JOACHIM VON ZUR GATHEN (1987). Factoring polynomials and primitive elements for special primes. Theoretical Computer Science 52, 77-89. URL

http://dx.doi.org/10.1016/0304-3975(87)90081-8

‘This document is provided as a means to

Theoretical Computer Science 52 (1987) 77-89 77
North-Holland

&
g
)
B
z
3

d elsewhere withou
update 2016/05/1

FACTORING POLYNOMIALS AND PRIMITIVE ELEMENTS FOR
SPECIAL PRIMES *

Joachim voN zur GATHEN

Department of Computer Science, University of Toronto, Toronto, Ontario M55 1A4, Canada

Communicated by A. Schénhage
Received August 1986

Abstract. For those prime numbers p, for which all prime factors of p—1 are small, the two
problems of finding a primitive element modulo p and of factoring univariate polynomials over
finite fields of characteristic p are (deterministically) polynomial-time equivalent. Assuming the
Extended Riemann Hypothesis, they can be solved in polynomial time.

1 adhere o the terms and constraints invoked by poses. These works may
articular use them only for noncommercial pur- mission of the copyright hol

°1. Introduction

The problem of factoring polynomials has seen astonishing progress since 1981,
culminating in probabilistic polynomial-time algorithms for factoring multivariate

olynomials given by straight-line programs [23]. Within the framework of poly-

omial time, the major remaining theoretical challenge is to remove probabilistic
" choice from the algorithms. We address this challenge in the most basic case, that
f factoring univariate polynomials over finite fields.

A univariate polynomial of degree d over a finite field with g elements can be
factored deterministically in (dq)°"" bit operations, and probabilistically (Las Vegas)
_in (d log g)°'" bit operations ([7, 8]; later papers on the subject include [6, 10, 11,
29]). Note that the input size is about d log g, in a standard encoding. For practical
= purposes, the probabilistic algorithms are quite satisfactory. However, it remains a
fundamental problem whether there exist deterministic methods using polynomial
time, i.e., with (d log ¢)°'" bit operations. The current paper deals with this question,

and proves that, for primes of a very special form, the factoring problem is determinis-

tic polynomial-time equivalent to the more classical problem of finding primitive
elements.

0:3"0

(=]

rein these works are posted here electronicall

sis. Copyright and

All factoring algorithms, say for multivariate polynomials over algebraic number
{ fields or over finite fields, eventually reduce the problem to our base case of univariate
polynomials over a finite field, via a modular technique. For the modular approach
to factoring polynomials over @, the deterministic algorithms over finite fields can

and technical work on a non-commerci;

* Part of this work was done while the author was visiting Universitit Ziirich, and supported by
Schweizerischer Nationalfonds, Grant 2175-0.83, and by NSERC, Grant 3-650-126-40.

0304-3975/87/$3.50 © 1987, Elsevier Science Publishers B.V. (North-Holland)

78 J. von zur Gathen

be used [26]. The probabilistic polynomial-time methods for factoring (densely
represented) multivariate polynomials over finite fields of characteristic p [12, 18, 25]
can be made deterministic if and only if the same is true for the univariate case
over Z,.

The paper is organized as follows. In Section 2 we will present some results
concerning deterministic polynomial-time factorization. We will prove that for our
question only the size of the characteristic p, not the actual size of the field, is
relevant. In particular, over finite fields of characteristic 2 (or any fixed p) one can
factor deterministically in polynomial time. In fact, the general problem is reducible
to the special case of polynomials which are the product of linear factors over the
prime field. The factorization pattern—consisting of the degrees and multiplicities
of the irreducible factors—can be computed in deterministic polynomial time, also
for large characteristic.

The subsequent results all deal with the special type of prime numbers p, where
p—1is ‘smooth’, i.e., has only small prime factors. Then the group Z, of units
modulo p is a product of cyclic g-groups for small primes g. More precisely, we
define the smoothness S(k) of an integer k to be the largest prime number dividing
k. Then, starting in Section 3, ‘polynomial time’ will mean a number of bit operations
that is polynomial in the input size plus S(p—1). In Section 3, we will give a
deterministic polynomial time algorithm for the special factorization problem of
finding gth roots, where g divides p — 1, and a primitive element modulo p is given.

