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Inversion in finite fields
using logarithmic depth
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Litow & Davida (1988) show that inverses in large finite fields of small characteristic
p, say p = 2, can be computed by Boolean circuits of (order-optimal) logarithmic
depth. We note that their numerical approach can also be implemented purely
algebraically, and that the resulting much simpler algorithm yields, also for large
p, both arithmetic and Boolean reductions of inversion in Fy» to inversion in Fp.

these documents will adhere to the terms and constraints invoked by poses. These works may not be posted elsewhere without
ight holder, and in particular use them only for noncommercial pur- mission of the copyright holder. (Last update 2016/05/18-1

o

he theory of parallel computation tries to classify problems according to their parallel
lexity. A fundamental tool are the complexity classes NC' C NC:C .-+, where NCF
onisists of those Boolean problems that can be solved by (uniform) Boolean circuits of
egth O((log N)*) and size N9 for input size N. Computing a result depending on N
s requires depth at least [log N, and so in this setting one cannot go below A o
here is an analogous “arithmetic” theory for algebraic problems (say, over a field
1at can be solved by the arithmetic operations +, —, X, and +, with corresponding
lexity classes NCk.

this paper, we deal with problems (viz, exponentiation and inversion) over finite
which are meaningful both in the Boolean and in the arithmetic theory. The ultimate
iis to put our problems into the lowest possible of the above complexity classes, namely
and NC}. We do not achieve this goal in its most natural environment, but only do so
relaxing some technical constraints from their standard setting to a more favourable
ing (log-space uniform to P-uniform, general characteristic to small characteristic,
ithms to reductions). The open questions at the end of the paper focus on the
sssity of these relaxations.

An excellent overview of the Boolean theory—including complexity classes, uniformity,
reductions—is given in Cook (1985); for the arithmetic theory, we refer to von zur
hen (1986). For the necessary algebra, we will give reference to various textbooks.

e have to deal with a potentially confusing array of problems, models, time bounds,
rmity conditions, and constraints on the field size. We classify these into four groups,
two choices in each group. The expert reader may safely ignore our notation like
.Lii) in Theorem 1. ’
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Let p be a prime, m € N, ¢ = p™, I' = F, a finite field, f € F[z] monic and irreducible
of degree n, and K = Fl[z]/(f) = Fgn. Then a = z + (f) € K is the usual generator
of K over F, and (1,a,a?,...,a""!) the standard basis for K over F. We consider two
computational problems in K, namely exponentiation and inversion:

(A) EXP(K): Input: ug,...,un—y € F, and e € N.
Output: vg,...,0,-1 € F such that
(Togicn 4ie')* = Togicn viat in K.

(B) INV(K): Input: wg,...,us—y € F, not all zero.
Output: wa,...,v,-; € F such that
(Cogicn 4ia*)(Togicn via') = 1in K.

We consider two models of computation:

(a) arithmetic circuits over F, using +, —, X, <, inputs ug,...,u,_; as above, and
constants from F,

(b) Boolean circuits.

For Boolean computations, an element a ¢ F, is given by the binary representation
(a0,...,a1-1) € {0,1} of @ = Fyc;qai2' € N, with I = [logp], 0 < @ < p, and
a = (@ mod p). An element u; of F''= Fpm is presented by a vector of m such elements,
and an element of K by a vector from #™. Thus the usual input size is N = nm|log p|,
or roughly nloggq. Strictly speaking, only n inputs are given for the arithmetic problem
(a), and Theorem 2 below will indeed give depth O(log n), independent of g. We obtain
circnits with the following bounds:

(I) depth O(log N) and size N°() | under P-uniformity,
(IT) depth O(log? N) and size N1, under log-space uniformity.

Uniformity refers to a preprocessing Turing machine M which, on input N in unary,
constructs a circuit that solves the problem at hand for all input sizes nflogg] < N.
Thus the input also has to provide a description of F and K in the Boolean case; in the
arithmetic case, F' is fixed and we need a description of K (or f). I M uses O(log N)
worktape, we have log-space uniformity; if M uscs time NO(M), we have P-uniformity.
Log-space uniformity implies P-uniformity.

