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ABSTRACT

2 The connection between bilincar complexity and error- correcting codes, discov-
e red by Brockett and Dobkin in 1973, yields lower bounds on the maximal ranks of
¢iensors with a given shape. The resulting bounds are linear, and thus interesting only
J&‘Jr “unbalanced™ shapes like (n,n,2) and (n,n,n® — k) with k <n. As an example,
rodd n the maximal rank of (n, n,2)-tensors is larger over Z,, than over an algebraic
osure of Z,,.

INTRODUCTION

One of the central topics in algebraic complexity theory is the bilinear
ggﬂamplumty (or rank) of sets of bilinear forms; Strassen (1973) initiated a
iﬁ/stematw study, Strassen (1984), Heintz (1985), and von zur Gathen (1988)
5@\36 surveys, and de Groote (1987) gives a detailed introduction into this
Eéﬁé.lb_]ect. We refer to de Groote for notation and terminology. The area has
ssbme definite answers (e.g., multiplication of polynomials, or in finite
; gt.bram extension fields) and major open problems (such as matrix multi-
iih(,dtmn)

5 Within this theory, an interesting problem is the deterimnatwn of the

naximal bilincar complexity of p bilinear forms in m and n variables (for

d as a mear

o)

o
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fixed m,n, p), or, in other words, of the maximal rank R (m,n, p) of tensors
in F"®F"®F?, where F is a ficld. Howell (1978) gives upper and lower
bounds on R (m,n,p) for both finite and infinite fields F. As a general
upper bound, Atkinson and Stephens (1979) prove R (m,n,p)<m +[p/2ln
it m<n and F is algebraically closed.

In 1973, Brockett and Dobkin (1978) showed how to obtain good linear
crror-correcting codes from good hilinear computations; see also Lempel and
Winograd (1977). Standard bounds from coding theory then lead over
F = 7, to lower bounds for matrix multiplication (Bshouty 1987), higher than
the best known lower bound over an infinite field, and for polynomial
multiplication (Brown and Dobkin 1980, Kaminski and Bshouty 1987), higher
than the corresponding upper bound over an infinite field.

We work out some lower bounds on Rp(m,n,p) provided by this
connection. They are only linear, while the truc order is quadratic when
m,n,p are of not too different size. Thus we obtain (very modest) improve-
ments only for very unbalanced shapes like (n,n,2) or (n,n,n? — k) with
k < n. It is a well-known phenomenon that the rank of individual tensors may
decrease when computations over larger fields are allowed. We show that a
similar decrease may occur for maximal tensor rank, namely for the shape
(n,n,2) with n odd. The rank of such tensors is completely understood over
algebraically closed fields, in terms of their Weierstrass-Kronecker canonical
form (Grigoryev 1978, Ja'ja’ 1979), and our lower bound over finite fields
matches Ja'ja’s (1980) upper bound. The result also shows that the maximal
rank over Z may be larger than over C.

For perspective, we mention the important notion of the border rank of a
tensor ¢, which is at most r if ¢ can be approximated arbitrarily well by
tensors of rank r (Bini et al. 1979, Alder 1983). Thus for the maximal border
rank R we have

Bp(m,n,p) <Rp(m,n,p).

R is much better behaved than R. For example, il F is algebraically closed,
then both the rank and the border rank arc equal to R #(m,n, p) for all
tensors in some dense set of tensors (open in the Zariski topology). However,
there may be exceptional tensors with larger rank. As an example,

Ry(n,n,2)=n<|3n/2|= Ry(n,n,2)

(Grigoryev 1978, Ja'ja’ 1979), and we show Ry (n,n,2)=[3n /2]
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Over an algebraically closed field, Strassen (1983) shows with methods
from algebraic geometry that R ,_-(m, n, p) is mnp /(m+n+ p —2) asymptot-
ically, for “balanced” shapes (m.n,p) in quite a generous sense. Howell
(1978) proved this number to be a lower bound on R #(m,n, p) for infinite F,
and a slightly smaller bound mnp /[m + n+p—2log (g —1)] for a finite
ficld F=F, with g elements; in Sections 4 and 5, we compare our results
with Howell's. Our bounds are “constructive” in that we exhibit specific
tensors requiring the stated number of bilinear multiplications. They also
apply to bilinear computations for tensors over 7 using only integer coeffi-
cients.

