POLYNOMIAL-TIME FACTORIZATION OF
MULTIVARIATE POLYNOMIALS OVER FINITE FIELDS

J. von zur Gathen and E, Kaltofen

Department of Computer Science
University of Toronto
Toronto, Ontario M5S 1A4, Canada

EV? present a probabilistic algorithm that finds the irreducible factors of a
§var‘iat.e polynomial with coefficients from a finite field in time polynomial in

15}

>the input size, i.e. in the degree of the polynomial and log (cardinality of field).

n

uff‘ﬁle algorithm generalizes to multivariate polynomials and has polynomial
énmng time for densely encoded inputs. Also a deterministic version of the
Eaﬁgorlthm is discussed whose running time is polynomial in the degree of the
'nput. polynomial and the size of the field.

volume 154 of Lecture Not

t :

Lh)

honemann [1846], p.278). Since there is only a finite number of factor can-

ht

:HRJ:L

idates, the factorization problem is immediately shown to be computable.
owever‘ an efficient algorithm to compute these factors was not presented
til the late 1960's. Berlekamp [67] then devised an algorithm which factors
variate polynomials over a finite field F' with g elements in 0(gn?3) field

Om‘%?éz??

ant
uni

perations, where n is the degree of the polynomial (see Knuth [81], Sec.4.6.2).
;1s running time is polynomial both in n and g. Soon after, Berlekamp [70]
;ade the running time polynomial in the input size, i.e. using logg rather
%an g, at the expense of introducing a probabilistic rather than deterministic
: ethod. It seems natural to ask whether this can also be accomplished for

it
gmultlvarlate, say bivariate polynomials, over F. In particular, given a bivari-

J. VON ZUR GATHEN & E. KALTOFEN (1983). Polynomial-time factorization of multivariate polynomials over finite fields. In Proceedings of the 10th International

Colloqun mon Aummam, Languages and Programming ICALP 1983, Barcelona, Spain, J. DIAZ, edit

gtée polynomial of total degree n with coefficients in 7, can one find (probabil-
istically) its factors in sequential running time polynomial in n and logg ?

Older algorithms proposed for this problem (e.g. Musser [71], 2.7.2, and
Davenport-Trager [81]) had an exponential worst case running time. The same

251

was true of the Berlekamp-Zassenhaus approach to factoring integer polynomi-
als, until Lenstra-Lenstra-Lovdsz [82] (for the univariate case) and Kaltofen
[82, 83] (for the multivariate case) provided a polynomial-time solution. In
this paper, we give a polynomial-time factorization algorithm for bivariate
polynomials over a finite field, based on the methods from Kaltofen [82].
Chistov-Grigoryev [82] and Lenstra [83] have also presented polynomial-time
algorithms for this problem. Both these papers are based on the short vector
algorithm for lattices from Lenstra-Lenstra-Lovdsz [82], and are quite different
from ours.

Our algorithm has two variants: a probabilistic one (Las Vegas) with run-
ning time (nlogq)?(), and a deterministic one with running time (ng)2D,
where n is the degree of the input polynomials and ¢ the cardinality of the
coefficient field (section 4.2). In our deterministic version, ¢ could be
replaced by logq if one could factor univariate polynomials over finite fields in
deterministic time polynomial in logqg. Observe that nlogq is the input size in
a natural "dense" encoding of polynomials. Our description concentrates on
the probabilistic variant, which may be the more important one for practical
purposes.

We also give a parallel variant (section 4.1) for our algorithm which runs in
parallel time O(log?n logq), based on the results for univariate factorization
in von zur Gathen [83]. It is not known whether the other proposed factoriza-
tion algorithms yield a fast parallel version.

It is straightforward to generalize our algorithm for factoring multivariate
polynomials (section 4.3). Again the running time is polynomial in the input
size, provided the inputs are encoded as dense polynomials. Chistov-Grigoryev
[82] and Lenstra [83] also present multivariate factoring algorithms of polyno-
mial running time. Using an effective Hilbert Irreducibility Theorem and the
results presented here, von zur Gathen [83a] presents a polynomial-time fac-
toring procedure for sparsely encoded multivariate polynomials.

