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Department of Computer Science, University of Toronto, Toronto,
Ontario M5S 1A4, Canada

1. INTRODUCTION

Algebraic complexity theory investigates the computational cost of solving
problems with an algebraic flavor. Several cost measures are of interest.
We consider arithmetic circuits, which can perform the (exact) arithmetic
operations +, —, #, / at unit cost, and take their size (=scquential
time) or their depth (=parallel time) as cost functions. This is a natural
“structured” model of computation for the computation of rational func-
tions over any ground field. If inputs can be represented by strings over a
finite alphabet as is the case for polynomials over @—we can also use
a “general” model such as Turing machines or Boolean circuits. The
complexity of a problem is the minimal cost (in the measure under con-
sideration) sufficient to solve it. Its investigation splits into two tasks,
which require very different methodologies. The first task is the design of
good algorithms, proving upper bounds on the complexity. The second,
usually more difficult task, is the discovery of intrinsic propertics (“in-
variants”) of problems, and estimation of the progress that an algorithm
can make, say step by step, in terms of these invariants, thus proving lower
bounds on the cost of any conceivable algorithm.

Within the wider field of complexity theory, few areas have had similar
success in establishing matching upper and lower bounds on the complexity
of many natural problems. Our subject takes its questions from computer
science, mainly numerical and symbolic computation. The approach
is mathematical, and some problems, by their nature, require fairly
sophisticated methods.

Classifying our problems under the perspective of polynomial time,
they fall into three categories. In the first category (Sections 2 and 3
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318 VON ZUR GATHEN

on polynomial arithmetic, and 4 on bilinear functions), polynomial-time
algorithms arc easy, e.g. for interpolation by a polynomial. For this
example, a nontrivial algorithm reduces the typical running time of O(n%)
to essentially linear, e¢.g. to O(nlogn) (depending on the model used).
Then, in the powerful “nonscalar model,” the lower bound Q(nlogn)
shows this algorithm to be asymptotically optimal.

In the second category (Sections 5 on the Valiant Hypothesis, 7 on
factorization of polynomials, and 9 on permutation groups), algorithms
clearly exist, but polynomial time is a nontrivial question. An example is
the factorization of univariate polynomials over finite fields, where a trivial
exhaustive search works in exponential time; polynomial-time polynomial
factorization is not obvious. Valiant’s arithmetic analogue of the Boolean
question “P # NP” gives us specific polynomials (e.g. the permanent) to
focus on for “polynomial time vs cxponential time”; this theory has no
definite answers yet.

For problems of the third category, no algorithm is obvious at all
(Section 8 on arithmetic theories). Indeed, the question whether a system of
polynomials has a solution is undecidable over @. The nontrivial decision
procedures over R or C use doubly exponential running time, and there
are matching lower bounds.

A different criterion of quality is introduced in Section 6: fast parallel
algorithms (of poly-logarithmic depth) with a small (i.e. polynomial) num-
ber of processors. This point of view is also mentioned in Sections 7, 8,
and 9.

Many of the methods and algorithms have found practical application
in the highly successful Computer Algebra Systems, “one of our society’s
technical wonders™ (Caviness), for which Buchbergeret al (1983), Caviness
(1986), and Kaltofen (1987) give surveys. This exposé excludes the con-
nections to this and other areas of application, such as numerical com-
putation, signal processing, and fixed-connection parallelism.

Throughout the paper, we use a “worst-case” approach; the “average-
case complexity of problems occurring in practice” is even hard to formal-
ize, and meaningful results in this direction would be very inleresting.

Writing this article has been greatly facilitated by the excellent survey
of Strassen (1984). Several of our topics are treated in depth in textbooks,
quoted near the beginning of the respective section. In most sections, a
particular algorithm or proof is meant to convey the flavor of the subject,
and T have tried to identify one central “open question”; of course, these
choices are quite subjective.

Most arcas had established their problems, paradigms, and fundamental
methods by the mid-1970s. The gxceptions are permutation groups and
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factorization of polynomials, where most of the polynomial-time results
date from this decade, and the parallel algorithms.

2. POLYNOMIAL ARITHMETIC

The birthday of “algebraic complexity theory™ is often considered to be
in the year 1954, In a pioneering paper, Ostrowski (1954) asked: “Is
Horner’s rule optimal for the evaluation of a polynomial?” He proposed
the model of nonscalar complexity, formalized by Strassen (1972b, 1973a):
In order to compute a polynomial or a rational function f'e F(xy,...,x,)
over a field F, an arithmetic circuit (or straight-line program) « over
Fu {x,...,x,}isallowed to fetch theinputs x,. . . ., X,,, arbitrary constants
from F, and to perform an arithmetic operation +, —, *, / on previously
computed results. Thus at each node of «, some rational function is com-
puted. (Division by the rational function zero is ruled out.)

Most of the results mentioned in this and the next two sections can be
found in Borodin & Munro (1975); some of the algorithms also appear in
other texts—e.g. Aho et al (1974), Knuth (1981), and Buchberger et al
(1983).

A circuit o computes f'if f'is one of the results in «. The scalar operations
are fetching inputs or constants, + and —, and also u*v or u/vif ve Fis
a scalar. The number of nonscalar operations in « is the nonscalar cost of
o, and the nonscalar complexity LE(f) is the minimal nonscalar cost of
circuits computing f. (Counting also +, —, and scalar * and /, we obtain
the total complexity L}, (f).)

As an example, for f = x?+x% we obviously have LL(f) <2 and L,
() £3.Mi=./—1eF,then LE(f) = LE((x; +i%xy) x (x;—i*x;)) < 1.
In fact, we have equality in the last two bounds, and LL(f) =2 if i¢ F.
From now on, we usually leave out the superscript F. Ostrowski’s question
refers to the evaluation of a general polynomial f= Eogg,,ajx’ B
F[x, ay,...,a,), where both x and the coefficients a,, ..., a, are treated as
inputs. Horner’s rule shows L,,(f) <n (over any F), and the problem
was: Does equality hold? :

Pan (1966) answered this in the affirmative: L,/(f) =n, where
f = Z,;..a;x". His method, later generalized by Winograd (1970), Strassen
(1972a, 1973a), and Hartmann & Schuster (1980), introduces a lincar
substitution of the variables ay,...,a, which makes the first nonscalar
operation of the hypothetical circuit trivial and reduces the complexity by
at most one. Pan then verifies that at least n such substitutions are required
to make [ linear.

The central problem multiplication of polynomials is the task of computing
{Co- -1 €20} Where ¢, = X \;_ab,e Flag, ..., ab,...,b,] is a coefficient

]
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of the product of the polynomials a and b with coefficients a; and b,
Dcnotmg by M,(n) =L s{co, .-, c2,}) its complexity (with # cither

‘ns” or “tot” and an obvmus cxtcnsmn of L to sets of functions), the
school method shows M,,(n) = O(n).

