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If g and h are polynomials of degrees r and s over a field, their functional compo-
sition f = g(h) has degree n = rs. The functional decomposmon problem is: given
f of degree n = rs, determine whether such g and h exist, and, in the afirmative
case, compute thcm We first cleal with univariate polynnmlals 'md present sequen-
tial dlgorlthms that use O(nlog?nlog logn) arithmetic operations, and a parallel
- algorithm with optimal dcpth O(logn). Then we consider the case where [ and h
are multivariate, and g is univariate. All algorithms work only in the “tame” case,
where the characteristic of the field does not divide r.

2 any of these documents will adhere (o the terms and constraints invoked by  poses. These works may not be

1. Introduction

4. Extended abstract in Proceedings of the 28th Annual IEEE Symposium on Foundations of Computer

is a field and g,h € F[z], then f = goh = g(h) € F[z] is their (functional)
sition, and (g, h) is a (functional) decomposition of f Given f € F[z], there exists
entially unique cornplete decomposition f = fyo fy0 -+ o fi, where f1,---, fi € F[z]
decomposable polynomials (we give references in Sprtmn 2). This result is valid if
aracteristic p of F' does not divide the degree of f.
e start with the following decomposition problem: given f € F[z] of degree n, and
I N with n = rs, decide whether there exist g, h € Fz] of degrees r, s, respectively,
hat f = g o h. For some time, this problem was considered to be computationally
the security of a cryptographic protocol was based on its hardness (Cade 1985,
n by Berkovits and Lidl & Niederreiter), and exponential-time algorithms (in l,}ld,I-
tic zero) were given by Alagar & Thanh (1985) and Barton & Zippel (1985) (a first
of which appeared in 1976). Major progress was made by Kozen & Landau (1989),
resented the first polynomial-time algorithm, in 1986. Their algorithm runs in se-
ial time O(n?), and O(log? n) in parallel. Gutiérrez et al. (1989) present a similar
thm.
'gghe present paper continues the work of Kozen & Landau in several directions, us-
mgﬁr-thelr basic method: faster sequential and parallel algorithms, Boolean computations,

nically. It is understood
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complete decompositions, and multivariale polynomials. A fast decomposition method in
Section 2 uses O(nlog? nloglogn) arithmetic operations, and O(nlog®n) if F supports
a Tast Fourier Transform. We find a complete decomposition with O(n'*<) operations,
for any € > 0. Over @, our approach yields a polynomial bound on the binary length of
intermediate results, and thus shows that the decision problem is in the Boolean complex-
ity class P. A parallel algorithm of optimal (up to constant factors) depth O(logn) is in
Section 3. _

As an application, Section 4 gives a (random) polynomial-time algorithm to decide
whether a separated polynomial fi(z) — fa(y) € Flz,y] has a nontrivial separated factor,
assuming that F' supports a (random) polynomial-time root-finding procedure.

In Section 5 we consider decompositions of the form f = goh with f,h € Flzy,...,2,)
and g € F[z]. The first polynomial-time algorithm for this problem is in Dickerson (1987).
We present a conceptually simple Newton approach that yields polynomial-time algorithms
for densely presented inputs, and random polynomial time for inputs given by arithmetic
circuits. For the important sparse representation, we have no polynomial-time results.

All results of this paper work only in the “tame” case where p = char(F) does not
divide r. A subsequent paper (von zur Gathen 1988) deals with the “wild” case, where
p divides r; Kozen & Landau (1989) also have results for that case. (The terminology of
“tame” and “wild” is borrowed from number theory, regarding r as some “ramification
index”; see e.g., Hasse 1980.) Some of the present results were reported in von zur Gathen,
Kozen & Landau (1987).

2. Fast univariate decomposition

The subject of this and the next section is the following decomposition problem DEC,‘?:,.
We have a field F, integers n,r € N with r dividing n, and f € F[z] of degree n.
Let s = n/r. The problem is to decide whether there exist g,h € I[z] of degrees r,s,
respectively, such that f = go h = g(h) is the composition of g with h, and, in the
affirmative case, to compute g and h. [ is indecomposable if no such g and h exist, with
2 < r < n. The “tame” case is when the characteristic p of F' does not divide #. This
paper deals only with the tame case.

For the question of uniqueness, note the following three types of ambiguous decomposi-
tions. For any u € Flz],c,d € F, ¢ # 0, and r,m > 2 we have uo(cz+d)o((z—d)/c) = u,
(2™ -u")oz" = z"o(z™ u(z")), and T, 0Ty, = TynoTy (= Ty ), where 15 is the ith Chebyshev
polynomial. “Ritt’s First Theorem” states that a complete decomposilion f = fy0---0 f;
with fi,..., fk indecomposable is unique up to these ambiguities, i.c., that any two com-
plete decompositions can be obtained from each other using these equalities (Ritt (1922)
for F' = C, Engstrom (1941) for p = 0, Fried & MacRae (1969a) for p = 0 or p > n).

Decompositions are intimatcly related to the intermediate fields between F(f) and
F(z) (Ritt 1922, Dorey & Whaples 1974) and between I and a splitting ficld of f over F
(Kozen & Landau 1989).

If f=gohand a and ¢ are the leading coefficients of f and h, respectively, then an
affine linear transformation yields

P Gg(m . h(ﬂ)))

a

h — h(0)
-

3

a normal decomposition of a monic polynomial into monic polynomials, where the second
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composition factor has constant term zero. So we can assume that f, g, and h are monic,
and that A(0) = 0. Denoting by M C F[z] the set of monic polynomials, we consider the
relation of normal decompositions

DECy, = {(f.(9,:h) € M x M?:
f=goh, degf=mn, degg =r, and h(0) = 0}.

Formally, the computational problem has f € M and r € N as input, and as output the
set of all (g, h) € M? with (f,(g,h)) € DECF

In the tame case, the algorithm of Kozen & Landan (1989) (or Corollary 2.3 below)
implies that for every f there exists at most one such (g, k), so that we can view DECF
M — M? as a partial function. Furthermore, the problem is rational, i.e., if fE F[x]
and there exists a field extension K O F and (f,(g,h)) € DEC&P, then in fnct g, h € Flz]
(Levi 1942). Both facts and Ritt’s First Theorem may fail in the “wild” case, where P
divides r. Incidentally, a variant of the new algorithms is implicit in Levi (1942), Section 2.