2. Factoring a Nice Polynomial

. The algorithm for factoring an arbitrary polynomial f € F{z,y] proceeds
in two stages. We first preprocess f into a "nice format”, and then factor the
nice polynomial. We start by describing the crucial second stage.

We assume that an algorithm for factoring univariate polynomials over F is
given. This algorithm will be allowed to be probabilistic {(Las Vegas), so that it
either returns the correct answer or "failure”, the latter with small probabil-

ity.

252 -

Definition 2.1. Let F be a field, and f € F[z,y]. We call f nice if the following
conditions hold:

(Ny) . f(z.,0) € F[z] is squarefree.
(N3) J is monic with respect to z.
Algorithm QUICK FACTORING.

Input: A nice polynomial f € F[z.,y].
Output: An irreducible factor g € Flz,y] of f.

1. Compute an irreducible monic factor h € F[z] of f(2,0). If h = f(z,0),
then return f. If the probabilistic univariate procedure returns failure,
then return "failure”. (This should happen with probability at most 27"~1)

2. Set d, =deg,f, dy =deg,f, and d = 2d,;d,. Set E = F[t]/(h(t)), and
ag = (t mod h(t)) € E. We use the Newton iteration in steps 3 and 4 to
compute b € E[y] such that

7 (b.y) = 0mod y2+!

in EF[y].

1
3. Set t=-—-——
fz(U'Oro)

since otherwise ey would be a double zero for f(z,0), contradicting its

€ F, where f, = %ﬁ— € Flz,y]. (Note that f.(ay0) # 0,

squarefreeness.)
4, Fo1k =1,..,d compute
ap =y — tf (a1 y) € Ely].

("mod y*¥*1", ie. truncating the powers y' of y with I>k. Then
f(ag) = 0 mod y**1) Set b=a,.

5. Find the minimal 1, degh =i < d&,, for which there exist ug,..,%;_; € Fly]
such that

deg,u; < d, for O<j<i,

bt + Y u;bf = 0mod y3*+t
0s5 <1

Compute the corresponding wg,...,%;—1.
6. Return

g=zt+ Y u;zl € Flzy]
0<j<i

253

For the timing analysis, we assume that the factorization procedure used in
step 1 to factor a univariate polynomial of degree e takes at most 7(e) opera-
tions in F. We will later allow a probabilistic procedure (Las Vegas), which
either correctly returns an irreducible factor, or "failure’’.

Theorem 2.2. Let f € Flz,y] be nice, and assume that step 1 of algorithm
QUICK FACTORING does not return "failure”. Then the following hold:

(i) The output is an irreducible factor of f.

(ii) Let n be the total degree of f, and d, the degree of f with respect to z.
The algorithm can be performed in 0(n3d2) + 7(d,) or O(n7?) + 7(n) opera-
tions in F.

Proof. The correctness claim (i) follows just as in Kaltofen [82], section 4. The
output g will be the irreducible factor of f such that A divides g (z,0).

In applying (ii), we will need the first estimate, which clearly implies the
second one. First observe that step 3 can be performed in 0(d,) operations in
E. Fach a; in step 4 takes O(d,) operations in £[y] (computing mod y**1).
By Lemma 2.3, step 4 then takes 0(d?d log*d) operations in .

In step 5, we first compute b2,b3,...,6% in 0(d,) operations in E{y] (again
mod y%*1) or O(d,d log*d) operations in £. Then we have to solve a system of
at most (d+1)d, linear equations in at most d;(dy +1) unknowns over F. (Note
that one equation in £ corresponds to less than d, equations in F.) Gaussian
elimination solves the system in O((d, (dy+1))2 (d+1)d,) or 0(d3d,) operations
in F. Noting that [£:F] < d,, d =nd, <n? and using Lemma 2.3, we get a
total of 0(d3d, + d?d2log*d log“d,) or O(n3d}) operationsin F. O

The following lemma gives an upper bound on the time to perform arith-
metic in finite field extensions. Lempel-Seroussi-Winograd [83] give a quasi-
linear bound on the number of nonscalar operations needed for multiplication.

Lemma 2.3. Let F' be an arbitrary field, and h € F[z] of degree d. Then an
arithmetic operation (+, -, * division by an invertible element) in F[z]/ (k)
can be performed in O(d log*d) operations in F. If the cardinality #F of F is
at least 2d, then it can be performed in O(d log®d) operations.