In the nonscalar model, we may simply evaluate a and b at 2n+ 1 points
in F, multiply the 2n+ 1 pairs of values, and interpolate. Evaluation and
interpolation have cost zero, so that M, (n) < 2n+ 1. (This assumes that
F has morc than 2n elements.) The algorithm providing a substantial
improvement for M,,, is fundamental in several areas of compuler science:
the Discrete Fourier Transform, introduced by Cooley & Tukey (1965)
into computer science. It follows the same approach as above, only that
the special m points @, w',@’,...,w™ " are chosen, where weF is a
primitive mth root of unity and m the smallest power of 2 greater than 2a.
The kick is that now cvaluation and interpolation can be performed with
a total of O(nlogn) operations, using a divide-and-conquer technique.
Thus M,,(n) = O(nlogn). Schonhage & Strassen (1971) show that this
approach also works when such an @ does not exist in F, proving M,,,
(n) = O(nlognloglogn) for any field F (sce Schénhage 1977; Cantor &
Kaltofen 1987). Their method also provides the fastest known Boolean
circuits for integer multiplication. This “Fast Fourier Transform™ has
many generalizations and applications in signal transmission and pro-
cessing (sce Beth 1984),

The problems of squaring, inversion mod x" (given a € F[x] with a(0) =1,
compute b€ f[x] so that @b = 1 mod x"), and division with remainder (given
a,be F[x] with b +# 0, compute g,re F[x] so that a = gb+r and degr <
deg b) are all equivalent to multiplication (Sieveking 1972; Strassen 1973a;
Borodin & Moenck 1974; Kung 1974). This means that if one of these
four problems can be solved with s(n) operations, they all can be performed
with O(s(n)) operations (provided s is “reasonable™). In particular, I, is
O(n), and L,,, is O(nlognloglogn) for these four problems.

Evaluation at many points computes the valucs of a polynomial ae Flx]
of degree less than n at n points. The inputs to the problem arc the
coefficients of @ and the points x,,. .., x,. Borodin & Moenck (1974) use
a divide-and-conquer technique to compute the polynomials

P = H (x—x), p>= 1_[ (x—x;)

I =<i<nf2 ni2<i<n
with a binary tree of multiplications. Two divisions with remainder yield
a=qp+a,, dega, <degp, for k=1,2.

Now recursive cvaluation of g, at the first half of the points, and a, at the
second half, provides the required values, since e.g.
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a(x,) = q(x)p1(x1) +a,(x,) = a;(xy).

Leaving out the subscript “ns” or “for’” and assuming that M(n) is “‘reason-
able” (which the mentioned bounds are), the time estimate O(M(n) log n)
follows (see also Borodin & Munro 1971; Fiduccia 1972; Strassen 1973a).

The same bound holds for interpolation (Horowitz 1972), more generally
the Chinese remainder problem (which includes Hermite interpolation)
(Borodin & Moenck 1974), computing the elementary symmetric functions
and the greatest common divisor, more generally the Euclidean represen-
tation, which consists of all the quotients computed in the Euclidean
algorithm (Knuth 1970; Brown 1971; Schénhage 1971; Moenck 1973;
Strassen 1983).

Open question Is M, nonlinear? Is the total complexity of computing
the Discrete Fourier Transform nonlinear? Is L, larger than L,, by more
than a constant factor for evaluation at many points, and the problems of
the last paragraph?

The computation of a power x” by multiplications only corresponds to
the computation of n by addition chains. Trivially, the minimal length of
such chains lies between logn and 2logn. The study of these chains was
proposed by Scholz (1937), and in [act, log n+ o(log n) multiplications are
sufficient (Brauer 1939; Erdds 1960; Schonhage 1975; Knuth 1981).

The computation of x*' = x2’/x is somewhat easier with divisions than
without. However, Strassen’s (1973b) result on avoiding divisions shows
that they are of limited help: If a polynomial of degree d can be computed
with s nonscalar operations, it can be computed with a total number of
s-d(d—1)/2 operations, and also with 7ds operations. This result has
been extended by Kaltofen (1986) to rational functions, computing the
numerator and denominator polynomials separately.

As an aside, we note that—as in any circuit-based complexity theory—
for the asymptotic complexity L,.(f,) of families f = (f,).n Wwith
Jo€F(x,,...,x,) we have to consider familics a = (a,),ey Of arithmetic
circuits, with varying input length. How can we compute a ““description”
of a,, given n, say on a Turing machine? Fortunately, we can avoid this
issuc of uniformity (see Borodin 1977; Ruzzo 1981 for Boolean circuits),
since all upper bounds (i.c. algorithms) quoted in this survey are uniform,
and the lower bounds do not assume any uniformity.

3. NONLINEAR LOWER BOUNDS

Once all the amazingly fast O(n log* n) algorithms of Section 2 were found,
an obvious question was: Can we improve these upper bounds further? Or
arc Lhere matching lower bounds? The analogous question is ubiquitous in
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many areas of theoretical computer science and has found few satisfactory
answers. One of the beauties of our subject is that we have a complete
answer to some of these fundamental questions.

In a seminal paper, Strassen (1973a) uses the degree deg X of an algebraic
variety X = F™, a notion from algebraic geometry. (Formally, one should
assume that F is algebraically closed and work in projective space, but the
final complexity results apply to any infinite field.)

X ={aeF": fi(a) = = fi(a) = 0}

is the set of zeroes of some polynomials f,, .. ., f,e Flx,,...,x,],and deg X
is the maximal size of a finite intersection X L with any alline linear
subspace L of F”. If X = {ael™: f(a) =0} is a hypersurface, with
JE€Flxy,...,x,] squarefree, then deg X = deg f; thus the degree of poly-
nomials is generalized by this notion of degree. Consider an arbitrary
circuit o with inputs xy,...,x, and of nonscalar cost s, the functions
Uy, ... u€ F(x,,...,x,) computed at the nonscalar nodes of o, and the
graph X, of a:

Xa = {(ah"‘1“»1“»1'-1::---:an-i-.r)ef‘n"c:ﬂ,,u
__ul'(aly"‘san) for 1 il‘g.\'}.

For simplicity, we assume that only multiplications occur; the following
argument goes through with minor modifications if divisions are allowed.
For cach i< 5, there exist Am» j-r']* = nn ) ;"i.ﬂ+!'— 15 Hios ity e v vy Hinyi—1 E F such
that

G =y, — (Am ot Z zij'tj g2 Z i!'-" +.ra"+--")

l=j<n Ilsi<i
* (ﬂiu"‘ 2 My X+ E .Iu'r.n+jan+j) =0
l=j=n l<j<i
on X,. Thus
X,={aeF""":g\(a) = = g,(a) = 0}

is the intersection of the s quadratic hypersurfaces ¥, = {a:g(a) = 0}.
Bezout’s theorem states that

deg(XnY) <degX-deg¥

for varieties X, ¥ < F™ In fact, equality holds if multiplicities are properly
accounted for. This was stated by Bezout in the early 19th century for
plane curves, and the first rigorous proof is due to van der Waerden (1928).
In our case, it follows that
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deg X, = deg (-, 2.
l=i=zs

Now we consider the graph G of evaluation at many points:

G={(a",...,a,,_[,x],...,x,,,y.,.”,y,,)ei-"”:‘v’z'gr:y‘.; Z q,.x{}

O<j<n

We determine a linear space L = {a} x F" x {y} € F™ of dimension n,
by fixing some a = (ay, . ..,a,_;) and y = (yy,...,p,) such that cach poly-
nomial X a,x'— y,e F[x] has exactly n— | distinct roots in F; such @ and y
clearly exist. By definition, it follows that deg G > (n—1)" (in fact, equality
holds).