We also need to distinguish between possibly exponential and only polynomial ratios
of ¢ to n:

(i) q is arbitrary,
(i) ¢ <n (“gis srmall™).

In (i), it is actually sufficient to say ¢ = n%(), or clse consider the input size to be ng.

Any arithmetic circuit over K—with input u € K rather than the coordinates Uirs v iis
Un—1 € F™ of u—computing EXP(K) has linear depth ¥(nlog q) for appropriate e (von
zur Gathen 1987), and INV(K') can trivially be solved on an arithmetic circuit over K of
size 1. Thus arithmetic circuits over K are not interesting for our topic.

It was a pleasant surprise when Fich & Tompa (1988) showed that EXP(K) can be
solved by arithmetic circuits over F of depth O(log n - log(ngq)) and size (nlogq)?M) and
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that the problem is in log-space uniform Boolean NC? if ¢ is small. (In onr notation,
all problems (A.x.ILii) are solved.) They obtain the same bounds for INV(K), since
u~l = u?" 2 for w € K\ {0}. It is not clear how to strictly improve their results. However,
by relaxing the log-space uniformity—in which the NC? results hold —to P-uniformity,
we now obtain circuits for INV(K) using (order-optimal) logarithmic depth.

TueoreM 1. 1. (A.a.Lii) There exist P-uniform arithmetic circuits over F' of depth
O(log(ngq)) and size (nlog ¢)°() for EXP(K).

2. (A.b.Lii) There exist P-uniform Boolean circuits of depth O(log(ng)) and size
(nlog )M for EXP(K).

Proor. Following Fich & Tompa, we write the exponent as e = Y gcjcy €¢° With 0 <
ej < qfor 0 < j < n,and

325 ( > )E o8 (g )

0<i<n 0<j<n \0<i<n

Fich & Tompa then proceed by calculating the matrix of the F-linear map u v u? on K,
and its powers. However, we now use Eberly’s (1989) results that the “iterated product”
of k polynomials in F[z] of degree at most k, or the quotient and remainder of two such
polynomials, can be computed with P-uniform Boolean circuits of depth O(log(klogg)).
We precompute all o'’ for 0 < i,j < n in the standard basis, and then form the above
iterated product, by first calculating the corresponding iterated product of less than ng
polynomials in F[z], each of degree less than n, and then taking it modulo f. This
solves EXP(K) in Boolean depth O(log(ng)), and proves 2.; 1. follows from Eberly’s
corresponding results on arithmetic circuits. O

Since inversion is a special case of powering, the statements of Theorem 1 also hold for
INV; this is a perfectly satisfactory solution for the case (ii) of small ¢. (In our notation,
all problems (*.%. %.ii) are solved.) When g is large, however, no Boolean circuits of poly-
logarithmic depth for inversion even for the special case p = g and F = F, = Z/(p) are
known. We circumvent this problem by allowing the “redundant notation” of u € F by
(a,b), where a,b € F', b # 0, and u = a/b. Thus if F = F, = Z/(p), each input u; = u;/1
is given by the binary representations of u; and 1, with 0 < u; < p, and each output is
represented in binary as v; = a;/b;, with 0 < a;,b; < p. The conversion from redundant
notation to standard notation (say, the binary representation of ¢; € N with 0 < ¢; < p
and ¢; = a;/b; mod p) is essentially the problem INV(J). This is trivial for arithmetic
circuits over F'. However, strictly speaking, the Boolean algorithm presented below which
uses redundant notation does not solve INV(K), but rather provides a Boolean NC'-
reduction from INV(K) to INV(F). (In deviation from the log-space uniformity required
for reductions in Cook (1985), this reduction is only P-uniform.) We obtain a P-uniform
NC!-result only when ¢ is small (Theorem 1.2).

FEven before the result of Fich-& Tompa (1988), it was known that a subresultant
approach can reduce INV(K) to linear algebra over F and put it into arithmetic NC}
(Borodin et al. 1982) and Boolean NC? (Borodin ef al. 1983, using redundant notation).
Thus we have results (B.+.IL.i). We now improve this to logarithmic depth, again trading
log-space uniformity for P-uniformity.
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TueoREM 2. 1. (B.a.Li) There are P-uniform arithmelic circuits over I of depth
O(log n) for INV(K); i.e., INV(K) € NCk (P-uniform).