Proof. let g = #F. We consider the elements of F[z]/{(h) as being
. represented by polynomials in F{z] of degree less than d (i.e. by its sequence
of d coeflicients). The last claim is well-known (see Aho-Hopcroft-Ullman [74],
8.3). If g < 2d, we can (deterministically) compute an irreducible polynomial
w € F[t] of degree '[Loqud] (see Theorem 3.1). Setting K = F[t]}/(w), an
operation in F[z]/ (k) € K[z]/ (k) can be simulated in O(dlog®d) operations in
K, and an operation in K costs O(log?d) operations in F, giving a total of

254

{

O(dlog*d) operations in F for each operation in F[z]/ (k). 0O

Remark 2.4. Some simplifications of the algorithm may be of practical
interest. Step 4 only has to be executed for k = 1,...,d, where

_ la,(2d,-1)
= |

(See Kaltofen [82], Theorem 4.1.) The algorithm can also be performed without
the assumption that f is monic with respect to . If ¢ € Fy] is the leading
coefficient, then step 4 has to be executed for k¥ = 1,...,6, where

_la,(2d, 1) + deg c(d, +1)
B degh

é

In step 5, we then have to consider
degyu; < dy, degc for 0<j<i,

cb® + Y u;bd =0 mod yo*!,
0= <i

and in step 6, we have to compute
v = ged{c ug,...,u_4) € Fly]

and return

wu
g = -c—x‘ + E __sz
v osj<i v

3. The Preprocessing Stage

In this section we describe the algorithm for factoring an arbitrary bivari-
ate polynomial over a finite field. It converts the input polynomial into a nice
polynomial, calls QUICK FACTORING, and then determines a factor of the input

polynomial.

We first need an algorithm for the gecd of two bivariate polynomials. We use
a modular approach for this; see Brown [71].

Algorithm BIVARIATE GCD.

Input: Two polynomials f.g € F[z,y], where f is monic with respect to =z,
and F is an arbitrary field.

Output: The monic {(with respecttoz) ged h € F[z,y]of f and g.

255

1. Set d, = maz(deg,f deg,g), dy = max(deg,f.deg,g), and d =2d,d,. If
d = 0, use a procedure for univariate ged's. If ¢ = #F < 3d, then do the
following. Choose an irreducible monic polynomial w € F[t] of degree

{logq 3d|, and replace F by the extension field F[f]/ (w).

2. Choose any pairwise distinet @4,...,a33 € F such that g{z,a;) has the same
degree in z as g. {We need at most 2d + d,, < 3d elements in F to locate
such evaluation points.)

3. Foralli, 1 <1 < 2d, compute the monic

hy = ged(f(z.,a;).9(z.0;)) = (Ejhﬁzi € Flz].

4. Set m = min{degh;:1<i<2d}, and choose some M C {1,....2d} with
#M =d, + 1 and deg h; = m for all ieH.

5. For 0= j =m, interpolate the hy;’s: compute b; € Fly] of degree at most
d, with b;(a;) = hy; for all i€ M. (In particular, b, = 1.)

6. Returnh = Y bz
Osj=m

Theorem 3.1. Let f,g € Fz,y], where f is monic with respect to z, and let d
be as in step 1 above. Then algorithm BIVARIATE GCD has the following proper-
ties: :
(i) It correctly computes a ged of f and g,

(ii) It can be performed in O(d®log®d) operations in F. If #F =3d, then it
takes 0(d2log?d) operations.

Proof. Let hy = gcd(f.9) € Flz,y] be monic with respect to z, and f = uhy,
g = vhg with w,v € F[z,y]. Then the resultant

r = res,(u,v) € Fly]
is a polynomial of degree less than d, and for any @ € F with r(a) # 0 and
deg g(z.,a) = deg,g we have
ng(f (:r,a.),g (I,CL)) = h’O(Ila)'

Thus for at least & among A4,....,h2q we have

hi = ho(z,ay),

and deg h; = deg,h, for all i. Therefore some M as in step 4 can be found, and
steps 5 and 6 correctly compute A = h,,

N

If ¢ < 3d, then we can find w as in step 1 deterministically by testing each

256

monic polynomial w € F[#] of degree Ll = lrlogq 3d| for irreducibility. There are
at most ¢! < 3dg < 9d® such polynomials, and each irreducibility test takes
O(log?d log®logd logloglogd logq) or O(log“d) operations in F (Rabin [80]).
Any operation in F[#]/ (w) can be simulated by O(log®d) operations in F. This
factor log®d has to be multiplied to the estimates for steps 3 to 6 only if
q <3d.

