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IRREDUCIBLE POLYNOMIALS OVER FINITE FIELDS
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Abstract.

Several methods of computing irreducible polynomials over finite fields are
presented. If preprocessing, depending only on p, is allowed for free, then an irreducible
polynomial of degree at least m over Z, can be computed deterministically with

O (n logp ), i.e. O(output size), bit operations. The estimates for the preprocessing time
depend on unproven conjectures.
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1. Introduction

The purpose of this paper is to give some deterministic methods for computing
irreducible polynomials over finite fields. Such polynomials provide the field extensions
required in several algorithms, such as factoring multivariate polynomials (Chistov &
Grigoryev [1982], von zur Gathen [1985a], von zur Gathen & Kaltofen [1985a, 1985b],
Lenstra [1985]) and very fast parallel arithmetic of polynomials (Eberly [1984]). The
probabilistic polynomial-time methods available for problems such as factoring polyno-
mials (Berlekamp [1967, 1970]) and generating irreducible polynomials (Rabin [1980]) are
quite satisfactory in practice. However, it remains a theoretical challenge to find deter-
ministic polynomial-time algorithms for these problems: see Camion [1983] for construct-
ing large irreducible polynomials from small ones, von zur Gathen [1985b] for univariate

factoring when p -1 is smooth (assuming ERH), and Kaltofen [1985] for multivariate
irreducibility testing.

In Section 2 we collect the basic facts showing that certain (integral) eyclotomic
polynomials are either irreducible modulo p, or at least have only large irreducible fac-
tors. These properties depend on certain conditions that have to hold between the
characteristic p and another prime number ¢ .

In Sections 3 and 4 we investigate these conditions, show some relations with classi-
cal problems in number theory (Fermat’s conjecture and Artin's conjecture), and state
reasonable but unproven conjectures saying that for every p there exists a small q
satisfying the conditions. Numerical evidence supports these conjectures, and we prove
that the conjectures hold for random primes.

Section 5 applies these conjectures to yield three fast algorithms for constructing
irreducible polynomials over Zp . The most interesting is a deterministic method which,
after a preprocessing stage involving p only, produces irreducible polynomials of degree
at least n in time (= number of bit operations) proportional to the output size
O (n logp ) (in fact, in.O (logn ) operations if we do not insist on the dense representa-
tion of polynomials). The conjectures (plus ERH) imply that the preprocessing stage
can be performed deterministically in (n logp )0(1) bit operations.

The unproven conjectures only concern the timing of the algorithm, not the
correctness of the output. Furthermore, they only intervene in the preprocessing stage
depending on p, but not on n.
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The irreducible polynomials that we consider in this paper are very easy to com-
pute, in linear time. After learning of the present results, Adleman & Lenstra [1986]
proposed different methods for computing irreducible polynomials; their approach avoids
the above conjectures, but seems to require more unwieldy (but still polynomial-time)
computations in number fields.

2. Cyclotomic polynomials over finite fields

In this section we collect some well-known facts concerning prime numbers p and
g which guarantee that for any k > 1 the ¢f-th cyclotomic polynomial is either

irreducible in GF (p ® )[z |, or that at least each irreducible factor is large. (GF (p¢)is a
field with p ¢ elements.)

If a,m €Z with m > 2 and ged (a,m ) =1, then the order s = ord,, (a) of a
modulo m is the smallest integer ¢ > 1 such that ¢’ = 1 mod m. Then s is a divisor
of ¢(m ), where ¢ is the Euler function, and a®™) = 1 mod m. a is called primitive
modulo m if and only if s = ¢(m ). We write ¢* ||a if and only if ¢ divides a
exactly ¢ times, ie. if 20, ¢'|a, and ¢'*! Ja. We also write
a+b = max{0,a-b}, and a~b-c = (a=b }c.

Fact 2.1. Let a,e,i,7,k,g,s €Z with ¢ prime, e,i,k 21, 920,
¢ %= 0modgq, s =ord,(a), ¢" [la? —a,and ¢/ ||e.

(i) If ¢ >3, then ord,+(a®) = sq****J /ged(e ,5 ).

