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Abstract. This paper gives an algorithm to factor a polynomial f (in
one variable) over rings like Z /rZ for r € Z or Fy[y]/rF,[y] for r € F,[y].
The Chinese Remainder Theorem reduces our problem to the case where
r is a prime power. Then factorization is not unique, but if r does
not divide the discriminant of f, our (probabilistic) algorithm produces
a description of all (possibly exponentially many) factorizations into
irreducible factors in polynomial time. If r divides the discriminant, we
only know how to factor by exhaustive search, in exponential time.

1. Introduction

Let R = Z or R = T,[y] with a finite field I, having ¢ elements, and let
r € R. We consider polynomials in R[z]|, and we aim to describe all possible
factorizations into irreducibles over the ring R/(r), where (r) denotes the ideal
generated by r. Over such rings, factorization of polynomials into irreducible
factors is not unique.

EXAMPLE 1.1. Let R =7 and r = 8. Then
P +7=(@+1)(x+7) = (z+3)(z+5) mod 8,
and in fact all four linear factors are irreducible.

It is shown that the number of irreducible factors of a polynomial can be
exponential in the length of the polynomial, defined in the natural way. A
special case of our problem is to find square roots in R/(r); a solution has been
known for a long time; a good overview is given in Vahle (1993).
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In Sections 2 and 3, the factorization problem is reduced with the Chinese
Remainder Theorem and a generalization of Hensel’s Lemma to the case where
r € R is a prime power and the polynomial is a power of an irreducible poly-
nomial modulo the prime. In Section 4, the algorithm for the factorization
problem if 7 = p* is a prime power is stated. It only works when the discrim-
inant of the polynomial is not divisible by p*. In particular, the polynomial
is squarefree. There may exist exponentially many irreducible factors, but we
provide in polynomial time a concise data structure that describes all of them
in a transparent way.

Our goal is an algorithm that describes all factorizations into irreducible
factors. Sometimes it may suffice to deal with a (possibly) simpler problem:
finding one factorization into irreducible factors. This task is completely solved
in the case that p* does not divide the discriminant by Chistov’s (1987, 1994)
algorithm for factoring polynomials over the p-adic completion R,). In the
case that the discriminant vanishes, i.e., the polynomial is not squarefree, this
may be reduced to the case where the discriminant is nonzero. But in the case
where the discriminant is nonzero and p* divides the discriminant, we even do
not know how to solve this easier problem in polynomial time.

We need two properties of the unique factorization domain R both satisfied
by the two examples stated at the beginning. The first one is that polynomials
over R/(p) can be factored efficiently, i.e., there are polynomial time (proba-
bilistic) algorithms for factoring polynomials over finite fields (Berlekamp 1970).
The second one is that the completion of the field of fractions K of R with re-
spect to the p-adic valuation on K is a local field in the sense of Chistov (1987,
1994). Hence we can use his fast algorithm for factoring polynomials over local
fields. Our methods work for any R that satisfies these assumptions.

We did not analyze the running time of the algorithm in detail, because
it seems that the running time of Chistov’s algorithm (which is not analyzed
in detail) dominates the running time of ours. It is clear that all steps of the
algorithm can be done in probabilistic polynomial time.

2. The Chinese Remainder Theorem

Let r € R be a nonunit, and
r=u H P (2.1)
1<i<s

be a complete factorization of r, i.e., v is a unit in R, the elements p1,...,p; € R
are primes and pairwise relatively prime, and each integer k; is at least 1. Then
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the Chinese Remainder Theorem provides an isomorphism

R/(r)e] =~ R/(@)[z] x ... x R/(p})[a]
fmodr ~ (fmodp™,...,fmodpk).

Hence the irreducible factors of f € R[z] over R/(r) are, up to multiplication
by units, of the form

g=(01,...,1,¢;,1,...,1), (2.2)

where 1 < i < s, all entries but the ith are 1, and g; € R[z] is an irreducible
factor of f over R/(pf). Shamir (1993) made an interesting proposal for us-
ing families of multivariate modular polynomials in cryptography. He gave a
wonderful example of how already the most innocuous of all polynomials has
a surprising factorization.

EXAMPLE 2.1. (Shamir) Let r = pq for different primes p,q € Z. Then p*+ ¢*
is a unit in Z/(r), pr + q and qx + p are irreducible over Z/(r), and

z= (p*+¢°) ' (pz + q)(gz + p) mod .
In particular, nontrivial irreducible factors of f can have the same degree as f.

Assume that we are able to factor f € R|z] into irreducible factors over
R/(p*) for any given prime p and k > 1. The Chinese Remainder Theorem
shows that if we know the factorization of » € R, then we are able to factor
f over R/(r) into irreducible factors. In the case where R = F,[y], good algo-
rithms for the factorization of polynomials over finite fields are known. The best
(probabilistic) algorithms need O((n? + nloggq)(logn)?loglogn) operations in
FF, (von zur Gathen & Shoup 1992) or O(n'#% log q) operations in F, (Kaltofen
& Shoup 1995) for factoring a polynomial of degree n. Hence we obtain the
following:

LEMMA 2.2. Let R =T,[y]. There is a (probabilistic) polynomial time reduc-
tion from the problem of factoring polynomials over R/(r) for some r € R to
the problem of factoring polynomials over R/(p*) for a prime p € R.

According to current knowledge, factoring integers seems harder than factoring
polynomials over finite fields; see Bach (1990) and Lenstra & Lenstra, Jr (1990,
1993) for fast integer factoring algorithms.

The following proposition is from Shamir (1993) and shows that our as-
sumption of knowing the factorization is indeed necessary. We state it only for
the case that R = Z.
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PROPOSITION 2.3. (Shamir) There is a polynomial-time reduction from the
problem of factoring r € 7Z to the problem of factoring polynomials over Z/rZ.