2. (B.b.Li) There are P-uniform Boolean circuils of depth O(log(nlogq)) for INV(K),
in the redundant notation.

Litow & Davida (1988) prove 2. with a numerical approach. (They do not mention
the problem with inversion in F, possibly because they are mainly interested in small q;
however, Theorem 1 shows that that case is covered by the methods of I"ich & Tom pa and
Eberly.) In their words, it still requires a “rather tedious proof” to fill in the details of the
error analysis necessary Lo actually obtain a completely specified algorithm. We translate
their method into its natural algebraic setting, and describe a simple algorithm for the
inversion problem.

A high level description of this method is to view K as an n-dimensional algebra A of
n X n-matrices over F, via the regular representation (see e.g., Herstein 1968, ch. 1). The
Cayley-Hamilton theorem says that x(A4) = 0, if x is the characteristic polynomial of the
matrix A4 (see e.g., Gantmacher 1960, IV.4). This will allow us to invert matrices using
small powers. A turns out to be diagonalizable, so that these powers are easy to compulte,
This idea of simultaneous diagonalization of matrices to compute inverses has been used
in different contexts by Bini (1984) and Bini & Pan (1986), and is implicit in the work of
Reif (1986) and Eberly (1989).

We write f = fo+ fiz + -+ + fa12™" + 2", and let

N
L= 1 e —'fl = ann
Y. D ;

U 1 _fn—l

be the companion matriz of f (see Gantmacher 1960, VL6). Then f is the character-
istic polynomial of C, and the Cayley-Hamilton theorem says that f(C) = 0. Thus
the F-algebra A4 C I™*™ gencrated by C equals the F-linear span of 1,C,C?,.. o gt
One checks that the first column of C' is the transpose of the ith unit vector. Hence
1,C,C%,...,C" ! are linearly independent, and the map

M: K - A
u=Y uiat ~ M, =3 uwC"

is an F-algebra isomorphism; i.c., it is bijective, and My, = M, + M,, M,, = M, M,
for u,v € K, and M is the identity malrix. (The reader may recognize il as the regular
represcnlation of K, where M, is the malrix of the F-linear map “multiplication by u”
in the standard basis.) The first column of M, is (voy..ytin_1). Let B; = 0¥ € K,
so that Bo,..., 8,1 are the roots of f, and V = VDM(B,,.. <y Bn—1) € K™ be their
Vandermonde matrix, with V; = ,(if_l. [ is irreducible, and thus has n distinct roots in K&
(Lidl & Niederreiter 1983, Theorem 2.14). For 0 < j < n, we consider the automorphism
a; : K — K over F with o;(f) = f;. Thus 0i(Co<icn %i0') = Yocicn uio;(a’) =
> _o<i<n %iff; for an arbitrary element 2o<icn wie' of K (see Lidl & Niederreiter 1983,
Theorem 2.21).



Inversion in finite fields 179

LEMMA 3. Let u = Yggicq wia' € K be nonzero, c(u) = co+ cat + -+ + 1" € F[t] the
characteristic polynomial of M,, and D, = diag(oo(u),...,0n-1(u)) € K™*" a diagonal
matriz. Then

. M, =V2D,V,

2. e(u)= I.IUSJ;(ﬂ(t — a;(u)),

3. eo = (=1)"Ilogjcn oilu) # 0,

4 MV = e+ eaMy+ -+ MPY).

Proor. 1. We start with 4 = e, so that M, = C. For 0 < j, k < n we have

: gr+t ifk<n—2,
VC)ix = iCm=14 9 o
(VC)ik mignﬁ: . { —Yocicallfi Hk=n-1,
(Da¥)iy: = By=pE =45+,

which implies 1. in the case My, = C. Since V diagonalizes C, for any v = } uja* € K it
also diagonalizes M,,, which is a polynomial in C'. The diagonal entries of VM,V are:

VMYV = (VY weW )= 3wV,

0<i<n 0<i<n
= Y w(Dy)ii= Y woj(a’) =0j(w).
0<i<n 0<i<n

2. Using 1., we know that ¢(u) is the characteristic polynomial of M, and D,,, which
proves the claim.

3. The expression for ¢q follows from 2. Since a;(0) = 0 and o; is bijective, we have
o;(u) # 0, for all j.

4. follows immedialely from the Cayley-Hamilton theorem. o

The following algorithm consists of two stages: a precomputation step 0, which takes
a description of F and f as inputs, and produces the arithmetic circuit over I' described
in steps 1 through 5, with input (ug,...,un—1) € F™.