(ii) If ¢ >3 and k >2, then the following three properties are equivalent:
(2.1) @ is primitive modulo ¢,
(2.2) a is primitive modulo ¢?2,
(2.3) a is primitive modulo ¢, and ¢? = a mod ¢2

(iii) If ¢=2, k>3, and a is congruent to 3 or 5 modulo 8, then s = 1 and
ordot (a ¢ ) = 2672,

For proofs of these facts, see e.g. Knuth [1081], 3.2.1.2, Theorem C, and Hasse [1980],
Part 1, ch.4. '

Throughout the paper, p and ¢ denote prime numbers. For m € N, v, € Z[z]
is the m -th cyclotomic polynomial. For properties of ,, , see e.g. Borevich & Shafare-
vich [1966]. ¢, is irreducible and has degree ¢(m ). If F is a field, then ¥, » €
F [z ] denotes the image of %,, given by the canonical mapping Z — F. The cyclo-
tomic polynomials ‘¢qt are easy to describe:
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Fact 2.2 (Lidl & Niederreiter [1983], Example 2.46). Let ¢ be a prime,
k 2 i 2 1. Then

b, =z +29% 4+ - +1€Z[z],
b=
d)qk - qu(xq ).
Fact 2.3 (Lidl & Niederreiter [1983], Theorem 2.47). Let p, g be distinct prime

numbers, e,k > 1 (and ¥ > 3 if ¢ =2), and F = GF (p®). Then each irreducible
factor of ¥ + p has degree ord «(p°).

Corollary 2.4. Let p,g,e,k,F be as in Fact 2.3, ¢ odd, s = ord, (p ), and let
121 and 7 >0 with ¢' ||p? —p and ¢? ||e. Suppose that ¢ € F [z] is an irreduci-
ble factor of ¥ .+, p,and [ = g (z 77, Then
(i) f/ is irreducible of degree sq***/ /ged(e ,5).

(i) If p? == p mod ¢?% then i=1, and f is an irreducible factor of e p of
degree g “/*l.degg > gk-71,

(ili) If p is primitive modulo ¢?, and ged(e ,(g-1)g) = 1, then f = ¥+ p is irredu-
cible of degree (g -1)g* 1. _

Example 2.5. We explain for ¢ = 3 the methods that we will propose in Section
5 for computing irreducible polynomials. Let p £ 3 be a prime, e.k =1,
F = GF(p®),and s = ords(p ). We will consider two cases:

Case 1: p is primitive mod 9 (so that s = 2) and gcd(e ,6) = 1. The first condition is
equivalent to p =2 or 5mod9, and then Wy p = 22" 4+ 237 L1 F[z] is
irreducible. (See van Lint [1971], Theorem 1.1.28, for p =2, ¢ = 1.)

Case 2: p® %= p mod 9 and ged(e 3s) = 1. The first condition is equivalent to
p == 1,8 mod 9. The primes not included in Case 1 satisfy p =4 or Tmod 9. In
these two cases, p £ 2, s = 1, -3 is a square modulo p , and

Usp =32+ 7 +1=(z - (-1+V=3)/2)(z - (-1-V=3)/2).
Then the factor
23" - ((1+V-3)/2 € F [z}
of ¥ + p is irreducible.

Example 2.6. We discuss the case ¢ = 2 excluded in Corollary 2.4. We let
F = GF (p°®), and in view of Fact 2.1(iii), we assume that 2 | e and p =3 or
5mod 8. If p = 5 mod 8, then -1 is a square modulo p and 2 and -2 are non-squares.
In this case,




T W,

Uy p = a2+l = (z-V-1)(z +V-1),
and the factor
2t e r (2]

of Wot p is irreducible for k£ >2. If p = 3 mod 8, then -2 is a square modulo p and -1
and 2 are non-squares. In this case,

Uep =3+ 1= (224+V2 2-1)(22-vV=2 z-1)
is an irreducible factorization, and
22 4V 222 1 € F 2]
is an irreducible factor of Wy p for [ >3. (Also, ¥, is irreducible.)

The square roots required in these factorizations can be computed deterministically in
polynomial time assuming the ERH (Huang [1985], Schoof [1985]).
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3. Numbers of large order modulo ¢/

Given a prime number p, we want to find a small prime number ¢ such that p
has large order modulo ¢!, if [ is large. We consider two variants of "large order”:
order at least ¢'~! in this section, and maximal order (q-l)q"l (for ¢ odd) in Section
4,

In this section, a heuristic consideration leads to a conjecture asserting the
existence of a small ¢. The conjecture is supported by numerical calculations, and we
prove that the conjecture holds for randomly chosen primes. Corollary 2.4(ii) then pro-
vides large irreducible polynomials in GF (p ¢).

We consider
S = {(p,q):p,q are prime numbers, p £ ¢, and either

(¢ #2and p? = p mod g or(¢ =2and p = 3 or 5 mod 8)},
and for p primeand z € R

s(p)=min{g:(p,q)€ S},
o(z)=min{p: p primeand Vg <z (p,q)¢S}.
(If the set defining s (p ) is empty, set s (p ) = o0.) For (p ,q )€S, Corollary 2.4(ii) and

Example 2.6 provide large irreducible polynomials in GF (p®)[z]|. s and o are inverse
functions in the following sense:

Vep,z (p <o(z)=>Vp ' <p s(p’) < 2) (3.1)
Also, o is monotonely increasing.