Finally, we state a corollary of the Chinese Remainder Theorem which fol-
lows directly from (2.2):

COROLLARY 2.4. Let the complete factorization of r € R be r = u ][ ;, PV’
asin (2.1). Then the number of irreducible factors of f € R[z] over R/(r) is the
sum over all 1 < i < s of the numbers of irreducible factors of f over R/(pl").

3. A generalization of Hensel’s Lemma

From now on, we assume that » = p* for some prime p € R, and k£ > 1. The
Sylvester matriz S(g, h) of two polynomials g, h € R[x] with degrees n and m,
and g = > o e, i’ and h =37, ., h;a?, is the following matrix:

( In hm \
Gn-1 - hm—1
: - : P
S(g,h)= | 9o 9n : hy | € ROEmx(mim),
In—1 ho
9o ho

\\ ~~ - J)
m n

(Sometimes the transpose of this matrix is called the Sylvester matrix.) By
definition, the resultant of the two polynomials is res(g, h) = det S(g, h).

Since R is a UFD, there is a p-adic (non-archimedean) valuation on the field
of fractions K of R. For a € R it is defined as follows:

v ifa # 0 and p”|la,
U”(a):{ o ifa=0. ||

Here, p”||a means that p” is the exact power of p which divides a, i.e., p”|a
and p“*! { a. This valuation extends to K in the natural way, via v,(%) =
vp(a) —v,(b) for a,b € R, b # 0. The p-adic valuation induces an absolute value
on K by |a|, = p~%@ 0|, = 0. By Ky we denote the completion of K with
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respect to this absolute value |.|,. In the case R = Z, this procedure yields the
well-known p-adic numbers Q. If R = F,;[y] and p = y, then K,y = F,((y)) is
the field of formal Laurent series in y. The ring R is contained in the ring R,
of valuation integers of Ky, which are defined by the property that v,(a) > 0.
Any element a of R,y can be written uniquely in the form

o= ap,
i>0
where a; € R is an element of a fixed set of representatives in R of the finite
field Ry /(p) (e.g., a; € {0,1,...,p — 1} in the case where R = Z). The ring

R, is a local ring with precisely one prime, namely p, and hence a UFD. We

define the p-adic value of a matrix A = (a;;) 1<i<n € K™ as:
1Zj<m

vp(A) = min{vy(a;;) : 1 <i<n,1<j<m}.
For more information about valuation theory, see e.g. Cohn (1977), Chapter 9.
NoTATION 3.1. Let g,h € R[z] be monic. Then d(g) = v,(disc(g)), where

disc(g) = res(g,g') € R is the discriminant of g, r(g, h) = v,(res(g, h)), and if
res(g, h) # 0, then s(g,h) = —v,(S(g,h)™").
LEMMA 3.2. Let g, h € R[x] with res(g, h) # 0. Then

0 < s(g,h) <r(g,h).
Moreover, if s(g,h) = 0, then r(g,h) = 0.
PROOF. Since res(g, h) = det S(g, h), the matrix res(g, h)S(g, h) ! is a matrix
over R and has nonnegative p-adic value. Hence, (g, h) > s(g, h). Now assume
that v,(S(g,h) ) > 0. Then v,(det S(g,h) ') > 0, hence r(g,h) < 0. This is
a contradiction, because res(g, h) € R.

Now assume that s(g, h) = 0. Then S(g, h) is invertible over R, and hence
res(g, h) is invertible over R,y. It follows that (g, h) = 0. O

The next example shows that sometimes s(g, h) < r(g, h):

EXAMPLE 3.3. Let R=7Z,p =3, g =2*+3, and h = 23 + 922 + 12z + 27.
Then

4 1 1
100 1 0 0 0 g
010 9 1 304 -1 -b g
S(g,h)=| 3 0 1 12 9 |,S(g,h) = 0 3 0 -1 3
030 27 12 1 0 L oo -L
003 027 0 -1 0 1 0
Thus res(g,h) = 35, r(g,h) = 5, and s(g, h) = 3.
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REMARK 3.4. The running time of our method is proportional to s(g, h). Our
algorithm and all the following statements (except Theorem 4.2) also work when
s(g, h) is replaced by r(g, h). We have no better general bounds on s(g, h) than
on r(g,h) and thus our asymtotic time estimates would not be affected. But
Lemma 3.2 and Example 3.3 show that for individual polynomials, the use of
s(g, h) may be advantageous.

The proof of the following proposition is analoguous to the proof of the
Lemma in Borevich & Shafarevich (1966), Chapter 4, §3. We substitute the
value r(g, h) in the original version by the sometimes smaller value s(g, h).

PRrROPOSITION 3.5. Let g,h € R[z] of degrees n, m, respectively, such that
res(g,h) # 0. Let res(g,h) = p"@Mb with b € R, and | € R[x] with degl <
n + m. Then there exist uniquely determined polynomials ¢, € R|x] with
deg ¢ < m and degv < n such that

p* @bl = g + Ph. (3.1)

PROOF.  Write | = Z?jomfl liz* with all I; € R. There exist polynomials

¢ and 1 satisfying (3.1) if and only if there exist elements ¢y, ..., @, 1 and
Yo, .., ¥n_1 in R (namely, the coefficients of the two polynomials) such that

( SDrr;—l \ |
ntm—1

So.h) | 20 [ =pee | (32
n— l()

\ v )

Since res(g, h) # 0, the matrix S(g, h) is invertible over the quotient field of R,
and (3.2) is equivalent to

(o

20| = preMbS (g, by
wnfl

\ v

The entries of p*9"bS(g,h)~! are in R, and thus also all ¢; and ;. Then
=" gt and o = S at form the unique solution of (3.1). O

ln—|—m—1

lo
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Often, it suffices to compute polynomials ¢,1 € R[x] with degyp < m
and degv < n such that p*9M] = pg + 1h mod p*9M*1. As in the proof of
Proposition 3.5, the solutions correspond to the solutions of the congruence

[
ln—|—m—1

S(g, h) w(pol = ps(g,h) mod ps(g,h)+1.
n— ZO

\ v

COROLLARY 3.6. Let g,h,l € R[z| be as in Proposition 3.5. In order to
compute ¢, € R[z] such that degp < m,degy < n and p*9M] = g +
Yh mod p*9M+1 it suffices to determine S(g, h) mod p*(9)+1,

LEMMA 3.7. Let g, h,u,w € R[z] be monic such that res(g,h) # 0, g = u mod
p* @M+ and w = h mod p*@M*. Then s(u,w) = s(g, h).