Then we will consider the two computational problems of finding a primitive
element modulo p, and of factoring a univariate polynomial over a finite field of
characteristic p. We will show that these two problems are polynomial-time
equivalent, via Cook-reductions. In Section 4, we will reduce factoring to primitive
elements, and in Section 5 present the (easier) reduction in the other direction. In
the last paragraphs of the paper, we discuss parallel algorithms. Assuming the
Extended Riemann Hypothesis (ERH), primitive elements can be found in time
polynomial in log p+8(p—1) [3, 4, 33]. Therefore, also the present factoring prob-
lem can be solved deterministically in polynomial time, under the ERH.

In spite of the latter ‘positive’ result, the equivalence in a special case seems to
indicate that the general deterministic polynomial-time factoring problem may be
similarly hard as the long-standing open question of finding primitive elements fast.

The apparent difficulty of the factoring question is also illustrated by the fact that
even for quadratic polynomials, the best deterministic result to date is Schoof’s [32]
method for finding modular square roots of small integers. Huang [22] shows that
cyclotomic polynomials can be factored deterministically in polynomial time. Both
these results assume the ERH. Adleman and Lenstra [2] and Von Zur Gathen [16]
discuss the problem of finding irreducible polynomials over finite fields in determinis-
tic polynomial time.

Maoenck [27] had shown that polynomials in Z,[x] can be factored in deterministic
polynomial time if p—1= L - 2' with L of order log p and a primitive element modulo
p given. The present paper generalizes this result. (It is interesting to note that

Factoring polynomials and primitive elements 79

Moenck considers the (probabilistic) generation of a primitive element as an easy
problem; in fact, we will show here that it is (polynomial-time) equally hard as
factoring polynomials.)

It follows from [1] that there exist non-uniform familics of polynomial-size
deterministic Boolean circuits for factoring polynomials over finite fields. Camion
[10] provides a specific algorithm of this type, which factors polynomials from
Z,[x] of degree d in (d logp)°"" steps. A description of his algorithm can be
generated in (log p)®" steps by a probabilistic algorithm, but it is not clear how to
do this deterministically.

Two ways of generalizing the present result suggest themselves:

(1) Does it help in the factorization problem to know the prime factors of p—1,
even when they are large? (The known polynomial-time methods for testing whether
a given integer is primitive modulo p assume knowledge of these prime factors.)

(2) In the present approach, can one replace properties of p — 1 by properties of
p+1, or of other cyclotomic polynomials in p? (Bach and Shallit [5] give such
generalizations for the harder problem of factoring integers.)

2. Special factorization problems with deterministic polynomial-time solutions

In this section, we will collect some results, mainly from the literature, on special
cases of the factorization problem which have deterministic polynomial-time
algorithms.

For the factoring problem, we have as input a prime number p, an irreducible
monic polynomial we Z,[y] of degree [and a monic polynomial f € F[x] of degree
d, where F'= Z,[y]/(w)=GF(p'). Output is a factorization (f,, dy;...; f, d,) of f,
with f,..., f € F[x] distinct irreducible monic polynomials, d,,...,d, =1 and
f=fi+ f& We assume some standard encoding: an integer is given by its binary
representation, an element of Z, by an integer between 0 and p—1, an element
ue F by elements uy, ..., uw_, of Z, such that u=Y,_, ,uy' mod w, and a poly-
nomial in F[x] by its coefficient sequence. Then the input size for the factoring
problem is about dl log p.

We first remark that the factorization can be computed deterministically with cost
polynomial in p without assuming p — 1 to be smooth. This is based on a modification
of Berlekamp’s [8] algorithm proposed by Cantor and Zassenhaus [11]; the latter
authors are only interested in probabilistic algorithms. In the special case of charac-
teristic 2, e.g., our algorithm is deterministic and conceptually simpler than theirs.

We consider R = F[x]/(f) as an ld-dimensional vector space over Z,, with basis
{x'y mod (w, f): 0<i<d, 0<j<I}< R and residue class mapping g - g from Flx]
to R. We compute g, =1, g, ..., g, € F[x] of degree less than d such that g, , ..., &,
form a basis of the Z,-vector space

B={ueR:u"=u}cR,

the “Berlekamp subalgebra’ of R. The following is well-known.