ALGORITHM.

0. On input F, [ as above, compute each ,6; for 0 < 4,7 < n, then V and V1, and
produce the following arithmetic circuit over F.

1. On input u = Focicn w0t € K, compute o;(u) = Eu;ﬂj— for0<j<n.

2. Compute ¢(u) = [Togjen(t — 05(u)) = Tocicn eit' € F[t], with ¢; € F for 0 < i < n.
3. Compute Dy, D2,D3,...,Dr"1.

4. Compute Mt = —;}V—l(zlg‘,gn ;DL

5. Return the first column of M!.
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The precomputation step 0, not depending on u, can be done in polynomial time. By
Eberly (1989), steps 2 and 3 can be performed in depth O(logn) on arithmetic circuits
over F', and in depth O(log(nlog¢)) on Boolean circuits. The same bounds hold for step
4. This proves Theorem 2.

When ¢ is small, then INV(F) is in AC*(P-uniform) for small ¢ (Beame et al. 1986,
Eberly 1989), and this method yields an alternative proof of Theorem 1.2 for INV instead
of EXP.

Remarks

1. The most interesting case for our problems is when F' = F, is a prime field, with p =
g. However, even in the general case ¢ = p™, one might ask for efficient arithmetic
circuits over F,. The immediate simulation only gives depth O(log(n) - log(m)) over
Fp in Theorem 1, and one has to take a fresh look at the problems, with a view
to arithmetic circuits over F;,. Thus for Theorem 1 one replaces the g-ary by the
p-ary representation, and for Theorem 2 one considers K as an extension of Fi
of degree mn. The resulting algorithms over F,, have depth O(log(mnp)) and size
(mnlog p)°™) in Theorem 1, and depth O(log(mn)) and size (mn)°®) in Theorem
2,

2. Eberly’s results are in fact AC'-reductions to the “iterated product of integers”,
which can be solved by log-space uniform Boolean circuits of depth O(log N log log N)
and size N°() (Beame et al. 1986). Thus if the roots fo, . . . ,Bn_1 are given, we also
obtain log-space uniform arithmetic and Boolean circuits with these bounds. It is,
however, not clear how to find the roots of f log-space uniformly, or how to precom-
pute the o'?’ required for Theorem 1.

3. The precomputation of @'’ in the algorithm of Theorem 1 is not necessary if K
is given by a normal basis (a,a?,a”, .. .,a"'"_l) over F. Such a basis always ex-
ists (Lidl & Niederreiter 1983, Theorem 2.35). Setting a; = o', we have @;o; =
@itj, With index arithmetic modulo n. Thus we obtain log-space uniform depth
O(log N loglog N) with size N°(U) if we only allow inputs (F, f,u) for which a =
z + (f) generates a normal basis.

4. The Boolean complexity class AC* is the set of problems solvable by Boolean circuits
of depth O(log* N) and size N°() (for input size N) with unbounded fan-in gates
V and A (see Cook 1985). We can define a corresponding arithmetic class ACk, by
allowing unbounded fan-in for the +-gates (it is not necessary to use unbounded
fan-in +-gates). Then clearly NCE C ACk C NC}‘,H. Eberly’s results actually show
that iterated product and division with remainder of polynomials is in AC% (at least

for large p), and our algorithm provides a P-uniform AC%-reduction from IN V(K)
to INV(F).