PROOF. Leto = s(g,h),u = g+p° gy and w = h+p°'hy with gy, hy € R|z],
and assume first that res(u, w) = 0. Then S(u,w) is not invertible, and there
are polynomials a,b € R|z] such that dega < degw, degb < degu, and

au + bw =0,
with @ Z 0 mod p or b # 0 mod p. But then

0 = au+bw=alg+p tg)+bh+p " hy)
ag + bh + p° ™ (goa + hob).

It follows that ag + bh = 0 mod p°*!. Hence ag + bh = p° !l for a polynomial
| € R[z] with degl < deg g + deg h. If we compute the unique solutions a, b of
this equation by Proposition 3.5, we obtain that ¢ = 0 mod p and b = 0 mod p,
a contradiction. Hence, res(u,w) # 0, and s(u,w) is defined.

Let n = degg and m = degh. By Proposition 3.5, there exist for each | €
R[x] with deg! < n +m polynomials a,b € R[x] with dega < m and degb < n
such that ag+bh = p°l mod p°**!. It follows that au+ bw = p°l mod p°*!. Let
au + bw = p°l + p° T’ with

a= Z a;zt, b= Z bzt

0<i<m 0<i<n
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I= > Lzt andl'= > la

0<i<n+m 0<i<n+m
Then
au + bw = p°l + p° T’

( Qm—1

:a ln+m—1 l;H—m—l
s S(uuw) | ° =p° | : +p7

bn—l ’
. lo I

\b

[
: In4m-1 lnm1
o ZO :paS(u’w)fl +pa+15(u’ w)fl :
' n—1 lO l6
\b
Using all monomials z"+t™ 1 grtm=2_ 20 for [, we find that p”S(u,w)™! is

a matrix over R, each of whose columns has p-adic value 0. O

The next theorem is a more general version of Hensel’s Lemma. The proof
is analogous to the proof of Hensel’s Lemma in Borevich & Shafarevich (1966).

THEOREM 3.8. Let p € R be a prime, k € N and f,u, w € R[z]| be polynomials
of degrees n + m,n, m, respectively, with the following properties:

(a) f =wvw mod p*, and the leading coefficients of f and uw are equal,
(b) the resultant res(u,w) is nonzero,
(c) k> 2s(u,w).
Then there are polynomials g, h € R, [z] such that
f =gh in Ry,[z], g = u mod pFsw) B = mod pk~sww),

and the leading coefficient of g and h equals the leading coefficient of u and w,
respectively.



Factoring modular polynomials 9

PrROOF. Let 0 = s(u,w). Using induction on 4, it is sufficient to construct
for ¢ > 1 polynomials ¢;,1; € R[z] with deg¢; < m, deg; < n such that if

f = abmod p*T! (3.3)

with a,b € R[x] such that a = u mod p*~7 and b = w mod p*~7, and lc(a) =
le(u), le(b) = le(w), then

f = (a _{_pk—o-l—i—lwi) (b + pk_a+i_lﬂ[3i) mod pk+i'
Here lc denotes the leading coefficient. We rewrite 3.3 as
f=ab+p*,

with [ € R[z] and degl < n+m, because lc(ab) = lc(f). Since a = u mod p*~7,
b = w mod p*~?, and k — o0 > o, we have by Lemma 3.7 that 0 = s(u,w) =
s(a,b). By Proposition 3.5 there exist polynomials ¢;,1); € R[x] of degrees less
than m, n, respectively, such that

p°l = ag; + byp; mod p° .
Then

f _ (CI, 4 pk_a+i_l1/li)(b _'_pk—a—f—i—l(pi)
f—=ab—p* 7 ap; + b)) — p*F TR0,
pk:-f—z—ll _ pk—U-{—Z—lpol _ p2k_20+2z_2§0i¢i

k+1

0 mod p*™*,

because 7 > 1 and k > 20.

Together we have for the polynomials g = u+)_,5, p*714; € R,)[z] and
h=w+) 5, 0" 7" 1, € Ryz] that f = gh. Furthermore, ¢ = u mod p*—°
and h = w mod p*°. O

A version of Theorem 3.8 is already proven in von zur Gathen (1984) in a
different setting. In particular, no explicit formula for s(u,w) is given.

COROLLARY 3.9. Assume that conditions (a) and (b) of Theorem 3.8 hold.
Then condition (c) is true if k > d(f).

PRroOF. Let f = gh with g, h € R(;)[z]. Then

disc(f) = disc(gh) = disc(g)disc(h)res(g, h)? (3.4)
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(c.f. Borevich & Shafarevich 1966, Chapter 4, §3). Using Lemma 3.2, we have
d(f) = d(g) + d(h) + 2r(g, h) > 2s(g, h).