80 J. von zur Gathen

Fact 2.1. (i) s is the number of distinct irreducible monic factors of f.

(ii) firreducible © s=1.

(iti) If B=(B1,...,B:): R—" R x - xR, is the Wedderburn decomposition of
R, and R, = F[x]/(fi*), then Z, is contained in R, in a natural way, and

B(B)=Z,xxZ,

(iv) If gc F[x] satisfies Bi(g) =0 and B,(g) # 0 for some k, I < s, then ged(f, g)
is a nontrivial factor of f. We call such a g a ‘factoring polynomial for f*.

(v) Z,< B< R is mapped via B to the diagonal of Z, % - - - % Z, Ifgc B\Z,, then
there exists a u € Z, such that g+ u is a factoring polynomial for f.

For proofs, see [9] for (i), [7] (for F =Z,), [11, 14].

If we are given g e F[x] with g € B\Z, and compute the p polynomials ged(f, g+
u) for ue Z,, then Fact 2.1(v) guarantees that we find a factor of f. For a complete
factorization, we can assume that f is monic and square-free, and build up finer
and finer factorizations S < F[x]\ F consisting of monic polynomials with Hys=F
Initially, S={f}. Fori=1,...,. s and a € F, we compute, foreach hc S, g, — a mod h
and u = ged(h, g —«a), and replace S by (S\{h})u{h/u, u} if u# 1, h. The final S
contains precisely the irreducible factors of f.

Let M(d) be such that polynomials of degree at most d over a finite field of
characteristic p can be multiplied with O(M (d)) operations in the ficldgand similarly
d*” for multiplication of d x d-matrices.

Theorem 2.2. Polynomials of degree d over GF(p') can be factored deterministically
with O((dl)” +(Ilog p+p log d) - dM(d)M(1)) operations in Z,.

With M(d)=0(d log d loglog d) [30] and w < 2.4 [13a] the resulting estimate
O(p(dl)*) improves the results in the literature. The case of characteristic 2 is
particularly important, e.g., in algebraic coding theory. Camion [10] proves existence
of a polynomial-time factoring procedure, without exhibiting one. The specific
algorithm indicated above works in polynomial time.

Corollary 2.3. Polynomials of degree d over GF(2') can be factored deterministically
with O((dl)”) operations in Z,.

As observed in [8], it is sufficient to find a factor of res(f, g+1)e Z,[t] in order
to factor [, using Fact 2.1(v), where g c B\ Z,. The resultant has coefficients from
Z, since

res(f,g+u)=0 & deg(ged(f, g+u))=1
Idk=sp(g+u)=0=>Tku=-B(g)ec Z,

for any u in an algebraic closure of F. Since the square-free part of polynomials
can be computed in polynomial time, these observations yield the following result.

Factoring polynomials and primitive elements 81

Theorem 2.4. Factoring univariate polynomials over finite fields of characteristic p is
polynomial-time reducible to factoring univariate square-free polynomials with only
linear factors over Z,.

If a monic polynomial f€ F[x] has a lactorization f=f% - f% with f,,...,f. €
F[x] pairwise distinct monic irreducible, and d,,...,d. =1, then we call

of computing the square-free decomposition and the ‘distinct-degree factorization’
[24, Section 4.6.2] yield the following result, which also follows from [20].

Theorem 2.5. The factorization pattern of univariate polynomials over finite fields can
be computed deterministically in polynomial time.

3. Primes p with p—1 smooth

Throughout the paper, n denotes an input size parameter. Given a prime p <2,
one can check in polynomial time whether p—1 has only prime factors <n, and in
the affirmative case, compute the prime factorization of p—1.

We consider the following two computational problems.

PRIMITIVE,: Input is a prime number p<2" with S(p—1)=n. (Recall that
S(p—1)=max{p,,...,p} if p,,..., p, are the prime factors of p—1.) Output is
some a € N such that 2=<a < p, and a mod p is a primitive element modulo p.