Now assume thal o is a program of nonscalar cost s that computes
evaluation at many points. Then G is a projection of X, and a general
theorem about the degree of projections implies that degX, > degG.
Together we find the lower bound

s> logdeg X, = logdeg G = nlog (n—1).

Strassen’s (1973a) general theorem states that L, (f},...,f) = log
deg G, where G < F"'" is the graph of fi,...,f,. He obtains the same
asymptotically optimal Q(nlogn) bound for the nonscalar complexity
of interpolation, the computation of all power sums X,_._,x! (1 <
j < n), and computing all elementary symmetric functions (in n vari-
ables). Morc elementary proofs concerning Strassen’s approach are in
Schonhage (1976), Schnorr (1981), and Heintz (1983).

Open question  What is the complexity of these problems over finite ficlds?

Strassen (1976) adapts his lower bounds for evaluation at many points
and interpolation to finite fields. However, Mihailjuk (1979) computes the
elementary symmetric functions in linear time.

The nonscalar operation count is, admittedly, a somewhat optimistic
model of computation. It might be realistic when the multiplication of
data-dependent objects is much more expensive that their addition or
multiplication by fixed scalars, c.g. when the inputs are multiple-precision
real numbers, rational functions, or matrices. However, the main jus-
tification—to the author, at least—is the fact that the asymptotically
matching upper and lower bounds tell us that we have the ultimate algo-
rithms, in the sense of this model. These lower bounds apply trivially to
the total operations count, but unfortunately no better lower bounds are
known in this more realistic model, and the upper bounds are higher by a
factor of logn (or lognloglogn).

For about a decade, no matching nonlinear upper and lower
bounds were known for single ‘funtions. Schnorr (1981) proves that
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Lo cickX]y') > Yklogn if k <n'. Baur & Strassen (1982) show
that if feF[x,,...,x,] has nonscalar complexity s, then the set of all
partial derivatives Af = {df]dx,,...,df/dx,} has complexity at most 3s.
(Also, L, (Af) < SL,,(f).) They use this general result to show that the
“middle” elementary symmetric function alone has nonscalar com-
plexity Q(nlogn).

If a polynomial of degree at most # is given by its values at #n+ 1 points,
then calculating the value at a new (indeterminate) point requires Q(rn log )
nonscalar operations (StoB 1985). There are several ways of representing
polynomials, including the coefficient sequence or a list of values. No
representation is known for which the basic operations like addition,
multiplication, evaluation (at many points), and ged can be performed in
linear time.

In Section 2, we noted that Horner’s rule is optimal for evaluating a
polynomial with indeterminate coefficients. What about specific poly-
nomials f = X, ,a.x'e F[x], where only x is treated as an indeterminatc?
Paterson & Stockmeyer (1973) split f into about m = r\/;z"l chunks of
degree less than m each:

f= Z fir &™), fi= Z aimljxj-
O<i<m O=<j<m

Calculating first x*, x,...,x" and then using Horner’s rule, this shows
that any f can be evaluated with 2\/;3 {1 nonscalar multiplications. In
fact, they show that ﬁ, +O(logn) is sufficient. They also prove that
“almost all”” polynomials in F[x] require at least \/:_z nonscalar operations.
Here, “almost all” is in the strong sense that there exists a nonzero test
polynomial te 7[A,, . . ., 4,] such that t(a,, . . ., a,) = 0 for any exceptional
polynomial f = X a,x’; in particular, the set of exceptions has measure zero
(say, over C). Any polynomial f'e C[x] whose coefficients are algebraically
independent over @ has LS (f) > ﬁ and there are “0-1-polynomials™
J—i.e. with coefficients only 0 or 1 —with L5 (f) = Q((n/logn)"?) (Lipton
1975; Schnorr 1978; Schnorr & Van de Wiele 1980; Heintz & Schnorr
1982). Strassen (1974) and Schnorr (1978) push this further by cxhibiting
specific polynomials that are hard to compute. For example:

Ly ( I ) = Q((n/logn)"?),

0<j<n
Li(s) = Q((nflogn)?) for &= Y exp(2mif2))x’.
D<j<n

The elegant method of Heinlz & Sieveking (1980) deals with algebraic
coeflicients, and shows, for example
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Lﬁ( 2. f’:r")=9(n"2nogu) for reQ\Z,

O=j<n

LL( 3 a”—’x") = Q((nflogn)'?) for aeR, a>0, a+#1
0=<j<n
(see von zur Gathen & Strassen 1980).

Similar results about evaluation of general and specific polynomials
are available for counting all multiplications, where the complexity is
[(n+1)/2] for a general polynomial (Motzkin 1955; Belaga 1958;
Winograd 1970) and Q(n/logn) for &,. For the total complexity L,,,
all 0-1-polynomials of degree n have cost O(n/logn) (Savage 1974),
and most have complexity Q(n/logn) (Schnorr & Van de Wiele 1980).
For the additive complexity L, one counts only + and —. Then, for
example, LS (g,) = Q(nflogn), and

Q((n/logn)"?) < L, (f) < O(nflogn)

for most 0-1-polynomials f (Belaga 1958, 1961; Pan 1966; Borodin & Cook
1976; Schnorr & Van de Wiele 1980; Risler 1985). StoB (1986) gives a
unified treatment of many of these results, including the case of positive
characteristic.

Strassen (1983) extends the model to algebraic decision trees, where

branching according Lo lests “a 2 0” is allowed. He proves an amazing
“uniform optimality” result for a fast version of Euclid’s algorithm for

polynomials. Ben-Or (1983) works over R, allows tests “a = 0", replaces
algebraic geomelry by real cohomology, and proves for example that
Q(nlogn) arithmetic operations and tests are required to decide whether
inputs x,,..., X, are pairwise distinct.

4. BILINEAR PROBLEMS

The bulk of computer time used up in scientific computing is spent on
problems from linecar algebra, such as calculating matrix-vector and
matrix-matrix products. How fast can we calculate such products?

f: Z aijxiijﬁ.[xli---,xm!yl'l--'!ynly WltheaChaUEFs
l<i<m
1

=
i<n

1A 14

is called a bilinear form in the x;, y;. An an example, N x N-matrix multi-
plication is the task of computing the bilinear forms f; = X ,x;;y; in 2N?
variables x;, yu (1 < 4, j,k < N). De Groote (1987) gives a thorough and
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precise introduction to the field of bilinear complexity, Winograd ( 1980)
concentrates on results applicable in the area of signal processing, and
Heintz (1985) provides an exposé of the central results.