Brent & Kung (1978) deal with a different problem: given g,k € F[z] of degree at
most n, compute the lowest n coefficients of g o , and, assuming g(0) = 0 and ¢'(0) =
L, of the functional inverse of g. They give algorithms using time O((nlogn)®/?), if F
supports a Fast Fourier Transform. Ritzmann (1984) has a better bound for computing
such compositions, in a different “numerical” model.

Our model of computation is the “arithmetic Boolean circuit”, which uses indetermi-
nate inputs (in our case the coeflicients of f), constants from F, the arithmelic operations
+,—,%,/, tests a 2 0, binary Boolean operations on the resulting Boolean values, and
selection gates that select one of two arithmetic values according to the value of a Boolcan
third input (see von zur Gathen 1986). In our analyses, we usually neglect the Boolean
cost, since it is always dominated by the arithmetic cost.

Iu Theorem 2.7, we consider the ground field @ and inputs presented in binary and
Boolean computations, say on a Turing machine or on Boolean circuits, and derive a
polynomial bound on the binary length of intermediate results.

We will use the following well-known facts about some computational problems. Let
M = Mg :N — R be such that the product of two polynomials in F[z] of degree at
most n can be compuled with O(M(n)) arithmetic operations. We can choose M(n) =
nlognloglogn (Schénhage 1977, Cantor & Kaltofen 1987), and M(n) = nlogn if F
supports a Fast Fourier Transform.

Facr 2.1. (i) [Inversion] Given f € F[z] with f(0) = 1, one can compute f~! mod z"+!
with O(M(n)) operations.

(i) [Division with remainder] Given f,g € Flz] with degree at most n and g # 0, one
can compule q,v € Fla] such that f = qg + r and degr < degg with O(M(n))
operations,

(iii) [Roots] Given f € F[x] of degree n with f(0) = 1, and r € N not divisible by char( F),
one can compute the unique h € Flz] of degree al most n such that h™ = f mod z"+1
and h(0) = 1 with O(M(n)logr) operations.

(iv) [Taylor expansion] Given f,h € F[z] of degrees n,s respectively, lel r = [n/s]. One
can compute with O(M(n)logn) operations the unique by, ..., b, in F[z] such that

f= ) bih' and degh; < degh for all i.
0<i<r
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(v) [Composition] Given g,h € Flz] of degrees r, s, repectively, one can compute g o h
in O(M(n)logn) opcrations, where n = rs.

PROOF. (i) and (ii) are in Borodin & Munro (1975), Section 4.4. (iii) follows with Newton
iteration, as in Brent & Kung (1978). The generalized “Taylor expansion” (iv) of f around
h is most familiar when h = x — hg is linear, and we have the usual Taylor expansion of f
around ho. A divide-and-conquer approach gives the following algorithm. Let ¢ = [r/2].
In the allowed cost O(M(n)logn), we can assume that v = i’ has been computed. Then
we compute g, w € F[z] with

f = qv+ wanddegw < deg v,

and then recursively solve “Taylor expansion” for (w,h) (yielding bg,...,b,_1), and for
(g, h) (yiclding by, ...,b,). (v) is in Brent & Kung (1978), Lemma 2.1. O

Using fast polynomial arithmetic as quoted above, we can implement the algorithm of
Kozen & Landau (1989) very efficiently. For a polynomial f = 2™ 4+ a,_12™ ' 4 --- 4 ap €
F[z], we denote by [ = apz™ + -+ an_12 4+ 1 = 2™ - f(1/2) the reversal of f.

Algorithm Univariate decomposition.
Input: [ € F[z] monic of degree n = rs, and r € N, not divisible by char(F).

Output: The unique normal decomposition (g, k) of f with deg g = r, if such a decompo-
sition exists, and “no decomposition” otherwise.

1. Let f be the reversal of f, and compute h € Flz] of degree less than s with A" =
fmod z* and h(0) = 1. Let h = z*°h(1/z) € Flz].

2. Compute by, ...,b, € F[2] as in “Taylor expansion”.

3. Ifbo, ..., by € F,set g = Y ycic, biz* € Flz] and return (g, k). Otherwise return “no
decomposition”.

TueorEM 2.2. Over any ficld F, algorithm Univariate decomposition correetly solves
DE(‘R rs if char(F) does not divide r. It can be implemented with O(M(n)logn) arithmetic
opemtwns

ProoF. Let f € F[z] be monic of degree n = rs. Clearly (g, h) returned by the algorithm
is correct, because f = goh, h is monic since h(D) =1, and h(0) = 0 since degh < s. So
assume ’rhat there is a decomposition f = § ok, with g,h monic, and h(D) = 0. Then f
and k" agree on the highest s terms, i.e., deg(f — Ay < n—s. Lct hy = &%, h(l}'.::) be the
reversal of h. Then

2"h(1/z) = (+*h(1/2)) = K,

deg(f—h")<n—-s5 < I"-((f—.-if){lfx))z(]mod:c"
<> f—h=0mod 2°.

Since the solution to “Roots” is unique, we have h = h; and h = h. Then also =418
computed in step 3.

With the algorithms for “Roots” and “Taylor expansion” from Fact 2.1, the algorithm
can be performed with O(M(n)logn) operations. O
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The algorithm shows rationality (as quoted above) and uniqueness of normal univari-
ate decomposition into two polynomials, which will be used in Section 4. The following
corollary describes the structure of the set of all decompositions of a fixed polynomial into
two decomposition factors, without restriction to normality. Let us call two decomposi-
tions f = g1 0 hy = g3 0 hy similar if they differ by an affine linear transformation, i.e., if
there exist ¢,d € F such that ¢ # 0, g1 = ga(ez + d), and by = (hy — d)/e.

COROLLARY 2.3. Let F be a field, [ € Flz] of degree n, and r € N with char(F') not
dividing r.

(i) Any lwo decomposiiions f = gy o hy = g3 0 hy with deg gy = deg g, = r are similar.
(i) There ezists at most one normal decomposition f = g o h with (f,(g,h)) € DECE .