Note that the output is not uniquely determined. Formally, PRIMITIVE, is the set
of all Boolean functions g such that g(binary representation of p) is the binary
representation of a primitive element modulo p if S(p—1) < n. An algorithm com-
putes it if it computes one of these functions. It can artificially be made unique by
stipulating, e.g., that the output be the smallest positive primitive element.

FACTOR, (Factoring polynomials of degree less than n over fields with at most 2"
elements): Inputs are p, w, [as in Section 2 with p <2" and [, d < n, and furthermore
S(p—1)= n. Output is a lactorization (f,,d;...: [, d.) of f.

Again, the output is not uniquely determined: we can permute the (f,, dy)’s. It
can be made unique by stipulating some lexicographic order on the integers rep-
resenting the output. :

In a standard encoding the input and output size for pPrRIMITIVE, is at most n,
and for FACTOR, at most n°.

For the remainder of the paper we fix the above notation. In particular, ‘polynomial
time’ always means a number of bit operations that is polynomial in n, and the
inputs are as above.

82 J. von zur Gathen

In this section, we note two consequences of having a primitive element a mod p:
an efficiently computable decomposition a of Z,, and extracting p;th roots, where
p: is a prime divisor of p 1. This immediately generalizes to gth roots for any
divisor q of p—1.

Lemma3.1. Letp—1=p{ - pir be the prime factorization of p — 1 so that S(p—1) =
max{pi,...,p.}, and let a be a primitive element modulo p.
(1) There exists exactly one isomorphism
&=\, . 0 VBT Z e,
with a(a)=(1,...,1). For any be Z3, «a(b) can be computed with
O(log**“(p) - S(p—1)) bit operations, for any £> 0.
(2) Forany be Z,; and 1<i<r, the following are equivalent:
(i) b has a p-th root,
(if) a;(b)=0mod p,,
(iii) p'rVr—1,
If the conditions are satisfied, then the p; distinct roots can be found at the same cost
as in (1).

Proof. (1): Given be Z; and 1< i<r, we define

a;(b)=u,+ P e ui.el—lp?‘_l mod p
with 0= u; < p; inductively for 1=0,...,e;~1 by

(b) a_'”fn*"'+“.':-"'”)‘—D_U”’1rﬂ =1,
Given ujg, ..., u,_,, we find by exhaustive search the unique u; with 0=y, < p,
satislying this relation. This provides a computation for a; a(a)=(1,...,1) and
uniqueness of a are clear. Each «;(b) can be calculated in O(ep, log p) arithmetic
operations modulo p, and one such operation in O(log p log log p log log log p) bit
operations [31], which we have abbreviated to O(log"*"(p)). For the final estimate,

we use that), . ep,<logp-S(p—1).
(2): Let b=a" with 0<k=< p—2. Then

b has a pith root & JceZ; % =b
& p; divides kK < a,(b)=0mod p;
® (p=1)/p-k=0modp-1 & b /=1,

Since b #0, the polynomial x" —be Z,[x] is separable, and has p; distinct roots.
To compute the roots ¢y, ..., ¢,,, find a(b) and

b
=a (a()"‘(0,--'-.»0, up; I,U,-'-.O))
Pi

for 0=u<p,. Here, the jth component v; of a(b)/p; satisfies pv,= a,(b). For
Wi,..., w,€Z we have

a '((wymod p§1, ..., w,mod pir)) = [a™P Ve O

l=i=r

Factoring polynomials and primitive elements 83

Remark 3.2. Tt would be interesting to replace the exhaustive search for u; by a
calculation polynomial in log p. Finding p,th roots deterministically in polynomial
time would be a step towards replacing the condition ‘p—1 has small prime factors’
by ‘the factorization of p—1 is known’; one would still have to deal with Step 6 of
the algorithm in Section 4. However, even the special factorization problem of
root-finding is not easy; Schoof [32] has a deterministic polynomial-time algorithm
for finding modular square roots of small integers, assuming the ERH.

4. Reducing factoring to primitive elements

In this section, the technical core of the paper, we present a deterministic
polynomial-time reduction of factoring to the problem of finding primitive elements,
for our special type of prime. The main result is the following theorem.