Since the discriminant and the resultant are polynomials in the coefficients of
f, 9, h, the same is true for factorizations over R/(p*). O

REMARK 3.10. It follows from Corollary 3.6 that in order to apply Theorem 3.8
it suffices to know S(u,w) mod p*(»®)+1,

The next corollary follows from Theorem 3.8 in the case s(g, h) = 0:

COROLLARY 3.11. Let f € R|x] be such that f is irreducible in R/(p)|x].
Then f is irreducible over R/(p*) for all k > 1. On the other hand, if f is
irreducible over R/(p*) for some k > 1, then f = vg®mod p with e > 1,
g € R|z]| irreducible over R/(p), and v € R a unit modulo p.

COROLLARY 3.12. Let f € R[x] and k > 1. Then in order to find all irre-
ducible factors of f over R/(p*), we may assume that f is monic.

PROOF. We write f = p'g with ged(p,g) =1 and [ € N. Then g # 0 mod p,
and g = yymy mod p, where vy € R[z] is a unit over R/(p) and my € R|x]
is monic. Of course, vy can be chosen such that le(g) = lc(vymg). Then
res(vg,mp) = V%™ £ 0, and s(vy,mg) = 0. By Theorem 3.8 there exist
v,m € R[x] such that ¢ = vm mod p*~! where v = 1y mod p, m = my mod p,
and lc(m) = le(mg). This means that v is a unit over R/(p*~!), m is monic
and f = p'vm mod p*. The irreducible factors of f are the irreducible factors
of m and of p!. O

THEOREM 3.13. Let R = F,[y|. There is a probabilistic polynomial-time re-
duction from the problem of factoring polynomials over R/(r) for r € R to the
problem of factoring monic polynomials over R/(p*) — for a prime p € R and
k € N — which are a power of an irreducible polynomial over R/(p). If R = Z,
the same holds if we assume that a complete factorization of r is given.

PrOOF. Letr € F,ly] and f € F,[y][x]. We can factor r in probabilistic poly-
nomial time to apply the Chinese Remainder Theorem. Let r = u[],,<, P}
be the complete factorization of r as in (2.1). Theorem 3.8 for s(g,h) = 0
shows that f can be uniquely factored over R/(p¥) into factors which are rel-
atively prime over R/(p;) for 1 < ¢ < s. This can be done in polynomial
time (c.f. von zur Gathen 1984). Hence it remains to consider the case where
f = vg® mod p; with e > 2, g € R[z] irreducible over R/(p;) and v € R[z] a
unit over R/(p;) for some 1 < i <s. By Corollary 3.12, we may assume that f
is monic. O



Factoring modular polynomials 11

4. Factorization over R/(p*) for large k

It follows from Theorem 3.8 that if f = gyhy mod p* for k > d = v,(disc(f)),
then there exists a factorization f = gh over R, such that gy = g mod pke
and hy = h mod p*~=°, where o = s(g,h) < g. Hence, any two factorizations
of f over R/(p*) which give rise to the same factorization over R, are equal
over R/(p*=?). In particular, Theorem 3.8 shows that if k& > d(f), then every
factorization of f into irreducible factors over R/(p*) is compatible with the
unique factorization into irreducibles of f over R,). The next lemma formalizes

this statement, which is fundamental for our algorithm.

LEMMA 4.1. Let f = [[,<;<, 9i over R, with disc(f) # 0, 1 > 1, and g¢; €
Ry |z] monic and irreducible for 1 < i < . Let f = gh mod p* with g,h €
R[z] monic and k > d(f). Then there exists a partition {1,...,l} = S U
S’ such that g = [[;cq9; modp* 7 and h = [1;cs 95 mod p*=? with o =
$([Lies 9i- [;es 95)- In particular, if g is irreducible over R/(p*), then there
exists 1 < i < such that g = g; mod p*~*9illizi9i),

PROOF.  Since k > d(f), we can lift the factorization f = gh mod p* to a
factorization f = gh over R, such that § = g mod pF59") and h = h mod
pF=5@h) by Corollary 3.9 and Theorem 3.8. Since factorization over Ry is
unique, there exists a partition {1,...,1} = S U S’ such that § = [Lics 9i> and
h = [ljcs 9;- Hence

; mod p*~s("),

Q
I

Qe
Il

>
Il
|||

Lo
H - mod pF3@h),
es’

Since k > d(f) > 2s(g, h), we have that
h)=s([[9 ] 9)
i€s  jes
by Lemma 3.7. O

On the other hand, the next theorem shows that s(g, k) is optimal in the
sense that if f = gh mod p* is a factorization, then there is always another

factor ¢’ of f over R/(p*) such that g = ¢’ mod p*~*9") and g # ¢ mod
pk_s(gah)+1



12 von zur Gathen & Hartlieb

THEOREM 4.2. Let f, g, h € R[x] be monic of degrees n+m,n, m, respectively,
with f = gh mod p*, res(g,h) # 0 and o = s(g, h). If k > 20, then there exist
polynomials ¢y, € R[z] of degrees less than n,m, respectively, such that

or Z 0 mod p or ¢y, # 0 mod p and f = (g + p* 7¢,)(h 4 p*7¢%) mod p*.
PrROOF.  Let u,w € R[z] with degu < n and degw < m such that u =

el — . pJ Ry
> o<icng Wit and w =37 . w;z’ and all u;,w; € R. Then

f = (¢+"u)(h+p"w) mod p*
= pk—a(uh + ’U}g) _ ka—Qa
< uh + wg = 0 mod p°

ww = 0 mod pF

(wm—l \
< S(g,h) o = 0 mod p°.
Up—1
\ U /
Since 0 = —v,(S(g,h)™"), there is a column in the matrix p°S(g,h)™" €