5. We briefly discuss the case where f is reducible. First consider the case where q
is small, so that depth O(logg) is acceptable. The powering algorithm & la Fich &
Tompa (Theorem 1) in K = F[z]/(f) goes through unchanged. We can com pute the
complete factorization f = ff* ... fé&r of f by Berlekamp’s algorithm in determinis-
tic polynomial time, where fy,..., f, € F[z] are pairwise distinct monic irreducible
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polynomials and ey,...,e, positive integers (see Knuth 1981). In fact, this compu-
tation can be done by arithmetic circuits over F of depth O(log? n log(np)) (von
zur Gathen & Seroussi 1986). Set n; = deg fi. The order of the group of units in
K= F[.c]/(f) isk= ]'IK,(,_(Q i — 1)gni(s=1), Thus u~! = w5~ for a unit u € K,
and again INV(K) is in arithmetic P-uniform A'C}, and also in P-uniform Boolean
NC', if ¢ is small. (In fact, k = ¢ - lem(g™ — 1,...,¢" — 1) is sufficient, where
= maxjy<i<r n,-(e; - 1))

For the case of large g, we use a probabilistic version of Berlekamp’s algorithm (see
e.g., Knuth (1981), and von zur Gathen (1984) for a parallel version), working in
the complexity class ZPP, defined by probabilistic polynomial-time computations,
where the random algorithm either returns the correct answer or “failure”; the latter
with controllably small probability. For i < r, set R; = F[z]/(f{*), and consider the
isomorphism ¢ : K — Rj X --- X R, of the Chinese Remainder Theorem. Since
the entries of the matrix of the F-linear map ¢! can be precomputed, it is sufficient
to consider the case r = 1. Given a unit u = Y u;ef € K, we let @ = 3 wiz* € Flz],
and using the algorithm for Theorem 2, we may assume that we have computed
v,w € Flz] with 4v = 1 mod f; and degv < n;. Then

- ( 5 (f?) (—a)i-lni) —1=—(1-v)* =0 mod f{*,
1€j8e J

and the inverse of u, given by the parenthesized expression, can be computed in

depth O(logn). The upshot is that the problem of inverting units in K is in ZPP-

uniform A'C¥, and in ZPP-uniform Boolean N'C', using redundant notation. (Since

f is factored, it is also easy to test whether u is a unit in K, by computing ged(f, %).)

5. The above arithmetic reduction goes through for arbitrary F' (say F = Q), provided
K is separable and normal over F, i.e., generated over F' by the roots of f. (The roots
are not of a form a?, of course.) An example is a cyclotomic field X = Q(a), where
a = exp(2ri/k) € C is a primitive kth root of unity, and n = (k). Step 0 would
first factor the kth cyclotomic polynomial into linear factors over K to find the roots
Bo = @,...,PBn-1 € K; this can be done in polynomial time (Chistov & Grigoryev
1982, Landau 1985, Lenstra 1983). Without further changes, the algorithm gives P-
uniform arithmetic circuits over @ of depth Q(logn) computing inversion in Q(«),
and also P-uniform Boolean circuits of logarithmic depth, in redundant notation
(here, the binary length of the input coefficients u; € @ has to be taken into account).
For general irreducible polynomials f, however, the splitting field of f may have
degree n! over F, so that exact computations in K are infeasible.

. For F = Q and general irreducible f, the numerical algorithm of Litow & Davida
(1988) could be used to yield real approximations to the rational entries of v (as
in EXP(K) or INV(K)). It is, unfortunately, not clear how to recover the integral
numerators and denominators fast in parallel; the sequential algorithm is via an
Extended Euclidean algorithm.

. OreN quesTION: (A.+.Li) Given F = F,, f, K = Fyn as above, with a large prime
p = q, is the problem of computing large powers in K ANC-reducible to the same
problem in F? Note that any arithmetic circuit over F' computing general large
powers in F' has linear depth Q(log p) (von zur Gathen 1987).
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9. The number-theoretical analogues of our problems are exponentiation and inversion
of integers modulo m™. Both problems are in P-uniform AC! if m has only small
prime factors (Beame et al. (1986) for small m, von zur Gathen (1987) in general),
but no fast parallel solution is known if m is a large prime.

10. OpeN QUESTION: (B.L.ILi) Given a (large) prime p, is the problem of computing
a~! mod p for 1 £ a < p in NC (allowing precomputation depending on p)? Or are
there interesting classes of primes for which this is the case?
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