 1.

Theorem 2.1. Problems POWER-1, POWER-2,

POWER-3 cannot be computed on any family of

arithmetic circuits of depth (Logn )21,
Proof. It is well-known that the rational function
accociated with a gate of depth d (in an arithmetic
circuit) has degree at most 297! (Kung [1978]).
Hence the depth d, of any circuit computing »?"
satisfies d, >n, and the claim for POWER-1 follows.
POWER-1 is reducible in depth O(logn) to both
POWER-2 and POWER-3. O

This result does not extend to finite fields e.g.
if ' = 2y then

abza, Yb=1, acl

Allowing only constant term 1 in f rules out
the above reduction from POWER-1 to POWER-3, and
in fact we have the following fast parallel algorithm
for POWER-4.

Algorithm PARALLEL POLYNOMIAL POWERING

mput : f € Flz], deg f <n, f has constant term
1, char F = 0, b a n-bit integer.

Output : f¥mod z™



1. Compute h = log f mod z™.

Consider f as a power series with only finitely
many non-zero terms and compute the first n

ERYES! X
terms of log f = Y, L—L‘L_)—(f—-l)l.

iz1

2. Compute b-h

3. Compute exp(b- h) mod z™.

using the fact that

expg = Y, ;}Tgi, where g has zero constant
i=0t-

As in  step 1,

L gt mod z™.

term; i.e. we compute Y, I

0=<i=n
Theorem 2.2. Algorithm PARALLEL POLYNOMIAL
POWERING can be implemented on an arithmetic
circuit of depth O(logn).
Proof. In steps 1 and 3 we have to compute
himod z™ for various polynomials A (with A(0) = 0
and i =t < n). This can obviously be done in depth
0O(log®n), and in fact in depth O(logn) by Reif
[1984] (assuming roots of unity are available), and
Eberly [1984] (for arbitrary fields). O

Theorem 2.1 shows that the condition "con-
stant term 1" for substituting into the logarithm
power series is not just technical, but in our con-
text related to the parallel computational complex-
ity.

3. Chinese remaindering

To solve the powering problem, we have to
present parallel computations for some other prob-
lems, which may be of independent interest.
Inputs are the various m-bit numbers denoted as
ab,ay,. .. 0, mmyq,.., m,, and output an mn-bit
number ¢ as below:

POWER: c= a® mod m,

ac=1modm if ged(a,m) =1,

MODINV: |, _ ¢

otherwise,

("modular inverse” )

LAGRANGE : ¢

i

O mod my - -~ m,,
1modm, if ged(m,m,- - -m,)

c = =1

0 mod m, otherwise,

("Lagrange interpolation coefficient'),

CHINREM : If gcd(m; m;) = 1 foralli # j,
then ¢ = a; mod m; for all i.
Otherwise cis arbitrary.

("Chinese remainder algorithm')

FACTOR : compute the prime factors of m

(with multiplicities).

Using DIV for the problem of integer division with
remainder, we have an NC!-reduction (see Cook
[1983] for terminology):

CHINREM = LAGRANGE < MODINV + DIV.

It follows by using an inverse d of
my - m, modm,, then ¢ =d  (ms-- - m,) is
suflicient. The iterated product ms - - - m,, is redu-
cible to division (see Beame-Cook-Hoover [1984]).

Al the present time, nsnc o thesc progiems is
known to be in NC - i.e solvable in depth (logn )0 -
or complete for P. All problems - except possibly
FACTOR - are in P.

In their work on Abelian permutation group
membership, McKenzie-Cook [1983] had to solve
systems of linear congruences with the constraint
that the modulus m was known to have only small
prime power factors, i.e. m = IIp:‘ with p:‘ = 0(n)
tor ail 1. They ithen showed ihal ihis problem is in
RNC3. We now use "SF” to denote the condition that
m,mq,. .. m, have "small factors”, i.e. only prime
factors p < n. This is a little more generous than
the canditinn in MrKenzie-Cook [1983].

We assume that there exist polynomial-size cir-
cuits of depth div(n) that compute the division
with remainder for n-bit integers. By Beame-
Cook-Hoover [1984] div(n) = O(log n) for P-
uniform circuits, and div(n) = O(log n loglog n)
for log-space uniform circuits, by Reif [1984].
Theorem 3.1. The following problems can be com-
puted by boolean circuits of polynomial size and
the stated depth:

(i) SF-FACTOR in depth O(div(n)),
(ii) SF-MODINV, SF-LAGRANGE, and SF-CHINREM in

depth O(log n - div(n)).

Proof. We leave away the "SF-". First consider FAC-
TOR. The algorithm is obvious: For each number
» <n, test whether p is prime and determine its
multiplicity in m. This can be performed in depth
div(n), by computing p,p?p3 ..., p™ and testing
for each i whether pt* divides m.