(i) If f = goh is a decomposition over an extension ficld K of F, and h = cz*+---+d €
K[z], where s = n/r = degh, then g1 = g(cz + d) and hy = (h — d)/c are in F[z),
and f = gy ohy.

Proor. Let f = goh be any decomposition over K, a € ¥ the leading coeflicient of f,
and s,¢,d, g1, hy as in (iii). Then

alf=alg10M

is a decomposition, with a=! f and h; monic, so that also a~lgy is monic. Thus this is
the unique normal decomposition computed by the algorithm, all polynomials are over F,
and also ¢y is over F. This proves all claims. O

Algorithm Complete decomposition.
Input: Monic f € M C F[z] of degree n, not divisible by char(F).
Output: A complete decomposition of f into indecomposable polynomials.

1. Compute the prime factorization n = p{! ... pi* of n. Let d(n) = (eg +1)---(ex + 1)
be the number of divisorsof n,and =1 <rpy < ... < Td(n) = n the divisors.

2. For j = 2,...,d(n) — 1 solve the problem DECE,}., with input f. If the first decom-

position (f,(g,h)) € DRCﬁ;TJ is found, apply the algorithm recursively to h, with
output fa,---, fi such that h = fro0 f30---0 fi. [fi = g then is indecomposable.]

3. Return (fy, f2,..., fx).

THEOREM 2.4. Let € > 0. If char(F). does not divide the degree n of f, algorithm Com-

plete decomposition compuies a complete decomposition of f into indecomposable poly-
nomials with O(n'*¢) arithmetic operations.

Proor. Clearly the algorithm works correctly. Its cost is O(d(n)- M(n)logn), since deg h
in the recursive call is a proper divisor of n. We now use that d(n) = O(n°) (Hardy &
Wright 1962, Theorem 317). O

The algorithm finds the lezicographically first complete decomposition, for which the
degree sequence (deg fi,...,deg fi) is lexicographically smallest. Furthermore, each f; is
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monic and, except possibly fi, has constant term zero. The uniqueness in Corollary 2.3
shows that this decomposition exists and is unique.

The number of distinct complete decompositions (with A monic and 2(0) = 0) is not
too large: any polynomial of degree n has at most n distinct decompositions, and if n is
the product of the first k prime numbers, then the number k! of decompositions of f = 2"
is w(n'~*) for every ¢ > 0.

OreN QuesTION 2.5. Can one reduce polynomial multiplication to decomposition? Is it
possible to improve the running time for decomposition further, say to O(M(n))? Given
f,a,h, can one compute goh, or at least test f = goh, deterministically in time O(M(n))?

Note that polynomial multiplication is reducible to squaring (if char(F') # 2), which
is a special case of composition.

REMARK 2.6. We have stated Theorem 2.2 only for the case of a field F. The algorithm
actually works for an arbitrary commutative ring F' with 1, provided that r is a unit in F.
Of course, the uniqueness of Corollary 2.3 (ii) may get lost, as in 22 o (2?2 + ex) = 22 0 22,

if char(F) =2 and e? = (.

Over the fields of greatest importance in computer algebra, @ and finite fields, the algo-
rithm can be executed in polynomial time also by Boolean computations, say on a Turing
machine or on Booolean circuits. This is trivial over a finite field, where an arithmetic
operation can be performed in polynomial time, namely with O(klogkloglogk) Boolean
operations if #£F < 2F. Over @, we have to show that the binary length of intermediate
results is polynomially bounded. Applying naive estimates to iterative methods—such as
Kozen & Landau’s for the decomposition problem, the Newton iteration used in Fact 2.1
(iii), or the divide-and-conquer for 2.1 (iv)—yields at best “quasi-polynomial” bounds like
n1°8™ times input length. We now prove a polynomial bound.

We represent a rational number a as the quotient of two relatively prime integers
a = b/ec, and call max{log, |b|,log, |c|} the length I(a) of a (assuming b # 0). Then a can
be represented by a string of O(I(a)) bits. For a polynomial f € Q[z], I(f) is the maximum
length of its coefficients. If a € Z is the sum of m integers, each of length at most &, then
l(a) < logm + k.

THEOREM 2.7. Suppose that f € Q[z] is monic of degree n and has length I{ f) < k with
k > 2. Then all rational numbers compuled in the algorithimn Univariate decomposition
with input f and r > 2 have length at most 2n3k.

Proor. In the notation of the algorithm, write f =1+ fi, so that z divides fi, and
fi = a 1f, = a~lbfy with a,b'€ N, fa, fa € Z[z], fa primitive, and ged(a,b) = 1. Then
l(a) € nk and ( f;) € nk. We consider the binomial expansion

h=+a )V = 2 (lir)a_iﬁ?

0<i

_—+ s—1 1 1/?‘ s—1—1 pi Js
= ri(s — D Z T (s — 1)( ; )a 3 mod z°,

0<i<s
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where the last sum is in Z[z]. The denominator v = r*~! (s — 1)!a*~! has length I(u) <
(s — 1)(nk +logn). For the integer coefficients oceurring in the sum, we have

! ((r*—l(.s > 1)!(14"))

- z(r"—‘—fu.l.(1-r).(1-2r)...(1_(i_:)r})

i!
< (s—1-4)logr+(s—1—1)logs+ tlogsr = (s —1)logn.

Recall that j € N has (;‘::) ordered partitions into i positive integers. I'or any i < s, in

the binomial expansion of fj each coefficient of an 27 with j < s is the sum of (f:I) < 2
terms, each of which is the product of at most i coefficients of f;. This shows that

Wa* 1 ) < (s = 1 —i)nk + (s — 1) + ink = (s — 1)(nk + 1).

Putting this together, we find uh, uh € Z[z], and

l(uh) = Il(uk) < (s—1)logn+ (s—1)(nk+1)+logs
< (s—1)(nk+logn + 2),
I(h) < max{(s—1)(nk+logn),(s—1)(nk+logn + 2)}

Il

(s — 1)(nk + logn + 2).