In Section 5 we will want s (p ) to be small, say O (log p ), or equivalently, o(g ) to
be large, say o(q ) = exp(Q2(q )).

Lemma 3.1. Let ¢ be an odd prime.
(i) Let1<a < ¢%anda =5 modg with1 < b < g. Then

¢! =a modg? <> a = b7 modg?

(ii) There are exactly ¢-1 numbers & such that 1 <a < ¢?% ¢ |/a and

a? = a modg?.
Proof. (i)Leta = b + ¢cq with1 < b < q,0 < ¢ < ¢ be the ¢g-adic expansion of
a¢. Then

a? = (b +c¢q)! = () b7-7(cq)) = b7 4+ qb?'cqg = b7 mod ¢2
0<i<q ?




Hence
e’ = a modg? <= a = b7 modq?.

(ii) is clear.

Forz € R, let
aoz)=2 [] ¢%

where the product is over the prime numbers up to z. By Lemma 3.1, for every odd
prime ¢ we have ¢ -1 residue classes modulo ¢? (and 2 residue classes modulo 8, if
g = 2) which contain prime numbers p > g such that (p,qg)¢S. For any prime

p > z, the question whether (p, ¢ ) ¢ S for all ¢ <z depends only on the residue class
of p modulo a(z ), and there are

Bz)=2TI (¢-1)

¢ <2
residue classes which contain such p’s. If these residue classes are represented by
U (& )yeees U gz y(2 ) With
l=uy(e) <us(a) < - < uge)a) < az) < v p(e) = afa )41,

then the average gap between u; (z) and u; (2 ) is

sy als) g’
=) Bz ) ql;[zq—l'

Note that u4(¢q) < o(¢ ); in Remark 3.4 we give the ; (¢) < o(g) for ¢ < 13.

We now conjecture that, in a logarithmic sense, o(z ) (which is larger than the first
gap uo(z ) — 1) is not much smaller than the average gap ¥(z ).

Conjecture C;. There exist ¢, N > 0 such that for all z >N
¢ - log A(z) < log oz ). (3.2)
For polynomial-time algorithms in Section 5, logo(z ) = (log(z )™V would suffice.
Apart from the heuristic, we give three arguments supporting the conjecture: Table 1
shows that it holds for z <23, with ¢ =0.98, Theorem 3.8 shows that it holds for ran-
dom primes, and a conjecture by Murata [1981] essentially implies C 1 (Proposition 3.8).

The following lemma gives the order of magnitude conjectured for log o(z). ("log”
always means natural logarithm in this paper.)

Lemma 3.2. Forz > 1

T
1 z + :
logz<og’\{(m)< log =
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Proof. For the upper bound on log ¥(z ), we have

log ¥(z)=1log ] ¢ +log [T -
¢<z g 271

<z+

x e, 1
1 -1 {1
2log 2 loate e g log?z

for z > 1, by Rosser & Schoenfeld [1962], (3.15) and (3.30), where C < 0.57722 is
Euler’s constant. It is sufficient to show that

1 )<l T
]0g2g: = 2 log 2

C + loglogz + log(1 +

for ¢ > 7, since the lemma is easily checked for 1 < £ < 7. One verifies that
6C logz < z,

3 logz - loglogz < 7,

12 - log(1 + . ) logz <12 - log(l + : Jlogz < z,
log®z log?7
for z > 7. Together we get
18 11 1 z 1 @
C + logl log(1 <=4+ =4+ — = — !
+logioge +lexll 1og23,-)—(6 -4 3 +12)logz 2 log z

One easily checks the lower bound for z < 41, and for z > 41

log v(z ) > log g4 > 2 - m,
() ql;[x = log z

by Rosser and Schoenfeld [1962], (3.16).

Proposition 3.3. Conjecture C, holds if and only if there exist ¢ NS
such that for all y > N~ we have

Vp <y s(p)<c’logy. (3.3)

Proof. Let ¢, N be such that (3.2) holds for all z > N. We assume that N > ¢2.
Set ¢ =2/c, N’ =exp(cN/2), and let y > N’. Set 2 = 2¢'log y. Then
g >N > e? and i

o(z ) 2> exp(c log +(z))> exp(c (z -

x
g —] = .
log;r))—exP(c2) y

Now let p < y be a prime. Then p < ofz), and by (3.1),
s(p)<z=c¢"  logy
For the reverse claim, let ¢ ",V " > 0 be such that (3.3) holds for all y > N *. We
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assume that NV ° > 4 and ¢ * > 2; then 2¢ " log(NV "/2) > e. Set

=
46”

c

N = 2¢ ’ log N’,
2

let z > N, and set y = 2 - exp(2¢z). Then y > N . Let p be a prime number
with y /2 < p < y; such a prime exists by Bertrand’s postulate (Rosser & Schoenfeld

[1962], (3.9)). Then

Vp' ' <p <y s(p’)<c'logy =c log2+ =~ <

=
2
By (3.1), we have p < o(z ), hence

Yy

log o(z) > log p _>_log5=2cx >c(z + %

log z

) 2 ¢ log A(z),

using that 2 > e and Lemma 3.2.