Consider the problems of matrix multiplication, matrix inversion, com-
puting the determinant or the characteristic polynomial, calculating the
LR-decomposition of a matrix, and, for F = C, the QR-decomposition
and unitary transformation to upper Hessenberg form. The standard al Zo-
rithms for these problems use O(#*) operations, and indeed Gaussian
elimination is optimal if only row and column operations are used. It turns
out that all problems have the same asymptotic complexity (up to constant
factors), so that a fast algorithm for one of them immediately gives fast
algorithms for all of them (van der Waerden 1938; Strassen 1969, 1973b;
Schénhage 1973; Bunch & Hoperoft 1974; Baur & Strassen 1982; Keller-
Gehrig 1985).

Strassen (1969) surprised the world by showing that Gaussian elimina-
tion is not optimal. He devised a clever scheme for 2 x 2-matrix multi-
plication, using only 7 multiplications (and 18 additions). Recursive
application to n x n-matrices yiclds an algorithm of total cost o)
with 7 = log, 7 < 2.808 < 3.

That paper started the area of bilinear complexity. By Strassen’s (1973b)
lechnique for avoiding divisions, we may assume that an optimal algorithm
uses + and * only. Furthermore, the nonscalar and the total complexities
are asymptotically equal (up to constant factors).

The bilinear complexity R($) of a set ¢ = {f,,.. N o
Xoms V15« « - » V) Of bilinear forms is the smallest number of “bilinear multipli-
cations™

(X Ax) * (Zpy,) with A, e F

sufficient to compute ¢ (i.c. multiplications of x, by x ; are disallowed, and
we allow linear combinations of these products for free to obtain ¢). Then

L,(¢) < R(¢) <2L,(¢)

(Strassen 1973b). If £, = X, 4, x,y;, we can identify ¢ with the tensor

t=Y aux®y, @z eF" R I" ® F”,
ik

where the x;,y;,z, form a basis of F™ F" Fr, respectively. A simple
n X m x p-tensor is the form u ® v ® w, and the rank of 7 is the smallest
number of simple tensors sufficierit to express ¢:
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rank (7) = min {P‘EN o 7 RIS /0 —3F 0

Viseoos 0, EF Wi ..., W,€FP:t= Y u,-@v,v@wi}
I=<i=r
(Gastinel 1971 implicitly; Strassen 1972a, 1973b; Fiduccia 1972). This
notion generalizes the rank of matrices (where one has p = 1), is inde-
pendent of the bases chosen, and

R(¢) = rank (7).

Thus the algorithmic notion of bilinear complexity equals the algebraic
notion of rank. Some bounds on the bilinear complexity are:

R(2 x 2times2 x n-matrix multiplication) > 7n/2 (Hopcroft & Kerr 1971),

R(n x n-matrix multiplication) > 2n’—1 (Brockett & Dobkin 1978),

R(complex multiplication) = 3 (Winograd 1970),

R(quaternion multiplication) = 8 (de Groote 1975; van Leeuwen & van
Emde Boas 1978), and

R(multiplication in F[x]/([)) = 2deg f—r (Fiduccia & Zalcstein 1977;
Winograd 1977),

where f'e Flx] has r distinct irreducible factors. In particular, multi-
plication in an extension ficld of degree n over F has complexity 2n—1.
From the Kronecker normal form one can read off the rank of m x n x 2-
tensors (Grigoryev 1978; Ja’ja’ 1979).

The first of these results implies that Strassen’s (1969) algorithm is
optimal for2 x 2-matrices. In fact, de Groote (1978) shows that all optimal
algorithms for 2 x 2-matrices are “equivalent™ to Strassen’s. All these
lower bounds on the bilinear complexity R(A) of multiplication in a finite-
dimensional (associative) algebra A (except the quaternions) are subsumed
in the elegant result of Alder & Strassen (1981):

R(A) =z 2dimz A —r,

where r is the number of maximal two-sided ideals of 4.

Strassen (1973b) pointed out the importance of the “direct sum conjec-
ture”: R(A @ B) = R(A)+ R(B); after Schonhage’s (1981) negative result
on a related conjecture, this is also believed to be false (Strassen 1987).

The bilinear complexity of multiplying two polynomials in F[x] of degree
at most n is 2n+1 if F has at least 2n elements, and it is at most slightly
more than linear over small fields (Grigoryev 1978; Lempel et al 1983). In
1973, Brockett & Dobkin (1978) discovered a connection between bilinear
complexity and error-correcting codes (see also Lempel & Winograd 1977),
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which leads over F = 7, Lo the lower bound 3.52z for polynomial mul-
tiplication (Brown & Dobkin 1980), and of 2.57—o(r?) for matrix mul-
tiplication (Bshouty 1987).

For almost a decade after Strassen (1969), no further insight was
obtained on the exponent @ = w; > 2 of matrix multiplication, defined as

@ = inf{reR: R(n x n-matrix multiplication) = O(n")}.

Then Pan (1978) got the ball rolling again, Bini et al (1979) introduced the
powerful new technique of “approximation algorithms,” and Schénhage
(1981) found his famous ““t-theorem,” vastly generalizing the result of
Hopcroft & Musinski (1973) that if R(m x n times n X p—maltrix mul-
tiplication) < r, then (mnp)”* < r. Some of these developments took place
at a memorable Oberwolfach meeting on complexity theory in October
1979, and the end result was the cstimate @ < 2.496 (Coppersmith &
Winograd 1982). In Pan (1984), one of the participants gives his account.

Yet another breakthrough by Strassen (1987) led to the current world
record @ < 2.376 (Coppersmith & Winograd 1987).

Open question Decide whether o = 2.

The exponent # for solving systems of linear equations satisfies # < .
It is not known whether 4 = w.

Figure 1 shows some upper bounds on @ with the approximate time
they were announced. Between b and f, at least scven other short-lived
world records are not shown. Pan (1984) gives a more complete figure.

w

o

a

. .b ¢

d
A T Y S T '_e__L____ ______ B -
h
1968 1979 1986 time

Figure I  Some bounds on m and announcement dates. a: Strassen 1968, 2.808. b: Pan 1978,
2.781. c: Bini el al 1979, 2.780. d: Schénhage 1979, 2.609. c: Pan 1979, 2.522. - Coppersmith
& Winograd 1980, 2.498. g: Strassen 1986, 2.4785. h: Coppersmith & Winograd 1986, 2.376.
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5. THE VALIANT HYPOTHESIS

The most important development of the 1970s in computer science was
the theory of P vs NP (Cook 1971; Karp 1972; see also Levin 1973). This
figured prominently among the achievements for which Cook (in 1982)
and Karp (in 1985) received the ACM Turing Award, the highest research
prize in computer science. The central unsolved problem here is the Cook
Hypothesis: “P # NP”. Valiant (1979a, 1982) translates this approach into
the setting of algebraic complexity theory. This is one of the fundamental
contributions for which Valiant received in 1986 the Nevanlinna medal
(sce Strassen 1986), with which the mathematical community honors once
every four years outstanding achievements in theoretical computer science.