The Taylor expansion problem

f= 3 bk +hT, b € Qlz], degh; < s

0<i<r

is—by equating coefficients of powers of z—equivalent to an n X n-system of linear equa-
tions for the rational coefficients of bg, - -+, b,_1. (We have normalized b, = 1.) Each entry
of this system is a coefficient of f — A", A%, .-, h""1. Since uh,uf € Z[z], multiplication
by u" of each equation yields an equivalent system S with only integral entries. For any
i < r we have

W) = U(u"=") + ((uh))
< (r—1)(s—1)(nk+logn)+ (n—1)+i(s— 1)(nk+logn+ 2)
< n(nk +logn) -1

Thus each entry of 5 has length at most n(nk + logn). (The —1 covers the coefficients of
f—h".) Cramer’s rule and Hadamard’s inequality imply that the (unique) solution to §
has each component hounded in length by

glogn 4 n-n(nk 4 logn) < 2n°k,

so that I(b;) < 2n%k for any i. O
This theorem easily generalizes to algebraic number fields instead of Q.
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3. Very fast parallel decomposition

Kozen & Landau (1986) observe that the general parallelization technique of Valiant et al.
(1983) applies to their construction, and obtain an arithmetic algorithm of depth O(log? n),
in the tame case. This section provides an algorithm of optimal (up to constant factors)
depth O(logn).

For this result, we implement the algorithm of Section 2 fast in parallel. Eberly (1989)
shows that division with remainder and “iterated product” of n polynomials of degree at
most n can be computed in depth O(logn) on P-uniform arithmetic Boolean circuils over
F. This will be our model for this section; we could also use Eberly’s log-space uniform
circuits of depth O(lognloglogn). The problem is also in Boolean NC over @ (using
bounds like Theorem 2.7) and over finite fields. (Due to the lack of fast parallel Boolean
computations for the ged of integers and of inversion in finite fields, we have to allow the
“redundant representation” a/b with a,b € Z, b # 0, of field clements, without insisting
on ged(a,b) = 1 over Q or b= 1in Z, (but: 0 < a,b < p).) We start with the problem
“Roots” of Fact 2.1 (iii). Note that Newton iteration would only yield depth O(log?n).
LEMMA 3.1. “Roots” can be solved in depth O(logn).

Proor. By assumption, = divides f; = f — 1. We have

h=(14 fi)lr = Z (1{r)f{ = E (I{T)ff mod z°.

0<i 0<i<s

The powers f{ can be computed in depth O(logn). In the model of “non-uniform” arith-
metic circuits, the binomial coefficients can be considered as constants in F, and hence
given for free. However, they can also be computed in F' log-space uniformly, just using the
constants 0 and 1 and field operations. This is trivial if p = char(F) is zero or at least s,
by computing the numerator and denominator products separately, and then dividing. 1f
p < s, Lemma 3.2 below says that we can replace 1/r by « € Z in the binomial coefficient,
if ru = 1 mod p'*t!, where | = |log, i]. Then we can apply Lucas’ (1877) formula:

(£)= (&) (&) o

where u = wp + wyp+ -+ + wp' with 0 < uj < p is the p-ary representation of u, and
similarly for i. (The computation of I,u,u;,i; takes place in the “Boolean part” of the
arithmetic Boolean circuit.) O

Lemma 3.2, Let p € N be prime, r,i,m,u,v € Z with p not dividingr, i > 1, [ = |log, 1],
m > 1, v = ur mod p™, and b = ("{T) € Q. Then b is a p-adic integer (ie., p does not

divide the reduced denominator of b), and b = (}) mod p™! (i.c., the two sides differ by
a multiple wp™=! of p™~!, where the reduced denominator of w € Q is not divisible by p.)

Proor. It is convenient to use the ring
Lpy={s/t€Q:steZandpt t}

of p-adic integers, with Z C Z(,) C Q. For this proof, “divisibility” always refers to L.
Choose a bijection
d:{l,..i} — {u—i41,...,u}
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such that
Vis 1< <y plj = p'| $(5).
Such a bijection exists. [Choosing some w with 1 < w < i and p' |u — i + w, we can
let ¢ map p' to u — i + w, and then the other values preserving the order, except that a
wrap-around occurs at 1.
For1<j<id,let v(j)=p*if p*|j and p*+' ¢ j. Then k < I, ju(j) € Z(,) is a unit,
(v —v/r)v(j) = 0 mod p™~!, and

Hiw(i) = ($(3) - u+ 2)v(j) mod ",
(u) ” [licj<i #(5) " I1; #(5)v(5)
i [lici<ii [1;5v(5)
[1;(¢(5) — v+ 2)u(5) B v/r') B i
Hjjff(j) — ( ; = Hmod pi v @

THEOREM 3.3. Over any field F, the decomposition problem DEC;‘;:_,,, with char( ") not

dividing r, can be computed on an arithmetic Boolean circuit over F' of depth O(logn).

Proor. Using algorithm Univariate decomposition, it is now sufficient to solve the
“Taylor expansion” problem of Fact 2.1 (iv). If 0 < i < s, and

f=qh'+r; and degr; < idegh

is a division with remainder, then b; = ¢; — hg;4,. All these computations can be done in
depth O(logn), by Eberly (1989). O

ProposITION 3.4. If char(F) does not divide the degree n of f, a complete decomposition
of f into indecomposable polynomials can be computed in depth O(logn).

PRrooF. In the notation of algorithm Complete decomposition, solve all problems
DEC,’:‘,}. in parallel. Suppose that k decompositions (g;, k), - -y (Gk, hi) are found, with
degrees (t1,1),- -+, (tk, sx). Order these decompositions so that

So=1< 8 <8<+ < 8 < 8y =,

Determine m < k so that s, < n'/? < Smt1. If 8, > n/3, decompose G and hy,
recursively. If s, < n'/? and sp41 < 0?/3, decompose gpyq and hm41 recursively. If
Sm < 0 and Emd1 > n2/3, then compute the decomposilion g, = e; 0e; with e; of
minimal degree (at least 2), and decompose e; and h,, recursively (using e¢; = z if Im
is indecomposable.) Since f = ey 0e; 0 hy,, we have dege; < n'/3 in this case; e; is
indecomposable.

If D(n) denotes the maximal depth for degrees up to n, we have

D(n) = O(logn) + D(n?/?),

from which D(n) = O(logn) follows. O

We show by example that this procedure does not necessarily find the lexicographically
first complete decomposition. If 4 > 1, p € N a prime with 2 < p < 2% 5 = 2'p, and
f =", then at the top level of the algorithm the first of the three cases oceurs with

nl/? <sm=20< n'/? < Smar=p,
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and the complete decomposition

'
f=gmohn =202 =2P0z?0...02%

is computed.