The proof shows that if (8.3) holds with the values (¢ ",N °) (and N~ > 4,
¢ * > 2), then also with (8¢ *,(V * /2)!/4); hence also with (¢ “(log N *)%/2,4).

Remark 3.4. For ¢ < 13, we list the ; (¢ ) with 1<u; (¢ )<o(q).

uo(2) = 0(2) =7, uy(3) =0(3) =17,

ug(5) = 143 = 11'13 < u4(5) = o(5) = 199,

uo(7) = 1,207 = 17-71 < u4(7) = 2,449 = 3179 < u ,(7) = 3,007 = 31:97 <
ug(7) = 3,743 = 19-197 < u4(7) = o(7) = 4,049,

uo(11) = 1,207 < u4(11) = 4,607 = 17-271 < u 4(11) = 19,601 = 17-1153 <
ug(11) = 22,040 = 17-1207 < u4(11) = 27,343 = 37739 <
u7(11) = 30,007 = 37-811 < ug(1l) = 49,607 = 113-439 <
ug(11) = o(11) = 52,057,

% 9(13) = 0(13) = 132,857.

Table 1 shows z, o(z ), and rounded values of 4(z ) and

ME) = log o(z ) ,
log ~(z )
for prime numbers z < 23. (Between two consecutive prime numbers, o(z ) and ~(z)
are constant.) Note that 0.98 < Mz ) < 1.7 for z < 23, so that (3.2) holds for
1<z <29 and ¢ = 0.98. (The values of o(z ) have passed probabilistic primality
tests; the true value of o(z ) is at least the one given here.)
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i o(z) ¥z ) Az )
2 7 4 1.4037
3 17 18 0.9802
5 199 112.5 | 1.1208
7 4 049 918.8 | 1.2174

11 52 057 11 116.9 | 1.1657

13 132 857 156 562.7 | 0.9863

17 4 651 993 2 827 913.0 | 1.0335

19 256 899 943 56 715 365.9 | 1.0846

23 | 1133 144 266 727 951 | 1 363 746 751.6 | 1.8480

Table 1.

We now prove that Conjecture C; holds for random prime numbers: for a random
prime p < e", we have s (p) < n with probability at least 1 — e /20,

As usual, we let 0(z ) = 3 log ¢, so that a(z ) = 2exp(26(z )).
¢ <z

Lemma 3.5. Let z,y, 2 € R be such that

afz)=2]] ¢2 <y < 2,
§<z

and let

P(z,y,z)={p:p prime,y <p <2,z <s(p)}
Then

2z
#P (I s Y, 2 ) S exp(f?(:r )) . (log Yy — log(a(x ))) ‘

Proof. As remarKed in Lemma 3.1(ii), there are

Blz)=2 T[] (¢-1)

g<z

many residue classes a modulo oz ) such that every p € P(z, v, 2) is congruent to
some such a. Note that ¢(a(z )) = A(z Jexp(6(z )). By the Prime Number Theorem for
arithmetic progressions in Montgomery & Vaughan [1973], Theorem 2, we have

ab. oo 268z )(z ~ y) = .
#P(z,y,2) < S S T S % 3 = B

a(z )
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Theorem 3.8. Let z > e Then for a random prime number p with
2 < p < z we have

prob(s (p) > log 2) < z71/20,
Proof. We let
e ) = #.{p:Q <p L z,p prime,and s(p)>logz} - n(z)"}
be the probability in question, and prove
i) € 2P

by induction on [ 2 ]. The inductive step assumes z >10'°, The claim was verified for
smaller values of z computationally, as follows. If ¢ is a prime and ¢ the next prime,
let

8g)=#{p:p <exp(¢gt)and ¢* < s5(p)}.
Then, if

8q) < g 'exp(g -¢ */20), (3.4)
we have for exp(¢) < z < exp(q™)
prob(s (p) > logs) = prob(s (p) > ¢%) < AL <
984) - exp(-g +/20) < z-1/20 |

exp(q) —
(3.4) was verified for ¢ <19, and we now assume z > 101  (For
e 8<10°< 2 <10 <0(23), we have prob(s (p )>logz ) = 0.) We denote by ¢, \, u, v
parameters that we will fix later. We let y = 2¢, 2 = e\ log 7, and assume that the
following hold:

ex < 1. (3.5)

%logg +0(z) < pz fors5 < =z, (3.6)
v < 0(z) for5 < z, (3.7)

y < z-1, (3.8)

113.6 < afz) < v, (3.9)

5< (3.10)

Splitting the primes up to z into those up to ¥ and those greater than y, we have

nz) < nly) - w(y)(m(z)) + #P(z,y,2) (n(z))?