Now consider MODINV in the special case where
m = p®, p prime. We have the following algorithm:

1. Testifp | @, and returnc = 0if "yes".
2. Find by exhaustive search cq € N such that

l<cg<p

fi

acg = 1 mod p.

3. Newton iteration: Set k& =|rlogze, and compute
C1, - - ¢ as follows:
—ac?, modpzf,

c, = 8¢,y

i
1=¢; <p?¥.



(Then ac; = 1 mod pzi, by the Newton formula

ac;,—1 =

1
2
Ci—1

' <
‘_‘-(Ci_(zci—l°aciz—l)_(ci_ci—l)z) mod ]Jz )

4. Returnc =c, modp®.
The circuit depth for this algorithm is dominated
by step 3:

O(log e - (log n + div(n))) = O(log n div(n)).
Next we consider LAGRANGE. If m; = p® for a small

prime p, then we can solve LAGRANGE in depth
O(log n div(n)) by the reduction to MODINV + DIV.

e e .
For the general case m =p,;! - p,", with small
pairwise distinet primes p,,...,p, (and no p;
dividing m,---m, ), we compute c;,..,c, such
that

1 mod p;*

(4] € 6y B4y [
mod pit..p; XY Pt o MMy,

Each c¢; is given by one of the special LAGRANGE
problems already solved, and

c=cy+ - +c,
solves the current problem. Therefore LAGRANGE
and CHINREM can be solved in depth

O(leg n div(n)).
Now for the general case of MODINV, where

m =p:‘ cee p:' with small primes p;, we have the

algorithm:

1. for (X< compute c; such that
ac; = 1 mod p;*,

2. compute ¢ such that for all i<r

¢ =c; mod p;*.
Then

Vi<r ac =ac;, = 1 mod p;*

=>ac = 1modm. [0

il

4. Powering integers

Now we consider the problem POWER: comput-
ing a®mod m. We adopt the algorithm PARALLEL
POLYNOMIAL POWERING to solve this problem in P-
uniform depth O(log?n) if m has only small prime
factors.

Let 1<g <s be integers, and consider the

truncated exponential and logarithmic power
series:
Ey) = ¥ 1y eqlyl,
Osisql-
_qyi+l
L(z)= ¥ U700 e gz,
1siss T
(Thus E,(y) = exp(y) mod y?*!, and

Li(z) = log(1+z) mod z° .) The next three lemmas
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establish the usefulness of these series for integer

powering. Lemma 4.1 has implicitly been used in
Theorem 2.2.

Lernma 4.1, Let 0<q <s and & € N. Then we have
inQz]:

E,(bLi(z)) = (14z)*mod z?+1.

Proof. We prove the lemma by induction on g. The
case ¢ =0 (or g = 1) is easily checked. For the
inductive step, we have

2By (bl (2)) = (1+2)?)

= .L__l_):l_zi)
1

dF, 8
(bl (=) b 2

1<i<s
—b(1+4x)b!
=( % L@ b (T (-1)iziy
Osizg-1"%" 1<i<s
—b(1+zx)%!

=b(1+z) N ((1+2)( % (-1 1zl — )

I1sigs

b(14z)® 1. (—=1)°"1. 5 = 0 mod z9,

where we have used the induction hypothesis in the
third transformation. Now one verifies that

(Bg (bLs (z)) — (1+2)°)(0) = E,(bL(0)) — 1 =0,
and the claim follows. 0

From now on we will always have s = qg. The
idea is now essentially to substitute a prime
number p for z in the congruence of Lemma 4.1,
and hope to obtain a similar congruence in Z. The
problem is that the left hand side has denomina-
tors in the terms of order greater than n. Lemma
4.2 bounds the multiplicity of p in integers of the
form ¥! and j; - - - j;, and Lemma 4.3 states that we
do not lose ioo much of the initial precision g+1
given by Lemmma 4.1.

We will have to consider ¢ = —97'— where p” | g!
P
and p™*! 4 ¢! We write ¢ =

that ged(p,t)=1.
Lemma 4.2 Let d,i,p,t € N such that P 1s prime,

-
god(gtp?)’ and note

and ¢t = —q!—. Then
ged(gtp?)
(1) 4| pte,
@ h=|%  and j,....hi=1 with
Ji+ - +j; =d, then

Ja- g | phet



Proof. (i) The multiplicity of p in !is

i.f.iz_.}.. <}._+._7"_2_+...:_'L_._P__
P P P P P pP-
= i < 1.
p-—1

(ii) We have to bound the multiplicity of p in
1+ Ji- We use induction on d. The base case
d < p is clear. We can assume that d and each js is
divisible by p, since otherwise the claim follows by
induction. Furthermore, we can assume that