Valiant’s analog of P is the set P, of p-computable families f = (f,)nen
of polynomials f,e F[x,,...,x,], with L, (f,) and deg f, polynomially
bounded. By Strassen (1973b), L,..(f,) = O((deg f,* L,,(f,))?, so that for
considerations of polynomial time the total and nonscalar costs are equally
informative. The Boolean polynomial-time reductions are replaced by *‘p-
projections” f < g, where f is obtained from g by substituting variables
and constants:

f;! = gm(«)(“h =g am(ﬂ))1

with ay,...,a,melF v {x,,...,x,} and m(n) =n“"Y. Consider the fol-
lowing characterization of NP: A language A is in NP if and only if there
exists a language Be P and a polynomially bounded #: N — N such that

VYneN VxeX(xcA<decX™ xxecB),
or, equivalently expressed with characteristic functions:

YneN VxeX" y (x) = }/“ 1a(x % €).

Here, 2 is the alphabet, and x a new symbol. Replacing the disjunction over
¢ by a sum, Valiant (1979a) calls p-definable any family f of polynomials for
which there exists a family gc P, and a polynomially bounded 7: N —
such that

VnENf;l(xl.---':xn): Z gt(n)(xl.\'"1xmeil'+li'“1ei‘(n))‘
€y 1m0 1}
These p-definable polynomials form the analog of NP.
The central conjecture in the theory now is the Valiant Hypothesis:

“There exist p-definable families of polynomials which are not p-
computable.”

Open question  Is the Valiant Hypothesis true?
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For an n x n-matrix x with entries x,(1 < i, j < n), the permanent

per (x) T Z xl.ul Wt xn,rm
e,

differs from the determinant only in that each coefficient in the sum equals
1. From now on we assume thal the characteristic of F is not two, since
otherwise the permanent equals the determinant. Valiant shows that the
permanent is p-complete (for p-definable polynomials under p-projec-
tions), so that the Valiant Hypothesis is equivalent to the conjecture
that the permanent is not p-computable. Valiant (1979b) introduces the
Boolean complexity class # P = NP of “counting problems,” and shows
that the Boolean problem of computing the number HC(G) of Hamil-
tonian cycles is a graph G is # P-complete, and that the corresponding
family of polynomials is p-complete. Already the decision problem

“HC(G) é I is NP-complete. In contrast, the existence of a perfect
matching can be decided in polynomial time (Hall 1956). Surprisingly,
Valiant also shows that computing the number per (M(G)) of perfect
malchings is complete for # P, where M(G) is the incidence matrix of G.

The theory simplifies if we generously replace “polynomial time’ n°"
by “quasipolynomial time” 2'°#*™" valiant’s (1979a) “universality of the
determinant” states that every gp-computable family of polynomials (with
polynomially bounded degree) is a gp-projection of the determinant. This
translates the Extended Valiant Hypothesis: **There exist p-definable poly-
nomials which are not gp-computable” from complexity theory into the
purely algebraic conjecture: “The permanent is not a gp-projection of
the determinant.” Presumably one of the hopes in this approach is that
the more structured setting of algebraic complexity, where for example
powerful tools from algebraic geometry are available, might allow us to
solve analogs of Boolean problems that have defied intense efforts for
decades (see Borodin 1982). Unfortunately, the area has not attracted
much interest so far; a recent survey (von zur Gathen 1987¢c) hopes to
make the subject more visible.

The Extended Valiant Hypothesis conjectures that il the n x n-
permanent is a projection of the m x m-determinant (i.e. obtained by
substituting constants and indeterminates), then m = 209" The first
progress on this question is the bound m > ﬁn—ﬁ\/n (von zur
Gathen 1987d, with the help of Babai and Seress).

6. PARALLEL COMPUTATIONS

The realization that physics places fundamental limitations on further
advances for sequential “von Neumann™ computers has made “parallel
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computation” a hot research area, also in Boolean complexity theory. For
algebraic computing, we define—in analogy with the established Boolean
complexity class NC (Pippenger 1979; see Cook 1985) for keN the
complexity class NC% of polynomial families 1 = (f;) with degree n®"
which can be computed by arithmetic circuits of depth O((log n)*) and sizc
n°Y. (The depth of a circuit a is the longest length of paths within a.)

The elementary problems of linear algebra arc fundamental. Csanky
(1976) showed that the determinant is in NC, if char (F) = 0. A systematic
study was initiated around 1982, when Csanky’s result was generalized to
arbitrary fields (Borodin et al 1982; Berkowitz 1984; Chistov 1985).
Chistov’s algorithm to compute the characteristic polynomial %(4) =
det (tI,— A) e F[1] of a matrix 4 = (a;),<;;<.€1™*" considers for 1 <r
< n the lower right submatrix 4, = (@;),<;;<,€ F"*", where r' = n—r+1,
and d, = det (I, —t4,) € F[t]. Thus y(4) = 'd,(t”"). Writing

(bg})rsidrsn = (_Ir'_tAr) ; = Ir' + Z tkAfEFuerxr’,
1=k
b, = b2, and d,,, = 1, we have b, = d,, ,/d, by Cramer’s rule, and

1
L=
l<r<n dl
Thus one calculates 4! for 1 < i, r < n, then dy ' mod """, and finally
dymod """ by a Newton iteration. All this can be done in depth O(log”n)
and size n?".

For problems with a “combinatorial” output—e.g. computing the rank
of matrices—we have to extend the arithmelic circuits to “‘arithmetic

Boolean circuits.” These also have test gates “a L 0” for an arithmetic
result ae F, Boolean operations on the resulting Boolean values, and
selection gates whose output is one of the two arithmetic inputs, depending
on the value of a third Boolean input. With this natural extension,
the rank is in NCZ (Borodin et al 1982, probabilistically; Mulmuley
1987, deterministically), and also problems combining arithmetic and
combinatorial aspects like solving (possibly singular) systems of linear
equations.

There is a natural notion of NCj-reduction f < g, where one has a
circuit computing f in depth O(logn), with oracle gates for g. (A little care
is required in defining the depth and size of oracle gates.) Let us call DET
and RANK the classes of all problems NC j-reducible to the determinant
and rank, respectively. Then

NC} < RANK < DET = NC}.
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Many elementary problems from linear algebra are NC }-complete for one
of these classes. Examples are: marking a set of rows and columns of a
matrix that form a maximal nonsingular minor, determining solvability of
a system of linear equations, and a basis for the image of a linear mapping
are complete for RANK; the characteristic polynomial, the first # powers
of an n x n-matrix, the inverse of a matrix, solving a system of linear
equations, and computing a basis for the nullspace of a matrix are complete
for DET (see von zur Gathen 1986b).

Open question Is one of the inclusions NC} < DET = NC} proper?

Most problems from polynomial arithmetic (sec Section 2) wind up in
DET, such as the ged, the entries of the Extended Fuclidean Scheme,
interpolation (including rational and Hermite interpolation), and Padé
approximation (Borodin et al 1982; von zur Gathen 1986a). Using Stras-
sen’s (1973b) technique of “avoiding divisions,” Valiant et al (1983) and
Miller et al (1988) show that any rational function in P, i.e. p-com-
putable is in NC;. This is quite surprising, since the Boolean analog
“P = NC”” is conjectured to be false. Their result hinges on the restriction
of polynomial degrees in our complexity classes; for classes N?J’_é defined
without this restriction, the inequalitics

NClg NCig--- ¢ NCy < P,

are trivial.