€

< gt 5 2
= 4 e€logz

2z
Gollz) (log y — log(a(z)))

O I

log =z

= 3 -efaeen g 2 - exp(-0(z )

4¢ elog z - log 2 - 26(z )

53 2
< 2 10201 o 2 .
— 4¢ i e 1-2:\u

- exp(-vz )

— B wefi + 2 1 e

4e e 1-2\p ’
where we have used Lemma 3.5 and Rosser & Schoenfeld [1962], (3.5) and (3.7).

Now we use the following values:

1 14
)\ _— _ — == i),
3 7 TL v = 0.4858 (< 0(5)/7),
and ¢ such that
Ee -1 = —e\v
20

(so that € = 0.89933...). We check (3.5) through (3.10): A table shows that (3.6) holds
for z <695, and for £ >695, Rosser & Schoenfeld (3.15) implies that

8 P8
13

Similarly, one verifies (3.7) for z <41, and otherwise uses

0(z) <z + %logz <z + é—logQ.

9(:::)2x—-l-:gz > vz,

by Rosser & Schoenfeld (3.18). For the second inequality of (3.9) we have
oz ) = 2exp(20(z )) < exp(2uz )= 2?M < z¢ = y.
Thus

P2y
3 1-2hu

n(z) < (f_e - Y B L gR O < 5-1/B

Example 3.7. Of the 460 primes p between 32 633 and 2% in Table 4.5.4-1 of
Knuth [1981] (which were certainly not chosen with a view to favoring Conjecture C,),
220 = 47.83% have s (p )=2; for random primes, say up to 2%, one expects 50% to
have this property. In the table, 159 = 34.57% have s (p )=3 (expected 33.33%),
87 = 14.57% have s (p )=5 (expected 13.33%), and the remaining 14 = 3.04% have




<18
s (p )=T (expected 2.86%). For all these p, s (p )<logp. (0.48% are expected to have
s(p) 2 11.)

Rosser [1941] shows the following connection of our set S with Fermat’s conjecture:

if (p,g)€S, ¢ >3 and p < 43, then there exist no z,y,z € Z such that
ged(zyz, g)=1land 27 + y? = 27,

Consider the set
F,(z)={q:q prime,3< ¢ <z,q | a,and a? = a modg?}
fora € Z, z € R. When p is prime, then
Fo(z)={q:q¢ #p prime,3< ¢ <z,(p,q) ¢S}

Murata [1981], Theorem 1, implies that for z > 286 and a random integer @ between 2
and z?

prob(#F, (z) > 2 loglogz ) < 2(loglogz )™ .
Since 2 loglogz < m(z ) for z > 2, this implies that
prob(Vg < 2 loglogz p? = p modq?)) < 2(loglogz )* .

Compared with Theorem 3.6, this yields a smaller bound on the smallest ¢ , but the pro-
bability decreases much slower. Murata also conjectures that

#F,(z) ~ D, loglogz

for large z, with a constant D, depending on a. We show that with small D, (say,

D, = O (loga)), the upper bound would essentially imply Conjecture c,.
Proposition 3.8. Let p be a prime, and D € R such that

Vz >3 #F,(z) < D loglogz,
and assume that D >8. Then
' s(p) < 4D logD loglog D.
Proof. Let £ = 4D logD loglogD . Then
logz < logD + log(4 logD IoélogD) < 2 logD,
loglogz < log2 + loglogD < 2 loglogD.
Thus

o T . z m(z)
" 2logD - 2loglogD — logz loglogz loglogz

by Rosser and Schoenfeld [1962], (3.5). Now
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n(z) > D loglogz > #F, (z)
implies that s (p ) < z
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4. Primitive elements modulo ¢*

This section parallels the previous one, now with a view to applying Corollary
2.4(iii). Thus we consider

T ={(p,q) p,q prime, ¢ > 3, and p is primitive modulo g},
and for p prime and z € R
t(p) = min{g:(p,q)€ T}
nz)=min{p: p prime,and Vg <z (p,q) ¢ T},
Then
Vo,z2 (p <rz)<=>Vp ' <p t(p")<2) (4.1)

Lemma 4.1. Let ¢ >3 be prime. There are exactly (g -1)(¢ —#(g -1)) integers a
such that 1 < ¢ < ¢% ¢ /| a,and a is not primitive modulo ¢ 2.