Zpl, RN Im are not divisible by p,
Im+r 7i gre divisible by p,
P P
tor somem,0<=m <i. Then
m<1< 4 =h,
P
pAi—m) < mar + +j;=d —pm =p(h-m),
i<m + BT
P
1o dm | PTET
Jm +1 + + Ji <h —-m
P P
_lh—-m . . .
Set !l = —p—- By the induction hypothesis,
Jmar i plyiem
P P
Fmar o di | PPV
gy di | PP,

4i= P b om o+ h-m _p - (h—m)(l—g—)sh.
P P P

(In fact, the exponent h = 4 is required when

jr= - =j=pandd =pi)D

Lemma 4.3. Let b,pg,t,z €N, k= such

g+1
P

!

gcd(q!,p")' and p | b and

that p is prime, ¢ =
p | z. Then
LR (bL,(2)) €2,
tIHE, (bL,(2)) = t9+1(1+2)°mod p77k*1
Proof. Write

E (blg(z)) = ¥ eaz® € Qlz]

osd=<g?
with ey € Q, and

Sz)= ¥ eqx® € Q[z].

Osd=g
From Lemma 4.1, we know that

9% | Eg(bLg(x)) — (1+z)® in Q[z]

and hence
z9*1 | S(z) ~ (1+2)° in Q[z],
S(z) € Z[z],
Sg(z) e Zz] glz)z?*=S(=z) - (1+z)",
S(z) = (1+2)® mod p?*!,
£9+15(z) = t9*1(1+2)°mod p?*!.

It remains to prove that

t9+1g, 2% = 0 mod p97*¥*!
for any d with q<d$q2.

1y
B L= § @5 Shaiy

Osisq 1=7sq 7

pi (=)t

= X ( TR . ) z¢

Oo<d=q® O<isg v J1 Tk

_15j1,~--.j1. _5 q
Jy+ oo +ig=d

= Y eqx?.
Osd=g?

Fix some d, q<d5q2, and set h = l%‘ Then

i TERERES A
bt (—1Y!
eq = z X F
osisqg © J1 Ji
15jy,Ji S €
g+ Hi=d
and by Lemma 4.2 we have
4
'b.—t_ € Z'
!
hti
—_—E-——.‘E Z,
J1 1l

for any %.j1....,J; in the sum for eq. It follows that
phtitley € Z,
phtdtleyz% = 0 mod pe.
Also, p? | 2% and t9*leyz® € Z, and hence
t9+le 2% = 0 mod p%~*.
Furthermore,

a =g+1—-k.

d-h =d — 2q+1—\%1—

Putting this together with the above congruence
for S(z), we get )
£9H1E, (bLg(2)) — 941 (1+2)°
= $9*1(S(z) + 3 eqz?) — £9¥1(142)°
d>q
= 0 mod p97*%*!,

which is the claim of the lemma. U

We now describe a parallel algorithm which, on
input n-bit numbers a,b,m, computes 2® mod m,
if m has small prime factors.
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Algorithm PARALLEL INTEGER POWERING
1. Factor m =p:l - -p:'. By the assumption, we
have p; < n. It is sufficient to compute

[
a®mod p;*

for each i, since we can then use CHINREM. So
from now on assume m = p® with p prime.

2. Find! = 0 such that
pl , a, pl+1 _|_ a.
It is sufficient to compute

4

a -
{ —-~l—)°mcd pele,

Replacing a by Lz’ we now assume that p + a,

and compute a® mod p®.

3. Find bg such that 0<bo<p and b =
Compute

bomod p.

b
tg=a mod p®.

It is now sufficient to compute a®~% mod p®,
and we can assume thatp | b.

4. We assume that ©®" mod p® is given ("hard-
wired”) for 1<w <p. Find aq, f.9.2 € N such
that 1< ey <p and0=< f.,9,2 < p%, and

ag =a mod p,

g EaBl—l
fg =1 mod p*,

mod p°¢,

z =af —1mod p°®.
(Theng = e mod p,andz = 0mod p.)
5. Corrfpute (1+2)°mod p*®
g =jle—2—|
p-1

as follows. Set

Using binary search, compute

r,t € N such that
t
p" g, p"ttgy ¢t = ﬁ;ﬂ
For all j, 1< j < q, compute z7, then
. J
s=b- ¥ (—)IMEL (= br(2)),
1] <q 7

ﬁtq—i (= t'l"lEq(qu(z))) .

2!

v= Y

O=i<q
Compute w € N such that 1 < w < p® and

wt?*! = 1 mod p°,

6. Compute d,y € N such that O0=<d =<p-2

1=y <p®, and
b =d mod p-—-1,
y =g? mod p°.
Return

¢ =vwy mod pé.