One of the most instructive problems in parallel arithmetic is that of
computing a large power. The algorithm of “‘repeated squaring” (see
Knuth 1981) proves that the minimal depth d% of arithmetic circuits
computing x” satisfies 4% < [logb ], and a degree argument shows equal-
ity: dy = [log b7 over an infinite field F (Kung 1976).

Over a finite field F with g elements, Fermat’s little theorem a?~ ' = |
may help (for nonzero a), and indeed the bound becomes

m<dh <m+1,

where m = min {[log57),[log (¢—5) T}, and the circuit is not required to
answer correctly for @ = 0 (von zur Gathen 1987a). Thus if ¢ > 2"*! and
2""! < b <2, then the disappointing lincar lower bound d% > n follows.
Quite surprisingly, Fich & Tompa (1988) show that if F has exactly
2**! elements (or, more generally, has small characteristic p < nand 29"
elements), then x” can be computed on arithmetic circuits over the prime
field Z, of depth O(log”n). Now ficld clements are represented by their
coordinates in some basis of F over Z,. Von zur Gathen & Seroussi (1986)
note that also the trace and square roots have this behavior. Arithmetic
circuits (over F) have been taken for granted as the appropriate model for
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computing polynomials over F, and all results mentioned so far in this
survey have used this model. Contrary to our intuition, for parallel pow-
ering this model is exponentially weaker than another reasonable model,
namely arithmetic circuits over the prime field 7, of F.

For the integer power problem of computing a” mod m, where a, b,me N
arc n-bil numbers, we have to use Boolean circuits. If m > 2b is a prime
and only arithmetic mod mis used, we have seen that the depthis[log, b ]—
i.e. Q(n). However, if m has only small prime factors <n, then the problem
can be solved in optimal depth O(log n) (von zur Gathen 1987a).

7. FACTORING POLYNOMIALS

Starting in this section, we change focus in two ways. So far, our problems
trivially had polynomial-time solutions (except in Section 5); now we look
at tasks for which polynomial-time algorithms are nontrivial. Second, our
problems are not rational any more, and it is appropriate to switch to
Boolean circuits (or Turing machines, or RAMs) as the model of
computation.

Over any field F, a polynomial feF[x,,...,x,] has a factorization
f=fi.../, into irreducible polynomials fi,...,f,, unique up to scalar mul-
tiples and permutations. How can we calculate this factorization? Landau
(1987) gives a more comprehensive survey of the results to be discussed.

A first observation is that over very general “‘computable” fields, even
irreducibility of univariale polynomials is undecidable (Frohlich &
Shepherdson 1955). In a remarkable preview of things to come, van der
Waerden (1930) showed—before the advent of computability theory—
that the existence of an undecidable subset of N (in today’s terminology;
an “ignorabimus™' in his words) implies that irreducibility is undecidable.
In the same volume, Hilbert (1930) proposed that “in der Mathematik gibt
es kein Ignorabimus . . .” (apparently intending a different meaning of the
Latin word). However, if the field F is finitely generated over its prime
field (Q or Z,), then polynomials over F can be factored ecffectively
(Hermann 1926).

For efficient algorithms, we observe as a simplification that f = f/ged
(/. dféx) is the squarefree part of fe F[x], if char (F) = 0; i.e. each irre-
ducible factor of f occurs with multiplicity 1 in f. A modification (see
Knuth 1981) allows us to assume also over finite fields that the input
polynomial is squarefree.

The first polynomial-time factorization result, over a finite ficld F=
GF(q) with g elements, is due to Berlekamp (1967). If f = f,...f, is a

' We will never know.
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factorization into distinct monic irreducible polynomials Fres e Blx),
then

R=FIxI/(/) & FI/(f) x -+ x FI/(S)

is the Wedderburn decomposition of R as a product of the fields F|x]/
(f) 2 F; the F-linear isomorphism ' is given by the Chinese remainder
algorithm. The Frobenius mapping

¢:R— R; p(a) =da’

is an F-linear map, and its fixed point set is the diagonal sct
T'=ker(¢p—id)=¢ "(Fx - xF),

by Fermat’s little theorem:
VYhe Flx]/([)) (b = b<bel).

If T = F, then f is irreducible. Otherwise, for any ae T\F there exist be F
and 1 < i,j < r such that

((a—b), =0, (h(a—b)), #0.

Then g = ged (f,a—b) is a nontrivial divisor of f with fj|g and TAa
(identifying @ = cmod f€ R with a corresponding polynomial ce F[x] of
degree less than deg /). Since the matrix of ¢ (in the natural basis) and
a basis for the linear space T are easy to compute, Berlekamp’s factor-
ization algorithm uses (dg)?" operations in F, where d = deg f.

Berlekamp’s interest came from applications in the theory of error-
correcting codes (Berlekamp 1968), where the case ¢ = 2 is particularly
important. Indeed, if g is small, the algorithm runs in polynomial time.

However, for large ¢ only time polynomial in the input size dlogg is
regarded as feasible. An ingenious idea of Berlekamp (1970) is to introduce
probabilistic choice: For randomly chosen a in 7, ged (f,a "> —1) is a
nontrivial factor of f with high probability. (For cven ¢, one uses a
variant of this algorithm.) This leads to a probabilistic algorithm of time
(dlogq)®V. It is of “Las Vegas” type—i.e. either returns correctly the
complete factorization of f or else “failure”, the latter with arbitrarily
small probability & > 0 and running time proportional to loge~"). Today
we recognize this as a fundamental contribution: the first probabil-
istic polynomial-time solution to a problem for which no deterministic
polynomial-time algorithm is known.

Several authors have given analyses and variants of the algorithm
(Rabin 1980; Cantor & Zassenhaus 1981; Camion 1983; von zur Gathen
1984a). The best time bound is by Ben-Or (1981): O(d’log dloglogd-
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logg) operations in F. Before Berlekamp, Butler (1954) had used the
fixed points of the Frobenius mapping for an efficient irreducibility test,
and Schwarz (1956) to determine the degrees of irreducible factors.

Open question Can one factor a polynomial e GF(g)[x] of degree d
deterministically in time (dlog ¢)?"?

Berlekamp (1970) shows that for this question one may assume that f
is a product of linear factors, and that ¢ is prime. For several special cases,
an affirmative answer is in Schoof (1985) (for special square roots), Huang
(1985) (for cyclotomic f), Ronyai (1987b) (for a bounded number of
factors), and Moenck (1977) and von zur Gathen (1987b) (if all prime
factors of g— 1 are small); all results except Schoot’s assume the Extended
Riemann Hypothesis.

The next case of interest is @[x]. Zassenhaus (1969) recognized the
importance of p-adic Hensel lifting. Algorithms——such as Wang’s (1978)
multivariate factorizer—based on his ideas work well in practice, but
consume exponential time in the worst case. This is due to (exceptional)
irreducible polynomials in Z[x] which have many factors modulo each
prime p (Berlekamp 1970; Kaltofen et al 1983).