Proof. Using Fact 2.1(ii) and Lemma 3.1, we have
#{a:1< e < q¢%q [a,and a not primitive mod ¢2}
=#1{a:1<a <q%q [ a,a notprimitive mod ¢ }
+#{a:1<a <q?%¢q [a,a primitive mod ¢,

and ¢? = ¢ mod ¢?}
= ¢ - (¢-1-¢(¢-1)) + é(g-1) = (¢-1)(g - ¢(g-1)).

Remark 4.2. The numerica.1 evidence exhibited below indicates that the direct ana
log ue of Conjecture C, is probably false. The ana log ue would state that

¢ ~log v (z) < log n(z),
where
2

(@)= TII !

3<q <z (‘I _1)(9 —-gb(q —l)) ;

However, using

-1 q q
] e >
He-T)z loglog(¢-1) — 2 loglogg — 2 loglogz

for ¢ < z and z large enough, it follows that asymptotically

log 7" (z) = Q(z /(logz loglogz )),

but log(r(z )) seems to grow much slower.
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Numerical evidence suggests the following conjecture.

Conjecture C,. There exists ¢, N > O such that forall z > N
cz? < (x). (4.2)
Proposition 4.3. Conjecture C, holds if and only if there exist ¢ *, N~ > 0 such
that forally > N~
Vp <y t(p)<c yV2 (4.3)

Proof. Taking ¢ and N satisfying C,, weset N° = ¢N? and ¢ * = ¢~'/2, Then for
y >N’ ,wesetz =c 'yY/2> N. Forany p < y we have p < y = cz? < 7(x),
hence t (p) < z by (4.1).

For the reverse implication, we set ¢ = (¢ * Y2 and N = ¢ “(N * )Y2. Then if
¢ > N, we let y =cz?> N’. For any prime p <y, t(p)<c’y® =z, and
hence f(z) > y = cz?.

Conjecture C, has the following relation with Artin’s conjecture. Set
T* ={(a,g) € 2% q > 3is prime, and a is primitive modulo ¢ },
and for a €Z, .
T, ={q:(a,¢)€T"},
t*(a) = min T,

with t*(a) = o0 if T;m §; e.g. when a is a perfect square. For a prime p,
£ (p) < t(p). Artin’s conjecture gives the following density for T;:

#{q0 €T,"q <z}~ C(a)n(z),
where C(a) is a constant depending on @, and @ is neither -1 nor a perfect square.
Hooley [1967| proves this conjecture, assuming the ERH. Let

c= TII .

(1 - ————) = 0.3739558....




w17 =
Then for a prime p , Hooley’s result is

C if p = 3 mod 4,
C -1+

C(p)= 1
————) ifp =1mod4.
po=p=l

For Table 2, the 27 prime numbers ¢ up to 103 were examined. For the given

ranges of z, the table contains ranges of §(z ) = T(LQ) Note that Conjecture C, states
I

that 6(z ) = Q(1). E.g., the last line of Table 2 implies that for all primes p < 80-1032
we have t(p) < p*®. In fact, t(109)=13, and for all other primes p considered, i.e.
109 < p < 9188 941 = 7(103), we have ¢ (p ) < p*.

T 6z )

19<z <50 1<§(z )<12
50<z <79 | 5<é(z)<150
79<z <103 | 80<4(z)<1000

Table 2.

Again, the conjecture holds for random primes.

Theorem 4.4. For z €R sufficiently large, and p a random prime not larger than
z, we have

prob( t(p) > 2*) = O (27 (logz )'/°).
Proof. We have
prob( t(p) > z*) < prob(t*(p) > 2®) + prob( s (p) > z*).
Warlimont [1972] proves that for large z
#{a€Z:1<a <z and t"(a) > 2*} = O (¥ (logz )?/9),
so that the first summand above is

2% (logz )¥/®
m(z)
For the second summand, it is sufficient to consider a single prime ¢ with
2% [2¢ <q <z*/e. It follows from Lemma 3.1(ii)) and Montgomery & Vaughan

[1973], Theorem 2, that

O ( ) = O (z7*(logz )/®).
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L 22 < 8ez”®
$(q*)log(z /q?%)

#{p:9 <p <z and(p,g)eS} < g g ;

(¢-1) <

so that a coarse estimate is
prob(s (p )>2*) < (n(q ) + 8ez*)/m(z) = O (+ *logz ).

Example 4.5. All 460 primes considered in Example 3.7 have ¢ (p ) < 41 < p*.
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5. Computing irreducible polynomials

We show how to find irreducible polynomials of large degree over finite fields fast,
assuming the conjectures of sections 3 and 4.