Apart from the Griesmer bound, we use no fact from algebraic coding
theory, but rather mimic its notions in scttings of no relevance to the
error-correction problem. Thus we consider “codes™ over infinite fields, for
which the question of asymptotic bounds—central in combinatorial coding
theory—turns out to be trivial. We also use affine lincar “codes,” where each
codeword has large Hamming weight, but the distance between codewords
may be 1.

2. BOUNDS ON CODES

Let F be an arbitrary ficld. For a vector u € F", the llamming weighi
w(u) is the number of nonzero entries in u. An affine [r, s, d)-code over F is
an affine linear s-dimensional subspace C C F” such that w(u) > d for each
nonzero u € C. We say that C has weight at lcast d. When F is finite and C
is linear, i.e., 0 € C, we have the standard notion of linear codes. These are
sufficient for our bounds on R(m,n, p) with p small (allowing also infinitc
F). For p large, say p=mn — m, we use affine codes with large weight but
small distance w(u — v) between distinct codewords u,v € C; in fact, this
distance is only 1 in the application. Such “codes” are useless for the purpose
of coding theory, namely detecting and correcting transmission errors. If C is
an afline [r,s,d]-code and u€C, then the translate C—u is a linear
[r,s,d'l-code. However, this d' is only the minimum distance between
distinct codewords of C. If C is linear, the minimum distance equals the
minimum weight.

If F=F, is a finite field with g elements and s € N, let

Hlgs) = e n(q)=%.
q* '(q
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Then

n(q.8) <n(q.s+1) <n(q) = lim n(q.s).
Van Lint (1981, Theorem 5.2.6) gives the following bound.

Facr 1 (Griesmer bound).  For any linear [r, s, d]-code over T, we have

v Y,

O<i<gs

—|=n(q,s)d.

For any field F and r,d €N, let
op(r,d) = max{s:alinear [r, s, d]-code exists over F}.

When F is finite and one allows also nonlinear codes C in this definition
(replacing s by #C), the study of the resulting numbers An(r,d) “is
considered to be the central problem in combinatorial coding theory” (van
Lint 1981, §5). For our purposes it is more convenient to look at the problem
from a different perspective, and we define for s, d €N

pr(s,d) =min{r:alinear [r, s, d]-code exists over F}.
Then
oe(py(s.d).d) > s, (2.1)
pr(op(r.d),d) <r. (2.2)
In fact, the usual operations on codes (van Lint 1981, §4.4) show that

equality holds.
We make a similar definition for affine codes:

75(s,d) = min{r:an affine [r, s, d ]-code, not containing 0, exists over F}.

Both p and 7 arc weakly monotone in either argument.

In the following theorem, the bound (i) on p is known as the Singleton
bound over finite fields, and (ii) shows that this bound is sharp for large
fields (and fixed s, d). This is, of course, not the perspective of coding theory,
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where one usually considers a fixed finite field and growing s and d. One
interpretation of (i1) is that coding theory over infinite ficlds is uninteresting.

Tueorem 2. Let I be a field, and s,d > 1. Then

) ppls,d)=s+d—-1;
(i) if
x s+d—2
#1 >( G ),

then p(s,d)=s+d—1;
(iii) 7x(s,d) =35+ d.

Proof. For the lower bounds in (i) and (iii), it is sufficient to consider an
affine [r,s,dl-code C over F of minimum weight exactly d. Let a=

(a,,....a,)€C with w(a)=d, renumber the coordinates so that a =
7S a4,0,...,0), and let
L={(b,,....b,) EF":by ="+ =b,=0}.