4. Separated polynomials

Let fi, f2 € Flz]. Then fi(2) — fa(y) € Flz,y] is called a separated polynomial. Finding
separated factors of separated polynomials is equivalent to simultaneous decomposition of
two polynomials.

Fact 4.1. (Fried & MacRae 1969b) Let [y, f2, b, hq € Flz]\ F have degrees Ny, Ny, 81, Sa,
respectively. Then hy(z) — hy(y) divides fy(z) — fo(y) in Flz,y] if and only if there ezists
g € Flz] such that f; = goh; for i = 1,2. If this is the case, then degg=mny1/s; = nyfss €
N.

A separated factor hy(2) — hy(y) is called normal if hy is monic and h1(0) = 0; any
separated factor can be made normal by the affine linear transformation

u(@, y)(t(2) = ha(y)) = au(z,y) (o= (ha() = ha(0)) = a~ (ha(y) — ha(0))),

where a is the leading coefficient of hy. Let us call SE-P;T,,. the problem of determining, on
imput r € N and two polynomials fi, [, € F[z] of degree at most n, whether there exists an
normal separated factor hy(z) — ho(y) of fi(z) — fa(y) in Flz,y], with deg by = deg fifr.
The literature contains no polynomial-time algorithm to solve this problem, say over Q
or finite fields. One method, requiring exponential time in the worst case, is to compute
all irreducible factors of fi(z) — fa(y) in F[z,y], and test each product of these factors
for being separated. Alagar & Thanh (1985) and Barton & Zippel (1985) based their
(exponential-time) decomposition algorithms on this approach, with f; = f2. We now
turn the fact around and have the following fast algorithm for SEP;‘;, in the tame case,
using univariate decomposition.

Algorithm Separated factors.
Input: r € N with char(F) not dividing r, and fy, f, € F[z] of degrees ny, ny, respectively.

Qutput: All (hy, hy) with hy(x) — hy(y) a proper normal separated factor of filz) — fao(y)
in Flz,y], and h; and h; € F(z] of degrees ny/r and ny/r, respectively. If no such
polynomials exist: “no separated factors”.

L. For i = 1,2 do the following. Let a; be the leading coefficient of f;. Compute the
normal decomposition a7*f; = g; o h; with degg; = r, h; monic and A;(0) = 0.
Set hy = hy. 1f one of the two polynomials has no such decomposition, return “no
separated factors” and stop.

2. Compute the roots ¢y,--+,¢; € F of 27 — azfa; € Flz] (0 <t < r). If t = 0, return
“no separated factors” and stop.

3. Let by,b; € F be the coefficients of 27! in gy, ¢2, respectively. Tor 1 < j <t do
steps 4 and 5.
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4. Compute d; = (bye; — by)/r.
5. If asgs = a19:1(¢jx + d;), then return hy and hy = Cjilu + d;.

6. If for no value of j step 5 was successful, return “no separated factors”.

THEOREM 4.2. Letn = max{ny,ny}. The algorithm works correctly as described in “Out-
put”, and can be performed with O(r*log® r + nlog? nloglogn) arithmetic operations in
F, plus the computation of all rth roots in F' of some a € F.

Proor. If h; and h; are returned in step 5, one checks that f; = a0 h; for i = 1,2.
Thus in view of Fact 4.1, it is sufficient to show:

Vg, hy, ko € Fl2] (deg§=r, f; = §oh; fori = 1,2, hy monic with h;(0) = 0
= for some value of j, hy = hy and hy = hs are returned in step 5.)

So assume that §, hy, ke satisfy the hypothesis, let s = = degh, = na/r, and write hy =
éx®+.-.+d. First note that Corollary 2.3(i) and the existence of g, hy, hq imply that step
1 surcessfully computes g1, g, hy, hig. Furthermore, g; and g, are monic. From

giohy =a;'fi =a;'gohy,

gaohy = a;lfy = a;lgohy = ay'g(éx +d)o (fz;; - d)/é,

and uniqueness of normal decompositions (Corollary 2.3 (ii)) we find
aflﬁzgh JE] :hl, &2_1_(}(62.'“}-0?)292, (52—{2’)/5—&2

Comparing coefficients of 27 and 2"~ in the third equation, and using the first equation,
we obtain

ay'aé@ =1, a3 -a;@"(by + rd) = by

This shows that (¢,d) equals (c;,d;) for some j < ¢, and for this value of 3, hy = By and
hy = E.?lg +d= 53 are returned.

The dominating computing costs occur in step 1, with O(nlog? nloglogn) operations
in F', and step 5. The cquality can be tested by substituting r+1 different values from F' for
z, at a cost of O(rlog? r) arithmetic operations (Borodin & Munro 1975, Corollary 4.5.4).
If I" has at most r elements, we may have to perform this test over a field extension
of degree al most log(r + 1) over I, where one arithmetic operation can be done with
O(log?r) opera,tmns in F'. Thus for one value of j, the test has cost O(rlog” r), for a total
cost of O(trloghr) = O(r?logtr). O.

While a separated polynomial of degree n may have 2" — 2 proper factors, only few of
these are (normal) separated:

COROLLARY 4.3. Let I be a field, r € N, fi,f, € Flz] of degrees ny,ny, respectively,
n=max {ny,nz}, m = ged(m,my), f = fi(z) - fo(y) € Flz,y], and € > 0.

(i) If char(F) does not divide r, then f has at most r normal separated factors hy(z) —
ha(y) with hy and hy € F(z] of degrees ny [/t and nq /T, respectively.
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(i) If F' = Q, there arc at most lwo normal separated factors of degrees ny/r and
ny/r, and at most one if r is odd. They can be computed with O(nlog® nloglogn)
arithmetic operations, plus onc root extraclion in Q.

(iii) If char(I") does not divide m, then f has O(mloglogm) normal separated factors
over F (of arbitrary degrees). They can be computed with O(n?log" n) operations in
F, plus the extraction of O(mloglogm) roots in F.

(iv) If F = Q, [ has at most 2d(m) = O(m*) normal scparated faclors, where d(m) is
the number of factors of m. They can be computed with O(n't*) operations in Q,
plus the eztraction of at most d(m) roots in Q.