After more than a decade, a breakthrough by Lenstra et al (1982) put
this problem into polynomial time. The core of their method is a fast
computation of short vectors in integer lattices, which has since found
many applications in other areas (see Kannan 1987). Also in 1982, Kal-
tofen (1985a) reduced factoring in Q[x, . .., x,] to Q[x], so that this prob-
lem was also solved in polynomial time. These methods then yielded
in 1982-1983 a flurry of polynomial-time factorization algorithms for
(multivariate) polynomials over algebraic number fields and—prob-
abilistically—over finite fields (Chistov & Grigoryev 1982; Lenstra
1983, 1984, 1985, 1987; von zur Gathen 1984b; Grigoryev & Chistov 1984;
Kannan et al 1984; Schonhage 1984; von zur Gathen & Kaltofen 1985;
van der Hulst & Lenstra 1985; Landau 1985).

These multivariate factorizers work in time polynomial in the length
(d+1)" of a dense representation, to which each monomial of degree up
to d contributes. The next problem is to deal with the important sparse
representation—to whose length only monomials with nonzero coefficients
contribute—and the even more concise representation by an arithmetic
circuit. Zippel (1979, 1981) contributes the important idea that nonsparse-
ness is probably preserved under randomly chosen substitutions. The
central technical tools are efficient versions of Hilbert's (1892) irreduci-
bility theorem which show that under certain random substitutions irre-
ducible multivariate polynomials remain irreducible (Heintz & Sieveking
1981; Kaltofen 1985b; von zur Gdthen 1985). This leads to a probabilistic
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factorization algorithm with cost polynomial in the degree and the length
of an arithmetic circuit describing the input polynomial (Kaltofen 1986).
The degree enters the running time polynomially, since otherwise even a
simple problem like testing whether the ged of two univariate polynomials
is 1 is NP-hard (Plaisted 1984). Freeman et al (1986) have implemented
these ideas in a computer algebra system (on top of MACSYMA).

An important noncommutative generalization of the factorization prob-
lem is the Wederburn decomposition of finite-dimensional associative
algebras (Friedl & Ronyai 1985; Rényai 1987a).

The binary representation of integers suggests a formal analogy with
polynomials in Z,[x]. Indeed, some fundamental computational problems
(such as multiplication, ged, Chinese remainder algorithm) can be solved
with essentially the same method for both domains (see Lipson 1981).
Factorization seems to be different: All known integer factorization algo-
rithms require exponential time (in the binary length of the input), and
much in the exciting new fields of public-key cryptosystems (Rivest et al
1978) and zero-knowledge proofs (Goldwasser et al 1988) is based on the
assumption that the problem is compulationally not feasible. In contrast,
an integer can be Lested for primality probabilistically in polynomial time
(Solovay & Strassen 1977), or deterministically in quasi-polynomial
time (Adleman et al 1983) or in polynomial time assuming the Extended
Riemann Hypothesis (Miller 1975); the surveys by Dixon (1984) and
Lenstra & Lenstra (1987) give further references. Deciding whether a
quadratic equation in two variables has an integer solution is NP-complete
(Manders & Adleman 1978).

8. ALGEBRAIC THEORIES

The tenth problem in Hilbert’s (1900) famous list asks (in today’s interpre-
tation) for computer programs to determine solvability by integers of an
integral polynomial equation, long before the advent of programmable
computers. In the 1930s, the work of Gédel, Church, Klcene, Turing, and
Rosser showed that a negative answer Lo such a question is possible—
contrary to Hilbert’s hopes. Indeed, Matyasevich (1970) proved that Hil-
bert’s tenth problem is unsolvable, based on the work of J. Robinson and
Davis, Putnam & Robinson; see Davis (1973) for an overview.

An (arithmetic) expression over a ficld is built up from constants and
indeterminates, using +, —, , and /. A (first-order) formula is made up
from atomic formulas “expression = 07 (and “‘expression > 0 for recal
fields) with the logical operators —, A, v, 3, and V (with quantifiers
ranging over field elements). The theory of a ficld (or a set of fields) consists
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of all true formulas. Assuming that the /length of constants is defined (e.g.
unit length, or binary length if only integer constants occur), there is a
natural notion of length #(¢) of a formula ¢ (using the dense encoding
for polynomials).

The theory of Q is undecidable; similarly the theory of all fields (Robin-
son 1949). Special subproblems may be solvable: Polynomials over Q can
be factored in polynomial time (see Section 7), and one can decide (in
doubly exponential time) the ideal membership problem: Is a given multi-
variate polynomial over @ in an ideal given by generators (Cardoza et al
1976; Mayr & Meyer 1982, based on Hermann 1926)? In fact, Mayr &
Meyer show that any algorithm uses at least exponential space, say on a
Turing machine. Hermann’s result leads to an algorithm for ideal mem-
bership over any field, with a doubly exponential number of arithmetic
operations.

The theory of a single finite field is trivial to decide; the theories of all
finite fields, and of all finite fields of fixed characteristic are also decidable
(Ax 1968). A decision procedure for p-adic fields was given by Ax &
Kochen (1965) and Ershov et al (1965); Cohen (1969) presents a primitive
recursive quantifier elimination algorithm. Of particular interest are the
theories of real closed and of algebraically closed fields. The latter includes
the question of whether a system of polynomial equations over an arbitrary
field has any solution (in an algebraic extension field).

The theory of R (or of real closed fields) encompasses the questions of
elementary geometry (compass and ruler constructions), and has recently
seen interesting applications in robotics. We first discuss the upper bounds
(=algorithms), then some lower bounds. Tarski (1948) has shown that
the theory is decidable. His algorithm runs in time 22, where the height
of the tower of 2s equals the length ¢ of the input formula. Seidenberg
(1954) and Cohen (1969) made conceptual simplifications, but Collins’s
(1975) method of “cylindrical algebraic decomposition™ brought a dra-
matic improvement to 22°”. He implemented his ideas in the computer
algebra system SAC-2. Wiithrich (1976) simplified this approach, based
onideas of Monk and Solovay; these algorithms actually provide quantifier
elimination. Risler (1988) gives a survey of these methods.

The most precise result is by Grigoryev (1988), whose decision procedure
uses M(kd) ™" * steps. Here the input formula contains k atomic for-
mulas f; > 0, cach polynomial f,e Z[x,,...,x,] has degree at most ¢ and
each coefficient bounded by 2" in absolute value, and r is the number of
alternations of ¥ and 3 quantifiers, assuming that the formula is in prenex
form.

Ben-Or et al (1986) give a parallel decision procedure, using exponential
depth (or equivalently, work space) and a doubly exponential number of
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processors. Their algorithm shows that for fixed n the decision problem of
the theory of R is in NC.

Many questions in robotics, such as the “piano mover’s problem,” can
be phrased as first-order formulas over R. Reif (1979) indicates a general
formulation of this problem which is complete for the complexity class of
polynomial space, and outlines polynomial-time algorithms for moving a
rigid polyhedron in 2 or 3 dimensions. The substantial work of Schwartz
& Sharir (1983a,b) continues along these lines. Canny’s (1987) methods
work in simply exponential time under assumptions that seem reasonable
for the robotics problems.