Then the “r —d times punctured code” C'=CnN L has dimension s'>
s—(r—d). If C'={a), then 0=s'">s5s—r+d and r = s + d. Now assume
C'#{a}. We claim that C'= Fa is a line. Then 0 €C'CC, C is linear, and
1=5"2s—r+d; thus the lower bounds in (i) and (ii) will follow. So let
beC’, b#a. Then a+AMb—a)eC for all A€ F. For the claim, it is
sufficient to show that b is a scalar multiple of a. We may assume that
a g # by, after possibly reordering the coordinates. Sct A=ay, /(a, — b;) € F.
Then a+ Mb — a) € C has coordinates d,d +1,...,r equal to zero, so that
a+ AMb—a)=0, and thus b =(b; /ay)a € Fa. This proves the claim.

(ii): Set r=s+d—-1, R={1,..., r}, consider a set X = {xl.j 1<i<s,
1 < j <r} of indeterminates over F, and for any subset

&

S={¢',,...,£3}E(§)=R

of R with s elements, let
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Then f; is a nonzero polynomial of degree 1 in each variable occurring in
fs. Let

SER,
Each x,; occurs in
(!
¢ (s—l]

polynomials f¢. Thus f is nonzero of degree m in each variable.

Let a € I'**" with f(a)# 0, and C C F" be the lincar code generated by
the rows a,,...,a, of a. Il #F > m, then such an a exists (Schwartz 1980). If
Ap,..., A € F are such that X,A,a; has less than d nonzero coordinates, then
it has at least s coordinates equal to zero. Then f(a)# 0 implies that
A=+ =A,=0.Thus C is a linear [r, s, d]-code.

(iii): For the upper bound, we take e =(1,...,1)€ F¢ and C ={e} X F*.

]

We note that with the method of (ii) one can also find affine [s + d, s, d]-
codes which are not of the form {¢} X F* for some e € F4, if

#F>(S“;d).

The proof of (ii) is nonconstructive, but indicates how to produce con-
crete examples. Trivially, entries of a which are algebraically independent
over the prime field F, of F are sufficient. If r=s+d —1, py,...,p, > r are
pairwise distinct prime numbers, a; € F for 1 i < s algebraic of degree p,
over Fy, and a,=(1, @, al,...,al ') E F", then a,,...,a, generate a linear
[r, s,d]-code. If F =Q), one can also use sufficiently fast-growing sequences
of integers.

3. BILINEAR COMPLEXITY AND CODES

Let F be an arbitrary field, A, A,,...,A, € F™*",

L=A,+ Y FA,

legigt
the affine linear space gencrated by Ag,Aq+A,...,A,+ A,, s=dim L,

d=min{rank B:Be L, B+ 0},
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and r the bilinear complexity of (A,,..., A,). (A definition of r will be given
in the proof below.) Brockett and Dobkin (1978) discovered in 1973 the
following connection with codes; see also Lempel and Winograd (1977). This
connection was stated in the standard framework of coding theory, where
A,=0and F is [inite.

Tueorem 3. In the above notation, there exists an affine [r, s, d]-code
over F. Furthermore, if 0 & L, then there exists such a code not containing 0.

Proof. Using a linear transformation, we may assume that A, =0 if L is
linear. Furthermore, we may assume s = ¢, since removing linearly depen-
dent matrices changes neither L nor r. By definition of bilincar complexity,
there exist a,,...,a, € F™, by,...,b. € F", and U € F¢*Y*" guch that

(Ag,Ayr.., A) =TT,

where
v= (vli"'gl}r) = (al®bj""‘ar®br) e (Fan)r

is a vector of matrices of rank 1. In other words, the vector (A,,4,,...,A)"
of matrices is the product of the matrix U and the vector (a,8b,,...,a,®b,)
of matrices, each of rank 1. Or, equivalently, each matrix A, is a linear
combination of these matrices of rank 1. The bilinear complexity of
(Ag,Ay,...,A)) is the minimal r for which such data exist.