Kht

Theorem 4.4. The above algorithm correctly com-
putes ¢ such that

b

¢ =a’mod m.

The algorithm can be performed by a P-uniform
family a, of boolean circuits, where a, has depth
O{log®n) and size n %", and works for inputs a,b,m
which have at most n bits each, and where each
prime factor p of m satisfiesp < n.

Corollary 4.5.

SF—POWER € NC? (P—uniform). 0O

Proof of Theorem Correctness: First note that
each summand in s is an integer, p | s, and by
Lemma 4.2, also each summand for v is integral.

Set kb = \%J By Lemma 4.3,

v = $9%1(142)% mod p9k+1

D p—1 P
wy = wti*(1+2)® = (af )® mod p® .
There exists h € Z such that & =d + (p—-1)h, and

the order of the multiplicative group of units in Zp.
is ¥(p®) = p¢~Y(p—1). Therefore

q—Ic+1>q—£—=q-p_1>eJ ~p_1:e

agn—l(p—l)h =1 mod pa'
a%= a®(fg)" = (af )Pg® = vwg* G-
= vwy o 'P-VR = yuy = ¢ mod p*.

It remains to estimate the circuit depth and
size. In step 4, we assume that u?' " mod p® is
given. This can be hard-wired for all p <n,

l<wu <p, and e <n in size n%W. The resulting
circuit family is P-uniform, i.e. the n-th circuit
can be constructed by a polynomial time bounded
Turing machine on input m in unary. (See Ruzzo
[1981], Cook [1983], Beame-Cook-Hoover [1884] for
discussions of uniformity.) Beame-Cook-Hoover
[1884] have O(logn) P-uniform circuits for division
with remainder and iterated product of n-bit
integers, and the size for each step of the aigo-
rithm is polynomial. We get the following estimates
for the circuit depth:

Step 1:  O(log?n).
Step2: O(logn).
Step 3:  bg,cy: O(logn) .
Step4:  ag,z : O(logn),
g : O(logn) (table look-up),
f : O(log®n.).
Step5: g : O(loglogn.),
g'.r.t,s,v: O(ogn),
w : O(log®n).
Step6: c,y: O(logn). 0O



NEDLET BS. 4.0.. Tnc aigoritnm reqiiires
W™ P od p° haord-wired for 1= w2 ,F.2 SR Tode
not know how tc soive this special pewering prob-
lern fasi in parallei, and SI-POWER is not known to
be n NC under log-space umrtormily. However,

when o, = 2% ihen m,= 1. siep 4 only uses u =i
aiid ohLV LLC calculctism o of woinm skem S rocuaires
mare than O(logn) depth. Using Lhe log-space uni-
form algorithm of Reif [1084] - with depth

Ofloan-lonloon) and volvnomial size - for di\(ision
with remainder and iterated product, it follows that
nb mod 27 ecan he comonted in log-space uniform
depth O(log?n loglogn) and polynomial size. The
alporithm similarly simplifies for the case m = 3",
saing reprosentatives (=1,0.10 for 2/ 07
A47. We know that the number of uniis mod p°® is

#72% = o(p*) = (P-Dp* "
In fact, if e = 2, and p = 3, then

G ={uf "modp® :l=su <pi
H = v mod p® : 1sv<p® and v =i mod p}

are subgroups of ZX,, with order p-1 (namely
G = Z)) resp. p°7!, and Zg, = GXH. The algorithm
esseniially soives ihe pOWEring proviem i [i.
Since (@ is small, cne can compute powers in G in
depth O(log p), but in Remark 1 we ask to actually
compute G.
4.B. An obvious question is to remove the condition
of m having only small prime factors. Allan Boro-
din has proposed the following: can we compute fast
jiv paralier e i-iu biv ol a’, given n-tit numbors
a,b,i? Alt [1984] shows that this is the case for the
high-order bits of @®.
Example 4.9. Let g=3,p=2 in Lemma 4.3. Then
t=4, k=2, t371=81. Let
F(z) = Ex(2Ls(z)) — (1+z)*
_ 1. 4,5 5 23,8, -7, 7_R 8, 4,9
= —= D5 E2yb p o lg? — x84 —27 .
6 *3% "18" T8 9 BL " .

We knew from Lemma 4.2 t."nét if z is even, tien
B1.-F(z) € Z, and from Lemma 4.3 that ‘

81-F(z) = 0 mod 2.

In fact, B1-F(2) = 8-373. However, for z'=1 we find
81-F(1) = 67; therefore the exp-log-approach does
nat seam to work directly to selve the preblem we
hard-wired in step 4.
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