RM+m)x(ntm) wwith an entry not divisible by p. Let i be a number of such
a column. Then 1 < i < n 4+ m, and by Lemma 3.5 there exists a solution of

the equation

1 o+1

uh 4+ wg = p°2"~! mod p

with degu < n and degw < m. This means that

() &

0
uwo =p°S(g,h)™" | 1 | mod p”*t.
n—1 0

ey Lo/

By assumption the ith column of p?S(g, h)™! is not divisible by p, so the vector
of the coefficients of v and w is not divisible by p. Hence we can take ¢ = u
and Y, = w. O

We show now how to compute all factorizations of a given polynomial
[ € R[z] with disc(f) # 0 over R/(p*) for k > d(f) = v,(disc(f)). A first
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approach would be to compute one irreducible factor of f, divide by it, and
factor the quotient recursively. This works, and provides an irreducible fac-
torization of f. However, we have a more ambitious goal, namely, we want
to find all factorizations of f into irreducibles. The following example shows
that the number of different factorizations of a polynomial over R/(p*) can be
exponentially large, but by keeping track of all previously found factorizations
in a symbolic way, we achieve a description of all factorizations in polynomial
time.

ExXAMPLE 4.3. Let R = Z, p € Z an odd prime, 0 € Z, c > 1, and f =
r? — p* € Z[z]. Then d(f) = 20. Now let k > 20, 0 < ¢ < p°, and
Y =p° — @, so that ¥ = —p mod p?. Then

(@ +p7+p" 70) (@ —p” =" %)
? = (07 + 0" 7p)?
$2 _ p2a _ 2pk(p _ p2k720902

= f mod pF,

(z+p" +0"7¢) (@ — p” + 1" 70)

and each of the factors in this factorization is irreducible by Corollary 3.11.
Thus we have p° essentially different irreducible factorizations.

We use Chistov’s (1987, 1994) algorithm for factoring polynomials over local
fields whose running time is polynomial in the length of the polynomial and
the logarithm of the size of the residue class field R/(p), if one uses a fast
probabilistic factorization algorithm for factoring polynomials over finite fields.
If one uses a deterministic factorization algorithm for factoring polynomials
over finite fields, the algorithm is polynomial in the length of the polynomial
and the size of the residue class field.

With Chistov’s algorithm, one can compute one factorization of f € R[z]
over R/(p*) for k > d(f). Let f = [],<;<;Gi over Ry(z] with §; € Ryy|z]
monic and irreducible for 1 < i < I. Let g; € R[x] with g; = § mod p* for
1 <1 < [. By Lemma 4.1, it remains to compute from the factorization f =
[1,<i<; 9i mod p* all other factorizations of f into irreducible factors. We know
for each irreducible factor u of f over R/(p*) that u = g; mod p*~*Willizi %) for
some 1 <7 <[ from Lemma 4.1. Let h = H#i gj- In order to determine all
irreducible factors u of f such that u = g; mod p*~*(9-") we have to determine all
polynomials ¢, 1) € R[z] such that f = (g; +p*~*@Mp)(h+ pF~00:)y) mod p*
by Theorem 3.8.
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Let f, g, h be monic with f = gh mod p*, and deg g = m,deg h = n. More-
over, we may assume that s(g,h) > 0. Then

Fo= g+ 7Y (h+ p" @ My) mod p* (4.1)
& PN (ph+ dg) — p? Moy = 0 mod p*
& ph+ g = 0mod p*@h

(e )

< S(g,h) :ﬁo = 0 mod p*(9), (4.2)
m—1

\ %o /
where ¢ = > i, vix’ € Rz], and ¢ = > ., ¥a" € R[z]. Hence, fac-
torizations of the form (4.1) correspond to solutions of the system of linear
equations (4.2). For R = Z and R = F,[y| it has been shown in Iliopoulos
(1989) and Villard (1995) that there exist polynomial-time algorithms to com-
pute the Smith normal form of the matrix S(g,h), i.e., unimodular matrices
P,Q over R (i.e., whose determinant is a unit in R) such that

d 0 - 0
PS(g,h)Q = (,) 2 . =: D,
0 -+ 0 dotm

where d; divides d;;1 for 1 < i < n+ m. Let w; = min{v,(d;),s(g,h)} for
1<i<n+m. Then 0 < w; < wiy1 < s(g,h) for 1 < ¢ < n+ m. Since
we assume that s(g,h) > 0, we know that w; > 0 for at least one i € Z with
1 <17 <n+m. Hence, let 1 <r < n+m be minimal such that w, > 0, and let
t=n+m —7r+ 1. A basis over R of the set {a € R"™™ : Da = 0 mod p*@M}

is a; = p*oh=wre . a, = p*@P)~wnime . where e; denotes the ith unit
vector for 1 <i < n+m. Let u; = s(g, h) —w;ir—1 and a, = p,l,i a; for 1 <7 < t,

so that v,(a;) = 0. Furthermore, let b, = Qaj for 1 < i < t. Now it is easy
to see that pf1by, ..., ptb, is a basis over R of the set {b € R"™ : S(g,h)b =
0 mod p*(9:4)}.

For [ > 1 let R; C R be a set of representatives of the finite set R/(p').
Then the set of solutions of (4.2) can be written as

{ Z PHagbi s i € Rygpy—p; for 1 <i < t} ’

1<i<t
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Let 1 <i<tand b = (Yin 1, %0, Pimn1,---,¢i0)’. The set of all fac-
torizations (4.1) equals the set of factorizations f = g(@1-2t) plera) mod p*
with

g(al’---yat) — g + pk—s(g,h)( Z z p“] a]/l/)]ﬂxl)’

0<i<n 1<5<¢t

h(al7'“7at) — h +pk_5(g7h)( Z Z p:uj aj/l/]],zxz)’

0<i<m 1<j<t

where o; € Ry(gn)—y, for 1 <4 <t are arbitrary. This data structure allows
to represent the possibly exponentially many factorizations with data of only
polynomial size.