Proor. (ii) az/a; has at most two rth roots in Q. Tt is sufficient to compute one root ¢;
cg = —c) is the other one if r is even.

(iii) We apply Separated factors with r running through all divisors of m, and use
2orim T = O(mloglogm) (Hardy & Wright 1962, Theorem 323) and 3,,, 72 = O(m?).

(iv) d(m) = O(m*) (Hardy & Wright 1962, Theorem 317). O

The algorithm Separated factors requires all rth roots in #' of some a € F. Is this
really necessary? Let us call ROOTF the problem of finding all rth roots of an input
a € I', where we consider 7 to be the input size.

THEOREM 4.4. In the tame case, where char(F') does not divide r, ROOTYE is linear-time
reducible to SEPT.

Proor. Let 2" —a = f1--- f;n be a factorization into monic irreducible factors in Flx],
with f; = ¢ — ¢; linear for 1 < i < ¢, and fi41,-++, fm nonlinear. Tor any f € F[z] of
degree n, we denote by ’

f=y"f(z/y) € Flz,y]

the homogencous version of f. Then z7 — ay” = fi--- fin, and for ¢ € F we have

cisan rthrootof a <= z —c¢|z” — ain F[z]
< z-—cy|z" —ay in Flz,y]
<= o — cyis aseparated factorof z" — ay”. O

Since root-extraction is not a rational process, we now consider Boolean computations
over a “computable field”; the most important cases are Q, where roots are casy to compute
in polynomial time, or a finite field, where univariate polynomials ecan be factored in
random polynomial time (Berlekamp 1970). On the other hand, Fréhlich & Shepherdson
(1955) exhibit computable ficlds of characteristic zero over which the existence of (square)
roots of a given field element is undecidable.

CoroLLary 4.5. (i) There exist fields F over which SEP:ZT is uncomputable.
(ii) SEPS,,. can be computed in polynomial time.

(iii) If F is a finile field with q elements, then SEPE  can be computed by a probabilistic

n,r
algorithm using time polynomial in log q and n.

Proor. For (ii), use Theorem 2.7. O
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ExAaMpLE 4.6. Tt is a bit surprising that although decomposition is rational (Corollary
2.3) and separated factorization is equivalent to simultaneous decomposition of two uni-
variate polynomials (Fact 4.1), separated factorization is not rational. The algorithm
indicates how to generate examples such as the following. The separated polynomial
f=2% 44?4+ 10y + 25 € Q[z, y] is irreducible over @, but has the separated factorization
f=(z—1ty—>5i)-(z+ iy + 5i) over Q[i] C C, where i = \/—1. The corresponding simul-
taneous decomposition is f; = 2 = 2 oz, f = —z% — 10z — 25 = 2% 0 (iz + 5i). In step
2 of the algorithm, we would obtain the normal decomposition a;l fo=a22+10z+25 =
(22 4 10z + 25) 0 2.

In general, we have the following description of all separated factorizations, rational
or not. Let F' be a field, and K an algebraic closure of F. Corollary 4.3 (i) and (iii), with
F replaced by K, give a bound on the number of factorizations.

COROLLARY 4.7. Let F', K be as above, r € N, fi, f2 € F[z] of degrees ny, ny, respectively,
n = max {ni,na}, a; the leading coefficient of f;, fori = 1,2, and a = as/a;.

(1) If hy and hy € K[z] have degrees ny /v and ny /v, respectively, and hy(z) — ha(y) is a
separated factor of fi(z) — fa(y), then hy, hy € F[b][z] for some b € K with b" = a.

(ii) A represenlative sel of all hy, hy as in (1), up to conjugation over F, can be computed
with O(M(r)(r?log® r + nlog? nloglogn)) operations in F, plus the factorization of
z" — a in Flz].

Proor. (i) follows from (the proof of) Theorem 4.2. For (ii), let 2" —a = g; -+ - gy be a
factorization into monic irreducible polynomials in Fz], and d; = degg;. (g1,...,9m arc
pairwise distinet.) If o; = 2 mod g; is an rth root of a in F; = F[z]/(g;), for any i, then
any (hy, hz) asin (i) is found by Algorithm Separated factors with some a; substituted
for ¢; in steps 4 and 5 (up to conjugates over F'). One arithmetic operation in F; can
be simulated by O(M(d;)) operations in F. Since Y cijem M(d;) < M(r) (assuming that
M(d;)/d; < M(r)/r, which is the case for the choice made in Section 2), the claim for the
total cost follows. O

If ¢ € K is a primitive rth root of unity, b € K with 0" = a, and L = F[¢,b] C K,
then [L : ¥] < ré(r), and all by and kg as above are in L[z]. One operation in I can be
simulated with O(M (r¢(r))) operations in F, and the cost of performing the algorithm for
Corollary 4.7 in L would be as in (ii) above, except that M(r) is replaced by M(ré(r)).

5. Multivariate polynomials

There are several generalizations of the decomposition problem to multivariate polynomi-
als. We solve the following type of problem:

f:gﬂh, f,hEF[Els---rwrrajthF[z]

by a simple linearly converging Newton method: substitute for z3,- -+, 2., solve the uni-
variate problem, and lift the unique solution.
We first have to make some normalizations. For @ € F we have

goh=[go(z—a)lo[(z+a)oh],
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so that we may assume throughout this section that 2(0,...,0) = 0. We define the set
M, of polynomials which are strongly monic in 21 as follows:

Mpm = {f= ) fizi € Flz1,...,2m]:

0<i<n
n e Nafor"'sfﬂ & 1"[32,.-.,2.',“], Jrn e Is d‘:‘gf = n}!

where deg f is the total degree of /. Thus M = M, (identifying = with z1). The normal
decomposition problem is

DECy,,. = {(f,(g,h)) € Mp X (M x Mp,):

f=goh, deg f=mn, degg =r, and h(0,...,0) = 0}.

Thus DECy ., = DECL.. 1f (f,(g,h)) € DECE, | then [ = goh (or (g,h)) is called
a normal decomposition of f. Corollary 5.3 (iv) below states that any f has al most one
normal decomposition in the tame case.