The special case where all polynomials are linear has many applications,
for example in economics; Megiddo (1987) presents a survey of linear
programming.

Drexler (1978) and Garcia & Zangwill (1979) propose the “homotopy
method” for solving a system ¢(x) = 0 of polynomial equations. This has
been successfully applied to certain problems in physics, where one knows
a priori that the number of solutions is finite (Li 1987). One considers a
“homotopy” ¥(x, ) in variables 7 and x = (x,,...,x,), where (x,1) =
¢(x), and ¥ (x, 0) is an “casy” system, say of the form x% = b;. One traces,
with numerical methods, these casy solutions as the parameter ¢ moves
from 0 to 1. It would be interesting to establish the range of applica-
bility and the computational cost of this method. Different heuristic
methods, implemented in the Maple Computer Algebra System (Char et
al 1986), rescued the author in a problem that defied his pencil and paper
attempts (see von zur Gathen 1987d).

Quantifier elimination procedures for the theory of algebraically closed
fields follow in characteristic zero from the real methods: Heintz &
Wiithrich (1975), Heintz (1983), and Chistov & Grigoryev (1984) give a
solution in arbitrary characteristic. They use doubly exponential time.
Fitchas et al (1987) give a parallel quantifier elimination method, both for
real closed and algebraically closed fields, attaining the same bounds as
Ben-Or et al (1986) for the real decision problem.

Algorithms with doubly exponential cost are not feasible except for
very small inputs; these methods are polynomial-time if the number of
quantificd variables is bounded. However, in the general case one cannot
do much better: Fischer & Rabin (1974) prove an exponential time lower
bound for deciding the theory of real closed fields. (This large lower bound
is one of Rabin’s many contributions to complexity theory, for which he
received the ACM Turing Award in 1976, with Scott.) Heintz (1983),
Davenport & Heintz (1988), and Fitchas et al (1987) show that the output
of quantifier elimination may have doubly exponential size, both for
algebraically closed fields and for real closed fields. Thus the fast parallel
methods cannot be essentially improved.
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Buchberger introduced in 1965 the powerful general method of Grébner
bases to compute with polynomial ideals; see Buchberger (1985) for an
overview. In general, the cost of the method is not well understood [at
least doubly exponential (Mdller & Mora 1984)], but an approach of Bayer
& Stillman (1985, unpublished) raises the hope that for many natural
geometric problems the running time may be more reasonable.

9. PERMUTATION GROUPS

A permutation group G on {l,...,n} is a subgroup of S,, the group of all
n! permutations of {1,...,n}. Such groups arise naturally in many areas,
such as combinatorics, physics, and chemistry. The size of such groups
may be exponential in n. A concise representation of G is by generators
Gis--- Gk €S, 50 that G = {gy,..., g, consists of all products thal can be
formed using g, ..., g As an example, let g, = (1,2,...,n) be the cyclic
shift, and g, = (1,2) be a transposition. The G = {¢,> = Z, is cyclic, and
G=<g9192 =38,

For the following computational problems, generators gy, ...,g,€ S, of
G are part of the input.

1. Given g€ S, is g€ G (membership)?

2. Determine # G (order).

3. Given I< {l,...,n}, determine generators for G,={geG:Viel
g(i) = i} (point-wise set stabilizer).

4. GivenI < {l1,...,n}, determine generators for Stab,(G) = {geG: g(I)
= I} (set stabilizer).

5. Determine generators for normal subgroups {1} = G, <1G, <1--- <]
G, = G such that each G,/G,_, is simple (composition series), and
generators for each G;/G,_, (composition factors).

For the last problem, we have to exhibit a faithful permutation rep-
resentation of G,/G,_, on some set with m, < n elements, and then the
generators are in S, . The output tells us, in particular, whether G is
solvable.

The seminal work of Sims (1970) constructs from the input gy, ...,g; a
system of strong generators for G:

/ \
Bivy Mg, veor Binii oilia
S TR hZ‘n- 1 ha

1 1 ... 1 h,
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with the identity below the main diagonal, where A, . . ., h,, are right cosct

representatives for G, mod G,_ |, G, = Gy1...; 1» and each h; is cither | or
satisfies A,(i) = j. Then any geG has a unique representation g = g,
gu—1°""9g1, Where g, is from the ith row.

Sims’s “sifting” algorithm—slightly modified by Furst et al (1980)—
compules strong generators by starting with a trivial table and inductively
inserting one given generator after the other. If g is to be inserted, it is
sifted down the rows i = 1,2,....n of the table as follows. At level i, if
thcn_ 1s a lable entry h; with g(i) = hy(i), replace g by h; 'g. (Note that
hi; 'ge G,.) Otherwise insert g in position (i, g(i)). After sifting the gener-
ators also each product of two table entries has to be sifted. Furst et al
prove that the whole process runs in time O(kn* -+ n); this can be improved
to O(kn’+n°) (Babai 1986). It shows that Problems 1, 2, and 3 are in P,
and Luks (1987) extends this to Problem 5.

Open question  Can set stabilizers (Problem 4) be computed in polynomial
time?

A central combinatorial question is the status of graph isomorphism:
Given two graphs, determine whether they are isomorphic. This prob-
lem is in NP, is not known to be in P, and therc is some evidence
that it is probably not NP-complete (sce Goldwasser et al 1988). Major
progress on this question resulted from the group-theoretic advances:
Babai (1979) suggested a connection between the problems, and graph
isomorphism is in P for graphs of bounded degree (Luks 1982), of boun-
ded genus (Filotti & Mayer 1980), or of bounded eigenvalue multiplicity
(Babai et al 1982); Miller (1983a,b) extends these results. Graph isomor-
phism is polynomial-time reducible to Problem 4 (Luks 1982), so that a
positive answer to the open question would also settle this combinatorial
problem.

As soon as all problems were solved in polynomial time, “someone
changed the rules” (in Luks’s words) and the hunt for fast parallel algo-
rithms started, with parallel time (logn)?" and #n%" processors (i.e. the
complexity class NC), for permutation groups G < §,. The first step in
1983 was an algorithm by McKenzie & Cook (1987) for Abelian per-
mutation groups. After further results by Luks & McKenzie and Luks,
finally Babai et al (1987) found parallel algorithms of small depth for all
our problems (except Problem 4, of course). In their words, “most striking
is the depth of group-theoretic machinery that is required for parallelizing
even the rudimentary task of membership testing™; their proof relies on
the classification of finite simple groups. They also find pointwisc stabilizers
of sets, and then put the problem of determining isomorphism of graphs
with bounded multiplicity of eigénvalucs into NC.



ALGEBRAIC COMPLEXITY THEORY 341

SUMMARY

Algebraic complexity theory has seen significant rescarch for less than 20
years. There have been spectacular successes, in particular the matching
upper and lower bounds of Sections 2 and 3, also the polynomial-time and
fast parallel algorithms of Sections 6, 7, and 9. We are now aware of what
the central problems are, such as the complexity of the Discrete Fourier
Transformation, of matrix multiplication, and of the permanent. Apart
from combinatorial or ad hoc techniques, central tools have been the
methods of algebraic geometry, and of Diophantine gcometry in Section 7.
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