The sum, produect, quotient and remainder, and ged of two polynomials in F [z] of
degree at most d can be computed with O(d logd) operations in
F=1Z,[t]/(h)= GF(p é) (Aho, Hoperoft & Ullman [1974]). Similarly, an operation
(+, *, /) in F can be performed in O (e loge ) operations in Z,, and an operation in
Z, in O (log p loglog p logloglog p ) bit operations. Here we assume the standard
representations of f € F [z] by its coefficients, « € F by (Bos : v« 8,.3) € Z, such

that a =( )] aq; t' mod h ), and of b € Z, by the binary representation of b ‘eZ
0<i<e

such that b = (b* mod p)and0 < b* < p.

If F is a field, then Mp: N — R is such that the product of two n X n -matrices
over F can be computed in O (Mp(n)) operations in F. We can choose
Mg (n) = n?%®% < n?5 (Coppersmith and Winograd [1982]). In order to be able to
neglect logarithmic terms, we use the following notation (generalizing Definition 6.4 in
von zur Gathen [1985a)).

Definition 5.1. Let r € N, and 5,t: N” — R, Then s = 0°(¢) if and only if
there exist k¥ ,m € N such that

Vet 2 m s(nge,n ) < E(n0..,n, )(logy(2 + ¢ (7 1,mn, )k .

Thus s = O (¢)if and only if s = O (¢ -log(2+¢ )* ) for some & .
We will use the following well-known facts.
Fact 5.2. Let p be a prime number, d > 1, and F = Z,.
(i) If / € F[z] has degree d, then the irreducible factorization of f can be com-
puted by a deterministic algorithm with O * (M (d ) + pd ?) operations in F .

i) Iff eF]|z ]-has degree d, then the irreducible factorization of f can be com-
puted by a probabilistic (Las Vegas) algorithm with an expected number of
0" (d®log p ) operations in F', and O (d log p ) random bit choices.

(ili) If d > 1, then an irreducible monic polynomial in F[z] of degree d can be
found by a probabilistic algorithm with an expected number of O *(ds log p)
operations in F', and O (d log p ) random bit choices.

(ivy If p =2 and n > 1, then an irreducible polynomial of degree d with
n < d < 3n can be computed deterministically with O (n ) bit operations.
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(v) If we assume an appropriate Extended Riemann Hypothesis (ERH), then any

cyclotomic polynomial in F [z ] can be factored in deterministic polynomial time.
Proof. The algorithms proving these facts go back to Berlekamp [1967, 1970], see also
Knuth [1981], 4.6.2, and Cantor & Zassenhaus [1981]. (ii) and (iii) are in Rabin [1980].
For (iv), see Example 2.5. (v) is proven in Huang [1985].

The algorithms extend easily to non-prime finite fields; see Cantor & Zassenhaus
[1981] and von zur Gathen [1984].

Fact 5.3. Let F = GF(p®), and f € F [z] of degree d. Then an irreducible
factor of f can be found with the following number of operations in Z,.

(i)  With O (Mg, (de)+ pd®e log(e +1) logp ) or O *((de )5 + d%ep ) operations by
a deterministic algorithm.
(i) With an expected number O (M(de)+ d2e logd log(e +1)logp) or
O " ((de )*5 + d2%e logp ) operations by a Las Vegas algorithm.
Lemma 5.4. Let p be a prime number.
(i) If Conjecture C holds, then one can find a prime number ¢ such that (p,q)€S
in O * (log?p ) bit operations.
(ii) If Conjecture C, holds, then one can find a prime number ¢ such that (p,q)ET
in O " (p3/*) bit operations.
Proof. (i) For any integer ¢ > 3, one can test whether (p, ¢) € S, i.e. whether ¢ is
prime, p 54 ¢ and p? = p mod ¢2, in
O (g*log’q +log p - logg + logg - log?q)
bit operations. The first summand is for a trivial deterministic primality test, the
second for v = p mod ¢? with 1<u <g¢2, and the third for v ¢ mod ¢? (Aho, Hop-
croft & Ullman [1974]). For ¢ =2, one can test p = 3 or 5 mod 8 in O (log p ) bit
operations. Under Conjecture C;, there exists ¢ such that (p,¢)€ S and
g = O (log p) (Proposition 3.3), and the total cost for finding the smallest such ¢ is
0 * (log?p ).