We consider the ideal x C F(z,,...,,,] generated by z3,---,2,. An x-homogeneous
polynomial of degree d is of the form

e - T
Z a; Ty - xm‘!

bt im=d

with a; € F[z1]; 0 is homogeneous of any degree. Every nonzero f € Flzy,...,2,,] has a
unique x-homogeneous representation f = Li<deg s fi With f; x-homogeneous of degree i.
We write f; = H;([).

The following algorithm solves the normal decomposition problem in the tame case.

Algorithm Multivariate normal decomposition.
Input: f € My, C Flzy,...,2m] of degree n = rs, and r € N, not divisible by char(F).

Output: The unique normal decomposition (g,h) of f with degg = r, if such a decompo-
sition exists, and “no decomposition” otherwise.
L. Compute fo = f(21,0,---,0),and g € Fz], hg € Fz1] with (fo,(g, ko)) € DEC;, |
by algorithm Univariate decomposition. If no such g, hy exist, return “no de-
composition” and stop.

2. Set s =n/r €N, ko = ho, and t = (dg/dz) 0 hg € F[z1]. [We will sce that ¢ # 0.]

3. Tor ¢ from 1 to s perform step 4. [This Newton step determines h; = H;(h) and
ki = nga' h;j.]

4. Compute u; = Hi(f — g ok;_1). If t does not divide u; (i.e., each coeflicient at a
monomial in 2,---,x,,), then return “no decomposition” and stop. Otherwise set
h; = w;/t and k; = k;_q + h;.

5. Set b = ks, and return (g, h) if f = g ok, and “no decomposition” otherwise.

THEOREM 5.1. In the tame case, every f € M,, C F[z1,...,2m] has at most one nor-
mal decomposition. The algorithm correctly decides existence, and computes the normal

decomposilion, if it exists.
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Proor. By assumption, p does not divide r, so that ¢’ = dg/dz # 0, and since hg is a
nonconstant polynomial, also [ = ¢" o hy # 0 in step 2.

Let f = §oh be any normal decomposition, and f = ¥ f; and h = T h; the x-
homogeneous representations. It is suflicient to show that the algorithm outputs (g,h)
with g = § and h; = h;, by induction on i.

For i = 0, we have (fo,(g,h0)) € DECE, ,, and Corollary 2.3 (ii) implies that g = §
and hg = ho are computed in step 1. Now let i > 1. Taylor expansion of g around an
indeterminate y implies that there exists G € F[z,y] such that

g(2)=g9(n)+d W) - -y)+ G (z - y)?

holds in Flz,y]. Substituting ki_y = };; h; for y (where we have used the induction
hypothesis) and y + h; for = we find

goh=go E.";._,.- =goki_1+ (g 0ki_y)-h; mod x'*!,
isi
since (z — y)? = A? = 0 mod x'*1, Now
g ok, :g'thjzg'ohoztmodx,
j<i

since i; = 0 mod x for j > 1. So we have

0:f»-goﬁzzfj—(gok;_l+£fe;) mod x't7,

i<i
ui = f; — Hi(g o ki1) = th.

This shows that u; is divisible by 7, and indeed h; = fl,-. |

For an arbitrary polynomial f € F[zy,...,z,] we use substitutions ¢ of the form
of = f(z1, 224 0221, - -+, T + O 1), With @ = (02, ++,05) € F™! to make f strongly
monic in z3. If k(0,...,0) = 0, then also (¢h)(0,...,0) = 0. The substitution a~1 =
(—02,-+-,—0m) is inverse to o, with 6~ 1o f = f for any f € Flzy,...,2m).

Algorithm Multivariate decomposition.
Input: f € Flzy,...,2,] of (lotal) degree n = rs, and r € N, not divisible by char(#).

Output: g € Flz] and h € F[zy,...,2,,]) with f = goh and deg g = r, if such a decompo-
sition exists, and “no decomposition” otherwise,

L. Choose a substitution @ € F™~! such that deg,, o f = n.

2. Let a € F be the leading coefficient of o f with respect to z1, and f = a='af. [Then
fe Myl

3. Call A]goritlim Multivariate normal decomposition with input f. If no decom-
position of f exists, return “no decomposition”. If f = § o h is returned, return
g=oqag and h = o~ 'h, where ¢=! = (—ay,- -+, —0,,) is the substitution inverse to o.
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THEOREM 5.2. Assume that a substitution o is chosen as required in step 1 of the algo-
rithm. Then the algorithm correctly determines whether f ¢ Flzy,...,zm] has a decom-
position with the required degrees, and if so, compules a decomposition.

Proor. Clearly any answer (g, k) of Multivariate decomposition is indeed a decom-
position f = g o h with the required degrees. Now suppose that f € Flaiy ..o 2m] has
a decomposition f = go h, with the required degrees, and B(U, ...,0) = 0. Let ¢ be the
leading coefficient of oh with respect to zq. Since of = § o oh has degree n in 1, ¢ is in
F. fisin M,,, and

f=atof=ajoah= a~lg(ex)oc loh

is a normal decomposition, with f and ¢~'¢h monic in 2y, and ¢ 1oh(0,...,0) = 0.
Thus also a™'g(ez) is monic, and the unique solutions § = a='g(cz) and ki = ¢~'ah are
returned by Multivariate normal decomposition. Thus the algorithm returns the
correct decomposition f =goh = g(ez)oc~th. O

A “lucky substitution” & in step 1 is casy to find:

LEMMA 5.3. Let f € Flzy,...,2,] have degree n, A C F finite, and a substitution o
uniformly chosen at random in A™=1. Then deg,, af = n with probability at least 1 —

n/#A.

PRrOOF. For 0 < i < m,let u; € Flay,---,zy] be the homogeneous part of (highest) degree
n — 1 of the coefficient of 2] in f. Thus the homogeneous part of f of (total) degree n is
S wizl # 0, and by the homogeneity, also u = Y u; € Fzy,--+,2,,) is nonzero, and of
degree at most n. Now we have for o € Fm-1

deg,, of =n
= deg f(x1,0021,+,001) = degl[(a f)(21,0,--+,0)] = n
=  u(og,,0m) #0.

The claim now follows from Schwartz (1980). O

Over small fields, no lucky substitutions may exist. For example, f = aizy + 212} €
Z,[z1, 22] has no substitution o € Z; with deg, of = 3.