Let wug,...,u, € F" be the rows of U, with u,=0 if A;,=0, and
U'=(uy,...,u)’ € F**". We consider the affine linear code C=u,+
2 ciesFu; CF". C is linear if A, = 0. Since

L'= Y FA5=U‘( X F-u!),

l<i<s l<j<r

we have rank U’ > dim L' = s, so that dim C > s. Now take a nonzero code-
word c=uy+ 2, ;. A4, €C with A,,...,A, € F, and

B=A,+ Z AMA = Z (uo_;'+ E )"iul'j]vj'

Igigs Y jr l=i=<s

This is a representation of B € L as a linear combination of matrices of rank
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1, so that

w(c)=#{j=§r:uw+ P A,—uu?&ﬁ};rankB;d.

l<i<s
Thus we obtain an (affine) linear [r, s, d}-code. (In fact, dim C = s by the

minimality of the computation.) [&]

4. THIN TENSORS

Let Ry(m,n,p) denote the maximal bilinear complexity of matrices
Ay ly @ F™*" je. the maximal rank of tensors in F"® F*® F”. In this
section we deal with the case where p is small, say p=2 or p=3.

TuroreMm 4. Let m < n and p < n. Then

(i) BRe(m,n,p)=p+m—1;
(i) if F =T, is finite, then

Tm
Bp(m,n,p)> Y |—|=n(q,p)m.
D<i<p

Proof. Forl<i<n, let
A_= 1 EFmXH‘

ie.,

1 if v—p=i—1lmodn,
A 4
( i)’w {O otherwise.

Thus A, is the m X m identity matrix with n —m zero columns appended,
and A, is a cyclic shift of the columns of A, obtained by labeling the
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columns 1,...,n of A; as é,i+1,..., n,1,....i —1. We have a total of n> p
matrices. Let Ay,..., A, be the first p of them, L their linear span (contain-
ing 0), and r =rank(A,,..., A ) their bilinear complexity. Then dim L = p,
and rank B = m for cach nonzero B € L. By Theorem 3, there exists a linear
[r, p, m]-code aver F. The claims follow from Theorem 2 and Fact 1. [ |

Instead of allowing just the multiples of (1...., 1) on the shifted diagonals
in the proof, we can use the codewords of a linear [m, k,m — k + 1]-code on
each diagonal, assuming F is large enough [Theorem 2(i)], where k =[p /nl.
Then for p € mn we find

p
Ry(m,n,p)=p+m ——|-—l.

T

COROLLARY 5.

(i)
R, (n,n,2) =[3n /2],
(ii)
: : n n n
Rzz(n,n,S) z2n+ [E] + [Zl = |71
Proof. The upper bound in (i) is in Ja'Ja’ (1980, Theorem 2.8). ]

We now compare our results with the bounds in the literature. Brockett
and Dobkin (1978) prove

Ry(m,n,p) < min{mn,mp,np},

and Howell (1978) shows

R.( ) mnp i i =
Am,n,p)z——m"r or inlinite F,
K E m+n+p-—2

R, ) i for F=F
RBEEtER ?m+n+p—210gq(q—l) TuST W

Howell’s lower bounds are quadratic in m,n,p, and ours only linear.
Thus these are interesting only when the shape (m,n, p) is very unbalanced,
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TABLE 1
THE LOWER BOUNDS OF HOWELL AND THEOREMS 4 anp 6 oN Rp(n,n, p) FOR GERTAIN
UNBALANCED SHAPES (n,n,p).?*

Shape #F Howell Theorems 4 and 6
(n,n,2) 2 n in
3n? J
(n,n,3) 2 T n

np
(n,n,p) % 2n+p—-§ p+‘/2(rt2—p+l) =3
n’p
.n, +,‘/2 nf—p+1) -3
(mit ) o 2n+p—2log,(q—1) P L#" =)

“The last two entries assume p < (n+1)2/2.

say for (n,n, p) with p €3 or n? —2n < p < n? (at least when F is infinite).
(Sce Table 1.)

Grigoryev (1978) and Ja'ja’ (1979) show that R (n,n,2) = |3n /2| if K is
algebraically closed. Thus for odd n there exist (n, n,2)-tensors over Z, with
rank r=(3n+1)/2 over 7,, while all tensors of this shape have rank at
most r —1 over an algebraic closure of Z,.