EXAMPLE 4.4. We consider f = (22+3)(z*+922+122+27) = 25+ 924+ 1523+
5422 4+ 361+ 81 € Z[z] and p = 3. We have disc(f) = 3'*-6100, d(f) = 14, and
s(2?+3, 234922+ 122+ 27) = 3. The factor x>+ 3 is an Eisenstein polynomial
and hence irreducible. We want to describe all factorizations f = uw mod 3%
such that u € Z[x| is irreducible over Z/(3") with u = z? + 3 mod 3'2. We
have to solve the system of equations

Vo
(
S(@? + 3,23 + 922 + 1224+ 27) | o
Y1
2
100 1 0 o
010 9 1 Uy
= 301 12 9 Yy | =0 mod 27.
0 3 0 27 12 01
003 0 27 ©o
We compute the Smith normal form as
1 0 0 00 100 1 0 100 -1 1
0O 1 0 00 010 9 1 010 —-10 9
-3 0 1 00 301 12 9 001 —-18 9
0 -3 0 10 0 3 0 27 12 000 1 -1
9 -9 -3 31 003 0 27 000 1 0
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I
cooc o
ccoro
coc oo
cwvwooo

cocoo

27

Thus wy = wy = w3 =0, ws = 2,ws =3,r =4,t = 2. Hence

(100—1 1\(0\ (—1 8\
01 0 =10 9 0 —10 8
by = 001 —-18 9 0 = —18 = 0 mod 9,
0 0 O 1 —1 1 1 1
\ooo 1 o /)\o/) \ 1 1)
(1 0 0 -1 1 (O\ ( 1 1 \
01 0 =10 9 0 9 9
by = 001 —-18 9 0 = 9 = 9 mod 27,
0 0O 1 -1 0 -1 26
\ooo 1 o /\1/) \o 0 )
and the set of solutions can be written as
8 1
8 9
{3a1 0 | +a ]| 9 :0§a1<9,0§a2<27}.
1 26
1 0
Hence the factorizations are f = u(®@2)y(@02) mod 3% with
wlere) = g4 (380 + 26 - 3204)x + 380y,
w®) = b4 (8380 + 320,)2% + (8- 3By + 31%ay)x + 31ay,

where g = 22+ 3, h =23+ 922+ 122+ 27, 0 < oy < 9, and 0 < ay < 27.
We see that there exist 243 different factorizations which can be represented
concisely via oy and as.

The idea of the algorithm now is as follows: From Chistov’s algorithm we
obtain one factorization f = [],.;c,¢; mod p* with g; € R[z] monic and ir-
reducible over R/(p*) for 1 < i < I. If [ > 1, we inductively compute all
irreducible factors of f in the following way. Let o; = >, ;. s(gi, [[;5; 9)
for 1 < j < I. We assume that 1 < ¢ < [ and all factorizations f =
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(ITi<;<; uj)w mod p* such that u; € Rlz] is irreducible over R/(p*), u; =
gj mod pF=% for 1 < j < i and w = HPZ. g; mod p*~7 have already been
computed. This means that we have a set of parameters such that the u;,1 <
j < 1, and w depend linearly on them. Now we lift each factorization w =
9i [ I;5: 95 mod p*~% to a factorization over R/(p*) and compute all factoriza-
tions w = ab mod p* such that a = g; mod p*~7 and b = Hj>i g; mod pF7i.
It is shown in Lemma 4.8 and Theorem 4.9 that these two steps can be done
simultaneously for all parameters. The last step yields some new parameters
which are added to the set of the previously computed ones. Theorem 4.9
shows that one obtains in this way all factorizations.

NoTATION 4.5. Letl > 2 and f, ¢, ..., g € R[z] be monic such that d(f) # 0
and f = [],.;,9i mod p*. Then we define s; = $(9is [Ticj<i 95) and r; =
r(9is [Ticjcr 95) for 1 <i <.

ALGORITHM 4.6.

Input: A monic polynomial f € R[z] with d(f) = v,(disc(f)) < oo, a prime
p € R, and k > 1 such that k > d(f).

Output: All factorizations of f over R/(p*) into irreducible monic factors.

1. Use Chistov’s algorithm to find the factorization f =[], <i<1 9i into irre-
ducible monic factors of f over Ry, i.e., for 1 <1 <[ compute g; mod pk.
Ifl =1, then output “f is irreducible” and stop. If d(f) = 0, then output

“f = [l 1<i 9i mod p*” and stop.
2. Set w; = f and jy = 0. For 1 < m <[ do Steps 3 and 4.
3. Lift the factorization

wr(:hm’aj’”_l) =0m H gi mod pFZi<i<m %

m<i<l
depending on the parameters o, ..., _, to a factorization
(a1,ee0j 1) (1ot 1), (@150 1)
m Im=t) = g, T me e fim=1l mod pF, where
(051,...,04' _ ) _ i .
am " mY = g mod pFXasism % and
bf,?“'""”m—l) = H g; mod pFZi<i<m %
m<i<l

for all parameters o, ...,q;,, .
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4. Compute all solutions of Equation (4.2) with g = g,, and h =[], _,, 9
in order to obtain all factorizations -

wr(:ly-..,ajm—l) = ugrolq,...,ajm)wr(si,l...,ajm) mod pk
such that
u,g:l,m,ajm) = ai:l’-"’ajm_l) mod pk—sm,
T(Y(iz_t,l...,ajm) = bfsl,...’ajm_l) mod pk—sm,
and jm, > jm-1 together with the feasible values for o, ,11,...,q;,.
- - (al’---yajl) (al""7aj1_1)
5. Set j; = 711 and y, =w , and output

wp (@1)-505;) k 9
= H U, ““mod p

1<i<l

together with the ranges of o, ..., ;.