In step 3, the number of operations is 0(d) for each f(z,a;) and g(z,a;),
and O(d log?d,) for each h; (Aho-Hopcroft-Ullman [74], 8.9), for a total of
0(d(d + d,ylog?®d,)) operations. Obviously m = d,, and the interpolations in
step 5 take 0(d,(dylog?®d,)) operations (Aho-Hopcroft-Ullman [74], 8.7). The
total is O(d”log?d log?d) operations, and 0(d®log?d)if ¢ = 3d. [

We now describe the algorithm for computing a factor of a bivariate poly-

nomial over a finite field.
Algorithm BIVARIATE FACTORING

Input: A polynomial f € F{z,y], where F is a finite field with ¢ elements, and
P = charF, the characteristic of F.

QOutput: Either a non-constant factor g € F[z,y¥] of f, or "failure”.

1. (Check primitivity) Set d, =deg,f, and write f = Y fi;zt with
O=isd,

fi € Fly). Compute the content
¢ =cont, (f) =ged(fo...fa) € Flyl

If ¢ is non-constant, then returnc.

2. (Check squarefreeness) Compute f, = %ﬁ— and f, = %‘5— If fp= Jy =0,
then write f = 3\ f,;a®Py’, setg = ¥ f3/Pz'y/ and returng. (We have
0s4,5 0si,j
gP=f) I f, =0 and f, # 0, then interchange the role of z and ¥ and
goto step 1. Now we have f, # 0. Compute g = ged(f.f,). If g # 1, then
return g.

3. {Monic version of f) Let fq€ F[y] be the leading coefficient of f with
respect to z. Set

v = f&""lf(;—o.y) € Flz,y].

(v is monic of degree d, with respect to z.)

257

4. (Extend F) Set d, =degyv, m =mazld,.d,}, and d =2d,d,. I
g = #F > d, then set F* = F. Otherwise choose a prime number I with
m <l <2m, and an irreducible monic polynomial w € F[t] of degree 1.
Set F* = F[t]/ (w).

5. (Good evaluation point) Set

r = disc, (v) = res_.,(v,-g—Z—) € Fly].

~u

(r is a nonzero polynomial of degree < (2d, —1)d, < d.) Choose ¢ € F* such
that 7(c) # 0, and set

f=v(zy-c)eFlzyl
(f° is nice.)

8. Call procedure QUICK FACTORING with input f* € F'[z,y], to return
g’ eF[zyl

7. Set
e =deg,9°, g1=S5°* 9% (zf o y+c) € F' [z y],

go = cont,(gy) € F'lyl, 9 =g:/90 € Flz,yl.
and return g.

For a concrete estimate of the running time, we have to implement step 1
of the procedure QUICK FACTORING. The probabilistic version of Berlekamp’s
univariate algorithm due to Cantor-Zassenhaus [82] (see also Knuth [81], 4.6.2)
factors a polynomial of degree e in

O(e? + e? loge logq)

operations in F, where ¢ = #F. Other algorithms for this problem are due to
Berlekamp [70], Rabin [80], Ben-Or [81]. This algorithm can be written as a
Las Vegas procedure, so that it either returns an irreducible factor or "failure”
- the latter with probability at most %. The algorithm requires O(e loge) ran-
dom choices from F, and we assume that they can be performed in
O(e loge logq) random bit choices. The cost of the Las Vegas univariate fac-
toring procedure in step 1 of QUICK FACTORING is dominated by the cost of
other steps. So we can apply that procedure several times, say n+1 times, to
obtain failure probability at most 2" ~!, where n is the total degree of f.

Theorem 3.2. Let F be a finite field with ¢ elements, and f € F[z,y] of total
degree n. Algorithm BIVARIATE FACTORING with input f has the following pro-
perties.