Theorem 4.1. On input fe GF(p')[x] of degree d and a primitive element modulo p,
the algorithm to be described below can be executed with
O(L(dN™* - ((dD)**+1og’ p)+ S(p—1) - (log? p+I"** log p+(dl)***)] - log"** p)

hit aperations for any >0, or O(n®) bit operations, where S(p—1) is the largest
prime factor of p— 1, and n = max{d, 1, log p, S(p—1)}. If f is reducible, the algorithm
returns a nontrivial factor of f.

Note that the input size is about dl log p, or n’.
Corollary 4.2. FACTOR is polynomial-time (Cook-)reducible to PRIMITIVE.

Here FACTOR denotes the infinite family obtained by combining all the functions
in FACTOR,, for nc N; similarly for PRIMITIVE.

Proof of Theorem 4.1. To prove the theorem, we use the notation of Sections 2 and
3, and start with the two isomorphisms

a=(a,,...,a,):z;->z,,f,><- S T,

B=(Bri:-sB) B2 Z0 - x Z,= 2%,

Bi(g) =g mod fi.

Together they provide a matrix decomposition of the multiplicative group B* of
units in B: ’

')’=()’fk)ls.xsr_lskzsiBx—’(Z:)s“" H prr‘
I=i=r

I=k=s

with
Y:k(g) = G’f(ﬁk(g))-

84 J. von zur Gathen

By writing an element ue Z -, in p-adic notation
u=uytup+---+u, 1 pi ' modpf, O=u,<p,
we obtain a further decomposition

8 =(8i) 1=i=r: B > H {U,_,_,p;—l}

I=k=5x 1=i=r
O=pf-Zg 1=k=s
O=i-lg

of the set B™ (& is not a group homomorphism). Our goal is to find a factoring
polynomial h, for f. We start with an arbitrary polynomial g such that ge B*\Z,,
and compute h,, h,, h, having more and more entries in the 8-array equal to zero:
i (hy) is nonzero for only one value of i, 8,,(h,) is nonzero for only one value of
i and t=e;—1, and h; has these properties, and also 8.,.(h;) =0 and 8., (hs) #0
for some k, I=s. Finally, hy= h,—1. The algorithm is described formally at the end
of this section.

We can assume s=2 and ge F[x] with g B\Z,. Furthermore we can assume
that g ¢ B™ is a unil since otherwise ged(f, g) is a nontrivial factor of f. There exist
k, I = 5 such that B,(g) # B,(g), and also some i= r such that

Yi(&) # yau(8).

We write ¢; = (p—1)/p; and, for any j =< r, consider the vector y,.(g%) € (Z,¢,)". Then,
i%j = y.(8%)=0, (1)
v..(g) nonconstant < v,(g%) nonconstant. (2)

Thus we compute g% for i=1,..., r and h, € F[x] of degree less than d such that
hy= g% for some i with g%¢ 7Z,. We choose such an i, which exists by the above
reasoning.
Now we consider
Ya(h)= T 8y,(h)pi mod pf.

O=r<e

We know that the vectors (8uo(hy), Bike, (h))) are not identical for all k<s.
We consider the ‘lower common part’ (u,,...,u, ,) of these vectors, defined by
0=u,<p, and

Vk<ss¥Yt<m 8;,(h)=u,
Ak I<s 8yn(hy)# dum(hy).
In order to compulte this m, note that
AT = Y(0,...,0,pi " (Ug+ oy pP) mod p8i,0,...,0)€ Z;,
ey
Thus, m equals the largest number ¢ such that A} ‘¢ Z7. Then 0<m<e¢, and

b=h{""€ Z; has a p;ith root, say c€ Z), by Lemma 3.1. Thus,

e=m—1
i

a;lc)=p “(ugt- g, p" '+up”)mod p5: for someuc Z

Factoring polynomials and primitive elements 85

and

a,(c)=0 forj#iby(1). (3)
Compute h,€ F[x] of degree less than d such that

= Teleh

Then

Y-(h2) =0 forj#i by (1) and (3), (4)
Vk<s yulh)=pi™™ " yully) —ai(c)
=py ™! WEC__E[SadBi)pi—pic™ - (M‘IZ‘_{M up;+ upi—")
= (8jm(hy) — u)pi~" mod pi.
In particular, there exist k, I <s such that vy, (h,) # y,(h,). Choose some such k, I,
and let 0= v < p, be such that
vg; = —8yom(hy) + u mod p;,
where ¢, =(p—1)/p{. Now we set h;=a""?"""?:h, e F[x]. Then,
¥(h) =0 forj#i, by (4),
yi(hs)=(o(p—1)/p) - aia) + yulhy)
= vgipi' "+ (8um(hy) — u)pi ™' =0 mod pf,
Yu(hs) = vq,p{ ™" + (8y(hy) — u)p ™" # 0 mod ps.