Grigoryev's proof of his lower bound shows that for any field F there
exist (n,n,2)-tensors over F with rank |3n /2], even when computations
over an algcbraic closure of F are allowed; this is much better than our
bound n +1 for infinite F. Ja'ja’ (1980) shows that

n—1

]

RFQ(_n,n,.‘Z) =n+

R;(n,n,3) ;[3"_1]42],

2 =
which are only improved by 1 in Corollary 5, for odd n and g = 2.

As a further example, we let F be an algebraic closure of Z,. Then
Strassen (1983) and Lickteig (1985) show the equality in

3n
Rp(n,n,3)= T

n n
<n+[E]+[2"$ Rzz(n,n,S);

10=5+[3]+[3] <R,(5,3,3)  (Atkinson and Stephens 1979),

R;(5,5,3)=8 (Strassen 1983).
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For small cubic shapes (n,n,n) we find, mainly from the literature,
R,(2.2,2) =2 <3=R,(2,2,2) = R, (2.2,2),
R;(3.3,3) =5<R,(3,3,3) <6< R, (3,3,3) <8,
R.(4,4,4) =T< R,(4,4,4) <12,
8<R,(4,4,4)<16
R:(5.5.5) =10 € R,(5,5,5) <15,

12l (5.5.8)<25

5. THICK TENSORS

In this section, we deal with “thick™ tensors of the shape (m,n, p) with p
close to mn. When p = mn, then R (m,n,p)=mn (Howell 1978).

Tueorem 6. Let F be a field, m<n, 1<k <mn, and p=mn—k +1.

() If d <m and d® + d < 2k, then R.(m,n.p)zp+d—1.
(ii) Ifk =2, then R (m,n,p)=p+1V2k |-2.

Proof. (i): Let A, € F™*" be the matrix with (A,),;=1for 1<i=j<
d, and (A,);; = 0 otherwise. Let A},...,A, ;€ F™" be distinct matrices
with exactly one 1, this in some position (i, j) with i > jor j>d or i>d. In
the picture

A, has the d 1's at top left, each other A, has one 1 in some *-position, and
each matrix has 0 in the 0-triangle.
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Such matrices exist, since d < m and

p—l=mn—k¢mn—(d;l).

Let r be the bilinear complexity of (A,...,A, ), and

L=aAg+ T FAE R,
lgi<p

Then dim L =p—1 and rank B> d for each B € L. By Theorem 3, there
cxists an affine [r,p —1,d]-code C over F, with 0 & C. By Theorem 2(iii),
re2p+d-—1.

(ii): For d =|V2k |- 1 <V2k — 1 we have d < m and d®+d < 2k. [ia]

It is clear that the tensor given in the proof actually has rank equal to
p+d—1. A result of Meshulam (1989) shows that the method will not vield
larger bounds, at least not over algebraically closed fields.

Atkinson and Stephens (1979) reduce the general problem of determining
R (m,n,mn — k) with k < miu{m n} to that of R,.(n,n,n®— n). They con-
jecture that Rp(n,n,n® —n)=n®—[n /2], and mention an unpublished
proof of this, by Lloyd. ]heorem 6(i) gives the conjectured lower bound for
n=1,2 3, and 5.

Our bounds in lines 3 and 4 of Table 1 are larger than Howell’s for
p=mn—2n and n > 4.

Let us define Rz(m, n, p) by considering tensors with integer coefficients
and only allowing integer coefficients in the bilinear computation. Since any
tensor in Z, is the modular image of a tensor over 7, and integer computa-
tions yield computations over 7,, we have R,(m,n,p)> R, Lm,n,p), and
our lower bounds on R #, carry over to R;. In particular, {'m' odd n there
exist (n,n,2)-tensors over Z with rank r=(3n +1)/2 over Z, while all
tensors of this shape have rank at most r — 1 over C.

I thank ]. H. van Lint for pointing out the equality in (2.2).
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