258

(i) If fis irreducible, it either returns J or "failure".
(ii) If f is reducible, it either returns a proper factor of f or "failure’.
(iii) Failure occurs with probability at most 2™,
(iv) The algorithm can be performed with
0(n"log*n log?q (n® + logn logq))
bit operations, and O(n°® logg) random bit choices.

Proof. It is well-known how the factorization of f and v in F[z,y] are related;
see Knuth [81], exercise 4.6.2-18, using the coefficient domain Fly].

By a result of von zur Gathen [83a], section 5, the factorizations of v in
Flz,y] and F'[z,y] are the same. The relation between factors of v and f* in
F*[z,y] is obvious. Also, f" is nice.

Note that an ! as in step 4 exists by Bertrand’s Postulate (see Hardy-Wright
[79]). In order to see that some ¢ as in step 5§ can be found, it is sufficient to
show that #F* = ¢! = d:

gt=2mti>2m2>d.
(The second inequality holds for all m = 1 with m # 3. But for m = 3 we have
l>5and gt >d.) We have now proven (i) and (ii) in the case where no failure
occurs.

Failure can either occur in step 6 - with probability at most 27"~ by the
remark before theorem 3.2 - or in the computation of w in step 4. This step is
executed by taking 8ln random monic polynomials in F[t] of degree L, and

testing them for irreducibility. If all of them are reducible, 'failure” is
returned. This happens with probability at most

(1 - Eli_)am <e-2n g g-n-1

§ince a random polynomial is reducible with probability at most 1 — Ell_ (Rabin
[80], Lemma 2). Therefore the total failure probability is at most 27™.

For the timing estimate, first note that d, < n, dy < n? d = Rd,d, < 2n3,
l < 2m < 2n%, and the total degree n* of f "' is not more than n? Step 1 tekes

0(n?) operations, and step 3 O(n*) operations. In step 2, the ged can be com-
puted in O(d®log%d) operations in F' by Theorem 3.1, and the p-th root in

o(d log ‘%—) operations in F, since deg, f = d,, with d, from step 4. The prime

number I can be found deterministically in O(m?3/ 2log®m) bit operations, and
w in O(8in m®log®m loglogm logg) or O(n7log3n logq) operations in #'

259

(Rabin [80]). Steps 5 and 7 both take 0(d,d?) operations. The cost of the algo-
rithm is dominated by the running time for step 6, which is

0((n*)%d% + n(d3 + df logd, log(g*))

or 0(n' + nSlogn logq) operations in F*. Each operation in F* can be simu-
lated by O(l log*l) operations in F by Lemma 2.3, and O(l log*l log®q) bit
operations. Thus the total cost is

0(n7 log*n log®q (n5 + logn logq))
bit operations.

The number of random bit choices is 0(8in | logg) or O(nSlagq) in step 4,
and O(nd, logd, logq) or O(n? logn logq) in step 5. [J

We note that if g >d, then the ealgorithm uses F' = F and runs in
0(n3 log2q(n" + logn logg)) bit operations.

Once we have found one nontrivial factor using BIVARIATE FACTORING, we
can of course apply the algorithm to this partial factorization. Repeating this
yields a probabilistic algorithm which returns either the complete factoriza-
tion of the input polynomial, or "failure”. The total number of bit operations is

0(nBlog*n log?q (n% + logn lo ,
g gq

and the number of random bit choices is O(nSlogg). The failure probability
can be made as small as n27?" < 2~ by repeating the algorithm twice at each
stage. So we have

Corollary 3.3. Let F be a finite field with ¢ elements. Polynomials in F[z,y] of
total degree m can probabilistically (Las Vegas) be factored completely in time
polynomial in n and logg.

4. Same Variants

4.1. A parallel version. The basic subroutines for algorithm BIVARIATE FAC-
TORING are a univariate factoring procedure over finite fields, computing
univariate gecd's, and solving systems of linear equations over a finite field
(which also solves the interpolation step in BIVARIATE GCD). In von zur Gathen
[83], all these tasks have been shown to be probabilistically solvable in paraliel
with O(log®n) operations in F (respectively O(log?n log?k logp) for factoring).
Here n is the total degree of the input polynomial, p = charF, and
q = p*¥ = #F. For a complete factorization, one would lift all irreducible fac-
tors of f{z.,0) from step 1 of QUICK FACTORING in parallel, using a quadratic
Newton procedure (see e.g. von zur Gathen [81]), and then discard duplicate
ones. As our model of parallel computation we can take algebraic circuits, with
one arithmetic operation or test in F' as the basic operation of a gate. Also a

260

prime number I as in step 4 of BIVARIATE FACTORING can be found in parallel
with O(log?®n) bit operations.