EXAMPLE 4.7. We take the polynomial f = x®+92*+ 1523+ 5422 +362+81 €
Z[z] of Example 4.4 and k = 15 as input of Algorithm 4.6. Since d(f) = 14, we
have d(f) < k. In Step 1 of the algorithm the factorization f = g1g2g3 mod 3'°
with

g = z°+3,

g = z+9+2-3%34+2-354+354+3"4+2.39+2.3942.32 4 314

g3 = 2+ (3*+2-3"+3°+3"+2.3°+2.3"1 +2.38 + 3"y
+3+9+2.35+36+38+2.39+310+313+314

is computed. The polynomial g, is linear, g; and g3 are Eisenstein polynomials,
and hence all three factors of f are irreducible. Since gog3 = x> + 92% + 12z +
27 mod 3%, Step 2 for m = 1 has been done in Example 4.4. It yields the

factorizations f = u{®*?w{***) mod 315 with

wl®re?)  — g2 43 (3% + 26 - 3% ) r + 3%ay,

= 22+ 923 + 1202 + 27+ (8- 33y + 32%w)x? + (8- 3%ay + 3" ay)z
+314C¥2,

1
wéal ,0e2)

and 0 < a; < 9,0 < ag < 27. In Step 3 for m = 2, one has to lift the

factorization wéal’”) g293 mod 3'2 to a factorization modulo 3'5. Since
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s(g2,93) = 1, this can be done as in Theorem 3.8 and yields the factoriza-
tions wi™ ) = glave2)plar.2) mod 315, where

al@e2) = g4 3, +7.380,,
b2l = gyt (5-3%a; +7-3%ap)z +8- 3%

In Step 4, we have to find all factorizations w( 1o2) — = uyusg mod 3 such that
Uy = a(al’a2 mod 3! and us = bl@22) mod 314 In the same way as in Exam-
ple 4.4 one has to solve the system of linear equations

N 1 01 (U
S(a(al,az), b(a17a2)) /l,bO = 01 0 ’l]bo =0 mod 3
20 000/ \

and obtains the factorizations

1,0 o1,02,0, 1,02,
wé 1, 2) = ug 1,02, S)ug 1,02, 3) mod 315

where

us o) = gy 4 340, 4738, + 310,
(020) gy 4 (5-3% +7- 3205+ 2- 3%ag)z + 8- 3%,

and 0 < a3 < 3. Hence, the 3° factorizations of f into irreducible factors are

f=(g+ 3% +26-3%ay)7 +3%)) - (g2 + 3"y + 7 3%ay + 3'as)-
(93 + (5-3%a; +7-3%ay +2-3"a3)r + 8- 3%a;) mod 3",

WheI'GOSCkl<9,0S(X2<27,0§C¥3<3.

Before we can show that the algorithm works correctly, we have to prove
the following technical lemma.

> d(f) and g; € R[z] be irreducible

LEMMA 4.8. Let f € R[z], d(f) < oo, k
= I, 1<i<i 9i mod p¥. Then the following

over R/(pF) for 1 < i < | with f
relations hold:

(a) Let f = uw mod p* where u,w € R[x], and u = H1<Z<m g; mod pF—s(ww)

and w = [],,_;«; 9 mod pF~ s(u,w)

5(H15i5m 9i H;<i§l 9i)-

for some 1 < m < I. Then s(u,w) =
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(b) We have

k — Z sj >k — Z T > 28m41

1<j<m 1<j<m

forevery 1 <m <[ —1.

(c) Let a,b € R[x] such that

a = gm+1 mod pk_21515m "i, and b= H g; mod pk_EISjSm T
m+2<i<l

for some 1 <m <[ —2. Then s(a,b) = Sy41-

(d) Let a,b € R[z] as in (c). Then

S(a,b) = S(gm+1, H g;) mod p*@®)+L,

m+2<4<]

(e) s(gm., H#m gi) < lejSm r; for every 1 <m <.
PROOF. Recall from (3.4) that for f = gh mod p* we have
disc(f) = disc(g)disc(h)res(g, h)? mod p*,
hence d(f) = d(g) + d(h) + 2r(g, h), since k > d(f).
(a) We have
k—s(u,w) >d(f)—s(u,w) = d(u) +d(w) + 2r(u, w) — s(u, w) > s(u,w).
Now the claim follows from Lemma 3.7.

(b) Since s(g,h) < r(g,h) for g,h € R[z] by Lemma 3.2, we only have to
prove the second inequality. Let 1 < m < [. We have

k=Y r>df)— > 7

1<j<m 1<j<m
> > dlg)+d( [ @) +2 D> ri— Dy
1<i<m m<i<l 1<j<m 1<j<m
> d( [] 90) > d(gme) +d( J] 90 + 2rme
m<i<l m+2<i<l

> 28m41-
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(c) The claim follows by applying Part (b) and Lemma 3.7.

(d) Since
k — Z $j > 28m+41 > Smi1 = s(a, b),

1<j<m

by (b) and (c), it follows that

a = gmy1 mod ps(a,b)+1’ and b = H g; mod ps(a,b)+1.
m2<i<l

Hence, S(a,0) = S(gm+1, [ I mio<ic; 9) mod polad)+l,

(e) Let 1 < j < [. Recall that for polynomials f,g,h € R[z] we have
res(f, gh) = res(f, g)res(f, h) (Cohn 1977, 7.4, Theorem 2). Hence

r(f,gh) =r(f,9) +r(f,h).

Now
s(gm [[9) < rlgm: [J9)= D r(gm g) +r(gm: [[ @)
i£m i£m 1<j<m m<i<l
S Z T(gja H gz) +7rm = Z Tj-
1<j<m j<i<i 1<j<m

THEOREM 4.9. Algorithm 4.6 works correctly, i.e. each irreducible factor of f

over R/(p*) is of the form uz(-al """ i) for some 1 <4 <[ and feasible values for
aq,...,q; as computed in the algorithm. It works in probabilistic polynomial

time for R =7 and R = F,[y].