We now describe the structure of the set of multivariate decomposition of a fixed
polynomial, and show rationality as in the univariate case. Let n = rs € N. Consider
two decompositions f = g, o hy = g3 0 hy, with g;,9, € Flz], f,hi,ha € Fl2q,...,2,),
deg f=n>r=degg = deggs > 2, and, as always, hy(0,---,0) = hy(0,---,0) = 0. Let
us call the two decompositions similar if there exists ¢ € F'\ {0} such that g, = gy(c2)
and hy = ¢~ hy. The constant of similarity ¢ is uniquely determined.

COROLLARY 5.4. In the tame case, where char(F) does not divide r, the following hold.
(i) Any two mullivariate decompositions are similar.

(i) If the first decomposilion factors gy, g, are monice, then the constant of similarity is
an rth root of unity.

(iii) If ¢ € F is an rth root of unity and f = g o h a decomposition with g monie, then
f = glex)o e h is a decomposition of the same form.



Functional Decomposition of Polynomials: the Tame Case 297

(iv) Any f € M,, has at most one normal decomposition f=goh with he M,,.

(v) If f = goh is a decomposition over some extension field K of F, h(0,---,0) = 0,
and ¢ € K a nonzero coefficient of h, then g(ez) and ¢=1h have coefficients in F.

Proor. (i) Suppose that we have two decompositions f = g; o hy = g2 0 ha, and first
assume that #F > n = deg f. By Lemma 5.3 there exists a substitution ¢ € F™~1 such
that deg, of = n. The proof of Theorem 5.2 shows that both decompositions are similar
to the output of Multivariate decomposition, and thus similar to each other. In the
general case, consider a ficld extension K O F with #K > n. The above implies that
92 = gi(ez) and hy = c='h; for some ¢ € K \ {0}. Comparing coefficients in h; and hy of
some monomial that occurs with nonzero coefficients (both in /') shows that ¢ € F.

(v) Suppose that f = goh is a decomposition over some K O F, with h(0,---,0) = 0.
First assume #F > n, and let 0 € F™ ! be chosen in step 1 of the algorithm with
deg,, f =n. Let a € F\ {0} and b € K \ {0} be the leading coefficients with respect to
zy of o f and ah, respectively. Then

*

%(.«T,O,H‘,O) = gréc.wcfhc(:.':,[],---,(.l'] = %(bm)ob_loh(m,ﬂ,---,(})

and g(bz) and b~'ah(z,0,--.,0) have coefficients in ¥, by Corollary 2.3 (iii). This uni-
variate decomposition is computed in step 2 of the algorithm. As proven in Theorem 5.2
(over K), the algorithm then computes the decomposition f = g(bz) o b=1h. However, all
steps of the algorithm are rational, so that indeed g(bz) and b=1h are over F'. Then also
g(ez) = g(bz)ofz and ¢ 'h = %b‘lk are over F for any nonzero coefficient ¢ of h.

If #F < n, we choose two finite algebraic extension fields Ly, L, C L of F with
#L1,# Ly > n and [Ly : F],[Lg : F] two distinct primes, where L is an algebraic closure
of F. We may also assume K C L. For i = 1,2, we apply the above argument with L; lor
F and the join of K and L; for K. It follows that g(ex) and ¢ 'h arc over Ly N Ly = I
O

We now want to evaluate the cost of the algorithm in three data structures for multivari-
ate polynomials: the dense, sparse, and circuit representations (also called the straight-line
representation). These representations are discussed in von zur Gathen (1985).

THEOREM 5.5. In the tame case, multivariate polynomials can be decomposed in time
polynomial in the length of the dense representation, and randomly in lime polynomial in
the length of a circuit representation.

Proor. Let A C F have n + | elements. In the dense representation, one can choose
03y, 0 deterministically one after the other, making sure that u(og,--+, 04 @41, -,
Ty ) is nonzero, with u € Fzy,:--,2,] as in the proof of Lemma 5.3. The other steps of
the algorithm can clearly be performed in a polynomial number of arithmetic operations.

For the circuit representation, we use A C F with 2n elements, choose (og,---,
om) € A™~! randomly, compute the coeflicients of fo = f(zy,002y,---,0,.21), and test
“deg fo = n”. By Section 2 and with Kaltofen’s (1986) general techniques for manipulat-
ing arithmetic circnits, this and the other steps can be performed in random polynomial
time.

If F has less than 2n elements, one has to perform the algorithm in a field extension
K of F of degree at most log2n. Then scaling any decomposition by a nonzero coefficient
yields a decomposition over ' (Corollary 5.4 (v)). O
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Moenck (1976) shows how to multiply two polynomials of degree at most dy and d,
respectively, in each of m variables with O(m(d; + d3 + 1)™ log d) operations, assuming
that the field supports a Fourier Transform. With this routine, the algorithm can be
performed with O(mn(n+1)™ logn) operations, which is not much more than linear in the
corresponding input size (n -+ 1)™. This compares favorably to the estimate of Dickerson’s
(1987) algorithm, which uses less than N? operations if the dense representation of f has N
terms. (A variable-by-variable lifting would be appropriate for this input representation,
where the degree in each variable is bounded.)

Unfortunately, for the sparse representation—the most intuitive one—it is conceivable
that the obvious implementation of the algorithm uses more than polynomial time. This
might be the case with f,h € F[zy,...,2,] containing a small number ¢ of nonzero
monomials, g = 3~ g;z* € F[r] such that f = g o h, and some h' with g; # 0 having more
than polynomial in ¢ many nonzero monomials. Another case might be an indecomposable
f with few nonzero terms for which a “dense” h is computed. However, the algorithm
might work reasonably well in practice also in the sparse representation, hoping that such
bad examples do not occur Loo often (at least for decomposable f).

Oren QuESTION 5.6. Do such examples exist?

6. Conclusion

We have exhibited fast polynomial decomposition algorithms for certain univariate and
multivariate problems. Besides the open questions mentioned in the text (and the more
difficult “wild case”), a next goal would be to elucidate the structure of (and find algo-
rithms for) rational decompositions f = goh with f,g,h € F(z), and different multivariate
polyhomial decompositions, such as f = g(hy, hy) with f, by, hy € F[z].
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