The resulting Las Vegas algorithm returns either the complete factoriza-
tion of the input polynomial, or "failure”; the latter with probability no more
than 27". The number of processors required is polynomial in n and logg.
Thus we have

Theorem 4.1. Let F be a finite field with ¢ = p* elements, where p = charF.
Polynomials in F[z,y] of total degree n can probabilistically be factored com-
pletely in parallel time O(log?n log?(kn) logp + logn logq).

The second summand comes from the computation of p-th roots in step 2 of
BIVARIATE FACTORING, and the first summand from step 1 of QUICK FACTORING,
where a univariate polynomial of degree at most n over a field with not more
than p"’"z elements has to be factored. In step 4 of QUICK FACTORING, each
step of the quadratic Newton iteration has to compute t € E[y] such that
t fr(a,.y) =1mod y?**. This congruence can be considered as a system of
linear equations over the ground field, and solved in parallel time O(log?n).

4.2. A deterministic version. Algorithm BIVARIATE FACTORING can be viewed as
a reduction from bivariate factoring to univariate factoring over finite fields.
All steps of this reduction are deterministic, except the choice of w € F[¢] in
step 4. We need w in order to construct F* with #F* > d, so that step 5 can be
executed. But it is sufficient to have w* € F[¢] with I = degw™* = log,d, and
use F* = F[t]/(w*). Such an w"* can be found deterministically in time poly-
nomial in d. The problem is that we are not guaranteed that an irreducible
factor of f is irreducible in F*{x,y]. Our choice for the degree of w was
motivated by the fact that then irreducible factors remain irreducible in
F*[z,y] (von zur Gathen [83a]), and we can avoid the costly norm computation

below.

However, thé case of w™* as above can be saIvaged by introducing the norm

N(@) = Npz) Plz.y)(9)= (1) res (w,g)

for g € F*[z,y], where we choose § € Flz,y,t] of degree i<l in ¢ such that
g=g mod w (see van der Waerden [53], p.89). It is well-known that if
g € Ff[z,y] is an irreducible factor of f, then N(g) € F[z,y] is a power of an
irreducible factor of f (Weyl [40], 1.5). This irreducible factor is easily found
as the gcd of f and N{(g). Thus we have

261

Theorem 4.2. Let F be a finite field with ¢ elements.

(i) Factoring bivariate polynomials over F of {otal degree m is deterministi-
cally reducible to factoring univariate polynomials of degree at most n
(over a small finite extension field of 7). The number of operations for the
reduction is polynomial in n and logq.

(ii) Bivariate polynomials over F of degree n can be factored deterministically
with a number of operations that is polynomial inn and q.

Proof. The above discussion has proven (i); we have to factor a univariate poly-
nomial over a finite extension field 7* of F. For (ii), we use any of the deter-

ministic variants of Berlekamp's algorithm. [

4.3. A multivariate version. The algorithm can easily be modified for factoring
multivariate polynomials over a finite field with ¢ elements. One variable is
selected as the main variable, and constants are substituted for the remaining
variables. The resulting univariate polynomial is then factored and this factor-
ization lifted. See Kaltofen [83] for details.

The running time of the resulting probabilistic algorithm is polynomial in
the input size, and polynomial in the input size and g for the deterministic
version. The input size for a polynomial f € Flz,,...,z;] of degree d is
0(d*logq) in a "dense encoding".

Another measure of size - of greater practical relevance - is the length of a
"sparse encoding” of a multivariate polynomial, which is proportional to the
number of nonzero terms in the polynomial. Multivariate polynomials can be
factored in polynomial time also under this measure, taking input and output
size into account (von zur Gathen [83a]).