(i) For ¢ > 3, one can test whether (p, ¢) € T with the cost as above, plus the cost
for testing whether p is primitive modulo ¢. This can be done by computing the dis-
tinct prime factors ¢, ..., ¢, of ¢ —1in O *(¢*) bit operations (by a trivial factor-
ing algorithm) and testing whether

p(q_l)/g‘ =% 1 mod ¢

for 1<i <7, In O(log3q) bit operations. Under Conjecture C',, there exists a
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== O (p’é) with (p, ¢) € T, and the total cost for finding the smallest such ¢ is
*

(p 3/4)_

Theorem 5.5. Let p be a prime number, e,n > 1, and ¥ = GF (p®). Then
one can find an irreducible polynomial in F [z | of some degree d such that n < d by

q
O

deterministic algorithms of the following running times.

(1) If Conjecture C'; and ERH hold, with (elog p)°(") 4+ O (ne log®p ) bit opera-
tions; then d = O (n log®p ).

(ii) If Conjecture C,; holds, with O (e®+ e%p + nelog®p) bit operations; then
d = O(n log®p).

(iii) If Conjecture C, holds and ¢ = 1, with O *(p®/4 + p%n ) bit operations; then
d = O (pn).

Proof. For (i), find ¢ with (p,q)€S and ¢ = O (log p) as in Lemma 5.4(i). If ¢ is

odd, let s =ord,(p) and ¢’ || e. Use Fact 5.2(v) to compute an irreducible factor

g€EF [z] of Y, inp in (elog p )M bit operations, since

deg¥,;n = (g ~1)g? = O(elog p). Set, k=3 +1+[log,n7, compute

f =g@=""NerF [z] in O (nelog®p ) bit operations, and return f . Then f is irredu-

cible by Corollary 2.4(ii), and

n < ¢* 77 < degf = sqk I /ged(e,s) < (¢-1)gF 71 < g% = O (n log?p).

If g =2 and 2 [ e, use the factorizations of V,r or ¥gp and appropriate substitu-
tions, as in Example 2.6. If 27 || e, then factorizations of Wy,+4s p are sufficient.

For (ii), find ¢ ,k,7 as in (i), and use Fact 5.3(i) to compute an irreducible factor ¢ of
¥ iup, with O *(e2log p )*% + eBlog?pp) or O (e® + ¢3p) bit operations. Then
proceed as in (i).

For (iii), use Lemma 5.4(ii) to find ¢ with ¢ = O (p*) and (p,¢) € T and set
k =1+ [log,(n /(g-1))]. By Corollary 2.4(iii), V.t p € F [z] is irreducible of degree
d = (¢-1)¢*!, and

n <d <qgn = 0(p'?n).
Remark 5.8. Assuming the ERH, it follows from the proof in Hooley [1967] that
most ¢ < z for which p fails to be primitive are such that p?™/% =1 mod ¢ for a
prime divisor ¢; < % logz of ¢-1. If this asymptotic density result already applies to

small values of z, then in the search for ¢ with p primitive modulo ¢ one will only
rarely have to compute large prime factors of ¢ — 1.
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One advantage of the present method lies in the fact that given F = GF (p€¢)
with a prime p, one only has to find some ¢ with (p, ¢ )€ S resp. (p,qg )€ T (and
ged(e ,(¢-1)g) =1 and in order to find irreducible polynomials over F of arbitrarily
large degree. The computation of such a ¢ (and the factorization of \Ifq inp if
(p,9)ES and ¢7 | | e) may be considered as a preprocessing stage, and e.g. for the
computational model of P -uniform arithmetic networks over F , one can hard-wire such
aqg.

Corollary 5.7. If preprocessing depending on p is allowed for free and Conjecture
C, holds, then one can find an irreducible polynomial in Z, [z] of degree at least n
with O (n logp ) bit operations by a deterministic algorithm.

The computing time for Corollary 5.7 is proportional to the dense output size.
This is the appropriate model if later on one wants to compute in the field F [2)/(F ).
Howevér, one may also consider more succinet representations such as sparse, formulas
or straight-line programs. (See von zur Gathen [1985a] for such representations for mul-
tivariate polynomials.) If the representation by a straight-line program is allowed, then
the simple expression given by Fact 2.2 shows that Corollary 5.7 holds even with
O (logn + loglog p ) bit operations.

For practical purposes, the easiest implementation might be a deterministic search
for ¢ with (p,¢ )€S and a Las Vegas computation of an irreducible factor g of q"q;ﬂ—lJF
as preprocessing stages (where ¢/ || e ), which then yields an irreducible polynomial
9(z1") € GF (p*)[z] for any k >0.

For the applications mentioned in the Introduction, one might actually just find the
smallest ¢ with (p,q )€S, and then work in the extension ring B = F []/(¥,¢ ) for
sufficiently large &. If during the computation in R a division by a zero-divisor is
attempted, this will provide a factorization ¢ 192 = ¥,+ p. Then the computation is

continued in B /(g; ) for ¢ =1 or ¢ =2. This approach will save the cost of factoring.
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