Therefore, a;(B:(h;)) =0 for all j, and a,(B,(hy)) # 0. Thus, B (h;) =1 and B,(h;) # 1,
and hy=h;—1 is a factoring polynomial.

In the above discussion we have not distinguished between what we can do
computationally (‘choose i=r’) and not (‘choose k, [< s’). The following algorithm
results from the discussion. We assume that we have a basis g§,=1,..., &, of B, as
at the beginning of the section, and a primitive element @ modulo p.

Step 1: If s =1, return ‘f is irreducible’ and stop. Llse set g = g,. If ged(f, g) # 1
return this nontrivial factor of f and stop.

Step 2: For 1= j=r, compute w, € F[x] of degree less than d such that

w; = g% mod f,

with q,=(p—1)/pj. Let i be the first value of j such that w,¢ Z,, and set h, = w,.
Step 3: For t=0,...,¢;,—1, compute y, € F[x] of degree less than d such that

y.=h{"" "mod f.
Set
m=max{t:y € Z,}.

Step 4. Compute c€ Z; such that ¢" =y,

86 I von zur Gathen

Step 5: Compute h,c F[x] of degree less than d such that
hy=h""" ¢ mod £,

Step 6: For 0< v < p, compute
2, = a"M Vg, — e Flx].

Return ged(f, z,) if it is nontrivial, and stop.

Correctness of the algorithm has been proved above. The dominating computing
times are as follows.

Step 0 (Computing g;,..., g): O((dl)**+dllog p) operations in R, using fast
matrix arithmetic [13a];

Steps 2,3,5: O(log® p) operations in R;

Step 4: O(log” p- S(p—1)) operations in Z,;

Step 6: O(S(p—1)(log p+d'*)) operations in F, for any e > 0.

With fast integer and polynomial arithmetic, the time estimate of Theorem 4.1
follows. O

5. Reduction of primitive elements to factoring

As usual, let p be a prime number, p—1=p{ - p% and ae Z . The following
are equivalent:

a is a primitive element modulo p, (5)

Z,={a":0=<i=p-2}, (6)

Visr o Vrigy, (7)

Vi=r a has no p;th root in Z; (8)

If by,..., b€ Z; are such that b*" =1 and b*" '#1, then a = b, - - - b, is a primitive
element modulo p. To check (7),let 1< i=<r. Then ¢ =hb""" has order P:, and thus
cl# 1, where g,=(p—1)/p{. Hence,

_ / { / —_
au: e, — l‘[b}n 1Py — bEp e ‘-.q 1.
1=j=r

Theorem 5.1. FACTOR and PRIMITIVE are polynomial-time equivalent.

Proof. By Corollary 4.2, it is sufficient to reduce PRIMITIVE to FACTOR. Let n be an
input size parameter, p<2" a prime, p—1=p{ .- p% with p,,...,p,<n, and
I < i=r. By the above, it is sufficient to find b, € Z} such that b”" =1 and b%" ' # 1.

We compute b;e Z; for j=0,..., ¢ as follows. We set b,,=1 and, for j= 1, we
factor the polynomial

xP=ba= I (x=cp)
O=k<p,;

Factoring polynomials and primitive elements 87

b; ; 1 has a p;th root by Corollary 2.3. Thus x — b, ,_, is indeed the product of linear
polynomials, as claimed above. Also bﬁf‘_l #1forj=1,and b, = b, is sufficient. []

Remark 5.2. Tt is not known whether there are infinitely many primes for which
Theorem 5.1 is of interest, i.e., whether for infinitely many n there exist prime
numbers p near 2", say 2"/’4;)(:2", with all prime factors of p—1 at most n.
Trivially, all primes p = n have the latter property. The number of ‘smooth’ integers
k<2", i.c.,, with only small prime factors (but not k+1 necessarily prime), is
well-studied, see, e.g., [21, 28].