4.4. Remark. Our techniques do not allow to reduce the exponent 7 in the esti-
mate for QUICK FACTORING in Theorem 2.2(ii). However, it would be easy to
improve the running time of algorithm BIVARIATE FACTORING. In remark 2.4
we have indicated how to avoid the necessity of monic inputs. This would
result in an O(n"log*n log?q) probabilistic algorithm for factormg a bivariate
polynomial of degree n over a finite field with g elements.

We close with two open questions.

1. Given a polynomial f € Z,[z,y], can one decide the irreducibility of f
deterministically in time polynomial in degf and logp?

N

262

2. Let F be a finite field with g elements. We have (deterministically)
reduced the factorization of a bivariate polynomial f € F[z,y] of total
degree n to factoring univariate polynomials of degree at most n over a
(small) finite extension of F. The reduction is polynomial in n and loggq.
Does a similar reduction exist to factoring univariate polynomials over F
itself?

References

AYV. Aho, J.E. Hopcroft and J.D. Ullman, The design and analysis of computer
algorithms. Addison-Wesley, Reading M4, 1974.

M. Ben-Or, Probabilistic algorithms in finite fields. Proc. 22nd Symp. Founda-
tions Comp. Sci. IEEE, 1981, 394-398.

E.R. Berlekamp, Factoring polynomials over finite fields. Bell System Tech. J.
46 (1967), 1853-1859.

E.R. Berlekamp, Factoring polynomials over large finite fields. Math. Comp. 24
(1970), 713-735.

W.S. Brown, On Euclid’'s algorithm and the computation of polynomial Greatest
Common Divisors. J. ACM 18 (1971), 478-504.

D.G. Cantor and H. Zassenhaus, On algorithms for factoring polynomials over
finite fields. Math. Comp. 36 (1981), 587-592.

AL. Chistov and D.Yu. Grigoryev, Polynomial-time factoring of the multivari-
able polynomials over a global field. LOMI preprint E-5-82, Leningrad, 1982.

J.H. Davenport and B.M. Trager, Factorization over finitely generated fields.
Proc. 1981 ACM Symp. Symbolic and Algebraic Computation, ed. by P. Wang,
1981, 200-205.

J. von zur Gathen, Hensel and Newton methods in valuation rings. Tech.
Report 155(1981), Dept. of Computer Science, University of Toronto. To appear
in Math. Comp.

J. von zur Gathen, Parallel algorithms for algebraic problems. Proc. 15th ACM
Symp. Theory of Computing, Boston, 1983.

J. von zur Gathen [83a], Factoring sparse multivariate polynomials.
Manuscript, 1983.

G.H. Hardy and E.M. Wright, An introduction to the theory of numbers. Claren-
don Press, Oxford, 1962.

P 263

E. Kaltofen, A Polynomial Time Reduction from Bivariate to Univariate Integral
Polynomial Factorization. Proc. 23rd Symp. Foundations of Comp. Sci., IEEE,
1982, 57-64.

E. Kaltofen, Polynomial-time Reduction from Multivariate to Bivariate and
Univariate Integer Polynomial Factorization. Manuscript, 1983, submitted to
SIAM J. Comput.

D.E. Knuth, The Art of Computer Programming, Vol.2, 2nd Ed. Addison-Wesley,
Reading MA, 1981.

A. Lempel, G. Seroussi and S. Winograd, On the complexity of multiplication in
finite fields. Theor. Comp. Science 22 (1983), 285-296.

A K. Lenstra, Factoring multivariate polynomials over finite fields. Proc. 15th
ACM Symp. Theory of Computing, Boston, 1983.

AK. Lenstra, HW. Lenstra, and L. Lovdsz, Factoring polynomials with rational
coefficients. Math. Ann. 261 (1982), 515-534.

D.R. Musser, Algorithms for Polynomial Factorization. Ph.D. thesis and TR 134,
Univ. of Wisconsin, 1971.

M.0. Rabin, Probabilistic algorithms in finite fields. SIAM J. Comp. 9 (1980),
R73-280.

T. Schénemann, Grundziige einer allgemeinen Theorie der héheren Congruen-
zen, deren Modul eine reelle Primzahl ist. J. f. d. reine u. angew. Math. 31
(1846), 269-325.

B.L. van der Waerden, Modern Algebra, vol. 1. Ungar, New York, 1953.

H. Weyl, Algebraic theory of numbers. Princeton University Press, 1940.