ProoOF.  If f is irreducible over Ry, it is irreducible over R/(p*) for all
k > d(f) by Theorem 3.8. Also, if d(f) = 0, the factorization of f into
irreducible factors is unique over R/(p*) for every k > 1 by Theorem 3.8.
Hence, from now on we assume that d(f) > 0 and f is reducible over R).

By Corollary 3.6 and Lemma 4.8(d) we obtain that only the matrix

m<i<l

is needed in order to lift the factorizations of Step 3. Besides, Lemma 4.8(d)
also shows that in order to compute the solutions in Step 4, only this matrix
is necessary. Hence, both steps can be done for all parameters at once.
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Now, we prove by induction on m < [ the claim that after the execution of
Steps 3 and 4 for m all factorizations f = ([],«;,, ;)w mod p* such that for all

1 <4 < m one has u; = ¢g; mod p*~21<i<i % have been computed. Furthermore,
we show that these are also all factorizations such that u; = ¢; mod pF~X1<i<i™
for every 1 <1 < m.

If m = 1, then wy = f, and in Step 3 there is nothing to do. In Step
4, all factorizations f = ww mod p* such that v = ¢; mod p* %1, and w =
[1:<;<; 9 mod p*~*' are computed. Then by Theorem 3.8 and since r(g, h) >
s(g, h) for all g, h € R[z], these are also all factorizations f = uw mod p* such
that u = g, mod p* ™, and w =[], _,, g mod p* .

Now let 1 < m < [ — 1, and assume the induction hypothesis holds for
m — 1. Then by induction hypothesis we have found every factor w,,_; such
that

Wit = gmet || g6 mod pFErsicn . (4.3)
m<i<l

By Lemma 4.8(b) and Theorem 3.8 we can lift the factorization in (4.3) as is
claimed in Step 3. On the other hand, if there is a factorization w,,_; = ab mod
p* such that @ = g¢,, mod pF X1<i<n™  and b = [L,,<i<; 9i mod pFXigicm i
then again by Lemma 4.8(b) and Theorem 3.8 this factorization is found in
Step 4. Hence, the claim is proven.

Now assume that f = uw mod p* such that wu is irreducible. Since k > d(f),
it follows that u = g,, mod p*=*®*®) and w = H#m g; mod pF—*®) for some
1 < m < [. Moreover, s(u,w) = s(gm,H#m g;)- By Lemma 4.8(e) we have

U = g, mod pF Xii<m™i and
w = []gmodpt Zsisi.
i£m

Therefore, this factorization will be computed by Algorithm 4.6. O

REMARK 4.10. (a) Let R = Z, and let Cz(p,n,k) denote the time such
that the complete factorization over Zy) of a polynomial f € Z[z] with
deg f = n can be computed modulo p* with Cz(p,n, k) bit operations;
Chistov’s (1987, 1994) algorithm does this in polynomial time. Then our
algorithm produces on input f € Z[z] of degree n and k € N such that the
discriminant is nonzero and not divisible by p* all factorizations of f over
Z/p* in at most Cz(p,n, k) + O(n"klogp(klogp + logn)?) bit operations
(see von zur Gathen & Hartlieb 1996b).
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(b) Let R =F,[y] and p = y. In this case the factorizations of a polynomial
f € F,[y][x] with deg,, f = n into irreducible factors over F,[y]/(y*) can be
computed with C,(y, n, k)+0(n*k?log* nk-+k*n“+2log® nk+nSNF (n, k))
operations inF,. Here C,(y, n, k) denotes the time such that the complete
factorization over F,[[y]] of a polynomial f € F,[y|[xz] with deg, f = n
can be computed modulo y* with C,(y,n, k) operations in F,. Chistov’s
algorithm yields again that C,(y,n, k) can be chosen polynomial. The es-
timate SN F'(n, k) describes the number of operations such that the Smith
normal form of an n x n-matrix over F,[y| together with the transition
matrices can be computed modulo y* with O(SNF(n, k)) operations. By
Villard (1995) this can be done in polynomial time. For the analysis of
the running time see von zur Gathen & Hartlieb (1996b).

REMARK 4.11. The case k < d(f) seems more difficult to handle. We have
not been able to make the methods introduced here work for this case. Of
course, the factorization of f in R)[z] provides a factorization modulo each
pF, but we have no efficient way of factoring a polynomial over R/(p*) which
is irreducible in Rg,)[z]. At this point, the only way we know to obtain all or
even just one irreducible factorization is to try all possibilities (of which there
may be exponentially many). In von zur Gathen & Hartlieb (1996a) we show
how this can be done.

REMARK 4.12. In the case that disc(f) = 0 our method does not work. It
is not difficult to compute a factorization of f over R by a squarefree factor-
ization. In the case where k > d(f) this would mean that all factorizations
of f over R/(p*) are compatible with this factorization, as Lemma 4.1 shows;
in particular, all factorizations of f into irreducible factors have the same de-
grees as the factorization of f over R into irreducible factors. Even this is not
guaranteed in the case disc(f) = 0, as is shown in the next example. Thus,
one can reduce the problem of finding a single factorization into irreducibles
over R/(p*) to the case where disc(f) # 0, but apparently not the problem of
finding all factorizations into irreducibles.

EXAMPLE 4.13. Let R=17,p =3, and f = 23(x + 12)? = 2° + 242* + 14423,
Then

f = (z +60)(z* + 20723 + 1172% 4 27z + 81) mod 3°,

where both factors are irreducible over Z/3°Z.
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