If we assume the ERH, then we obtain polynomial-time algorithms for both our
problems. Wang [33] shows that, under the ERH, there exists a primitive element
a modulo p with a=0((log p)*), for any prime p. If p—1 is smooth, primitivity
can be tested fast, and we can find a primitive element in deterministic polynomial
time. One can also use Ankeny’s [3] theorem saying that, under the ERH, for every
i < r, there exists some small ¢;€ N such that ¢, #0mod p and ¢* V/7# 1, namely
¢;=0(log’ p). (See [4] for a quantitative version of this theorem.) By exhaustive
search, we find such a ¢;, and set b; =c¢{. Then

Pttty BOPT e h IR Gy

3 i

and a=b, -+ b, is a primitive element modulo p.
Theorem 5.3. Under the ERH, FACTOR and PRIMITIVE are in P,

Recall that the running time of this algorithm for factoring a polynomial of degree
d over GF(p') is polynomial in n = max{d, [, log p, p, . - ., p.}, where p,, ..., p, are
the prime factors of p—1.

Remark 5.4. We want to discuss the question of fast parallel deterministic algorithms
for factoring or for finding primitive elements. For us, ‘fast parallel algorithm’ means
(log-space uniform families of) Boolean circuits of depth (log n)°"" and size n®'V,
forinput size n. See [13, 17] for general discussions of parallel Boolean and arithmetic
computations.

Given a prime number p <2", one can test whether all prime factors of p—1 are
at most n, and, in the affirmative case, compute a factorization p—1=pi -- - p;
fast in parallel. Tt is not clear how to find a primitive element modulo p, and even
the following is an open question: Given a prime p as aboveand ac N with2 = a < p,
can one test fast in parallel whether a is a primitive element modulo p? Note that
one cannot compute a'? "/ fast in parallel if only arithmetic modulo p is used [15].

Now consider the problem of factoring fe F[x] of degree d, with I =GF(p').
If I=1, the square-free part of f can be computed in Boolean depth O(log*(dl)+
loglog p log loglog p), which is poly-logarithmic in the input size (see [14]). In

88 A, von zur Gathen

general, f can be factored deterministically in Boolean depth O(log’(dl) log(dp)+
log’llog log 1) [19], which is a ‘fast parallel algorithm” only if p is small, e.g., when
p is of order (d + 1)

References

[1] L. Adleman, Two theorems on random polynomial time, Proc. 19th Ann. IEEE Svmp. on Foundations
of Computer Science, Ann Arbor, MI (1978) 75-83.

[2] L. Adleman and H.W. Lenstra, Finding irreducible polynomials over finite fields, Proc. 18th Ann.
ACM Symp. on Theory of Compuring, Berkeley, CA (1986) 350-355.

[3]1 N.C. Ankeny, The least quadratic non-residue, Ann. of Marh. 55 (1952) 65-72.

[4] E. Rach, Fast algorithms under the Extended Riemann Hypothesis: a concrete estimate, Proc, 14th
Ann. ACM Symp. on Theory of Compuring, San Francisco, CA (1982) 290-295.

[5] E. Bach and 1. Shallit, Factoring with cyclotomic polynomials, Proc. 26th. Ann. IEEE Symp. on
Foundations of Computer Science, Portland, OR (1985) 443-450.

[6] M. Ben-Or, Probabilistic algorithms in finite fields, Proc. 22nd IEEE Symp. on Foundations of
Computer Science (1981) 394-398.

[7] E.R. Berleckamp, Factoring polynomials aver finite fields, Bell System Tech. J. 46 (1967) 1853-1859.

[8] E.R. Berlekamp, Factoring polynomials over large finite fields, Math. Comp. 24 (1970) 713-735.

[9] M.C.R. Butler, On the reducibility of polynomials over a finite field, Quart. J Math. Oxford §
(1954) 102-107.

[10] P. Camion, A deterministic algorithm for factorizing pelynomials of F,[x], Ann. Discr. Math. 17
(1983) 149-157.

[11] D.G. Cantor and H. Zassenhaus, A new algorithm for factoring polynomials over finite fields, Math.
Comp. 36 (1981) 587-592.

[12] A.L. Chistov and D.Yu. Grigoryey, Polynomial-time factoring of the multivariable polynamials
over a global field, LOMI preprint E-5-82, Leningrad, 1982,

[13] S.A.Cook, A taxonomy of problems with fast parallel algorithms, Inform, and Conrrol 64 (1985) 2-22.

[13a] D. Coppersmith and S. Winograd, Matrix multiplication via Behrend’s Theorem, Proc, 19th Ann.
ACM Symp. on Theory of Computing, New York, NY (1987).

[14] J. von zur Gathen, Parallel algorithms for algebraic problems, SIAM J. Comput. 13 (1984) 802-824.

[15] J. von zur Gathen, Parallel powering, Proc. 25th IEEE Symp. on Foundations of Computer Science,
Singer Island, FL (1984) 31-36; also SIAM J. Comput., to appear.

[16] 1. von zur Gathen, Irreducible polynomials over finite fields, Proc. 6ith Conf. on Foundations of
Software Technology and Thevretical Computer Science, Delhi, India, Lecture Notes in Compuler
Science 241 (Springer, Berlin, 1986) 252-262.

[17] J. von zur Gathen, Parallel arithmetic computations: a survey, ini Proc. 12th Internat. Symp. on
Math. Foundations of Computer Science, Rratislava, Lecture Notes in Computer Science 233
{Springer, Berlin, 1986) 93-112.

[18] J. von zur Gathen and L. Kaltofen, Factorization of multivariate polynomials over finite fields,
Marh, Comp. 45 (1985) 251-261.

[19] J. von zur Gathen and G. Seroussi, Boolean circuits versus arithmetic circuits, Proc. 6th Internat.
Conf. on Computer Science, Santiago, Chile (1986) 171-184.

[20] H. Gunji and D. Arnon, On polynomial factorization over finite fields, Math. Comp. 36 (1981)
281-287.

[21] A. Hildebrand, On the number of positive integers =x and free of prime factors >y, J. Number
Theory 22 (1986) 289-307.

[22] M.A. Huang, Riemann Hypothesis and finding roots over finite fields, Proc. 17th Ann. ACM Symp.
on Theory of Computing, Providence, RI (1985) 121-130.

[23] E. Kaltofen, Uniform closure properties of p-computable functions, Proc. 18th Ann. ACM Symp.
on Theory of Computing, Rerkeley, CA (1986) 330-337.

Factoring polynomials and primitive elements 89

[24] D.E. Knuth, The Art of Computer Programming, Vol 2 (Addison-Wesley, Reading, MA, 1981, 2nd
ed.).

[25] A.K. Lenstra, Factoring multivariate polynomals over finite fields, J. Comput. System Sci. 30 (1985)
235-248.

[26] AK. Lenstra, H.W. Lenstra and L. Lovisz, Factoring polynomials with rational cocfficients, Math.
Ann. 261 (1982) 515-534.

[27] R.T. Moenck, On the efliciency of algorithms for polynomial fuctoring, Math. Comp. 31 (1977)
235-250.

[28] K. Norton, Numbers with small prime faclors and the least kth power non-residue, Mem. Amer.
Math. Soc. 106 (1971).

[29] M.O. Rabin, Probabilistic algorithms in finite fields, STAM J. Comput. 9 (1980) 273-280.

[30] A. Schénhage, Schnelle Multiplikation von Polynomen iiber Korpern der Charakteristik 2, Acta
Inform. 7 (1977) 395-398.

[31] A.Schonhage and V. Strassen, Schnelle Multiplikation grosser Zahlen, Computing 7 (1971) 281-292,

[32] R.J. Schoof, Elliptic curves over finite ficlds and the computation of square roots mod p, Math.
Comp. 44 (1985) 483-494,

[33] Y. Wang, On the least primitive root of a prime, Acta Marh. Sinica 9 (1959) 432-441; English
translation in: Scientia Sinica 10 (1961) 1-14.

