JOACHIM VON ZUR GATHEN & THOMAS LUCKING (2000). Subresultants revisited. In Proceedings of LATIN 2000, Punta del Este, Uruguay, G. H. GONNET, D. PANARIO &
A. VIOLA, editors, volume 1776 of Lecture Notes in Computer Science, 318-342. Springer-Verlag, Berlin, Heidelberg. ISBN 3-540-67306-7. ISSN 0302-9743. URL

http://dx.doi.org/10.1007/1071983933. FinalversioninTheoretical ComputerScience (2003).

This document is provided as a means to ensure timely dissemination of scholarly are maintained by the authors or by other copyright holders, notwithstanding that ing any of these documents will adhere to the terms and constraints invoked by poses. These works may not be posted elsewhere without the explicit written per-

and technical work on a non-commercial basis. Copyright and all rights therein these works are posted here electronically. It is understood that all persons copy- ~each copyright holder, and in particular use them only for noncommercial pur- mission of the copyright holder. (Last update 2016/05/

18-14 :20.)

SUBRESULTANTS REVISITED
Extended Abstract

JOACHIM VON ZUR GATHEN AND THOMAS LUCKING

FB Mathematik-Informatik, Universitdt Paderborn
33095 Paderborn, Germany
{gathen,luck}@upb.de

1 Introduction

1.1 Historical context

The Euclidean Algorithm was first documented by Euclid (320-275 BC). Knuth
(1981), p. 318, writes: “We might call it the granddaddy of all algorithms, be-
cause it is the oldest nontrivial algorithm that has survived to the present day.” It
performs division with remainder repeatedly until the remainder becomes zero.
With inputs 13 and 9 it performs the following:

This allows us to compute the greatest common divisor (ged) of two integers
as the last non-vanishing remainder. In the example, the gcd of 13 and 9 is
computed as 1.

At the end of the 17th century the concept of polynomials was evolving.
Researchers were interested in finding the common roots of two polynomials f
and g. One question was whether it is possible to apply the Euclidean Algorithm
to f and g. In 1707 Newton solved this problem and showed that this always
works in Qz].

1 3
3 2 _ 9 (T P\(902 _ 0
x°+2z° —x 2_(2:c+2)(2:c 2z 4)+

J J
1 1 1
23:2—23:—4=(§:c—1)(4a:+4)+0.

In this example f = 2° 4+ 222 — z — 2 and g = 222 — 2z — 4 have a greatest
common divisor 4x + 4, and therefore the only common root is —1. In a certain
sense the Euclidean Algorithm computes all common roots. If you only want to
know whether f and g have at least one common root, then the whole Euclidean

2 JOACHIM VON ZUR GATHEN AND THOMAS LUCKING

Algorithm has to be executed. Thus the next goal was to find an indicator for
common roots without using any division with remainder.

The key to success was found in 1748 by Euler, and later by Bézout. They
defined the resultant of f and g as the smallest polynomial in the coefficients of f
and g that vanishes if and only if f and g have a common root. In 1764 Bézout was
the first to find a matrix whose determinant is the resultant. The entries of this
Bézout matriz are quadratic functions of the coefficients of f and g. Today we
use the matrix discovered by Sylvester in 1840, known as the Sylvester matriz. Its
entries are simply coefficients of the polynomials f and g. Sylvester generalized
his definition and introduced what we now call subresultants as determinants
of certain submatrices of the Sylvester matrix. They are nonzero if and only if
the corresponding degree appears as a degree of a remainder of the Euclidean
Algorithm.

These indicators, in particular the resultant, also work for polynomials in
Z[z]. So the question came up whether it is possible to apply the Euclidean
Algorithm to f and g in Z[z] without leaving Z[z]. The answer is no, as illustrated
in the example above, since division with remainder is not always defined in Z[z],
although the gecd exists. In the example it is x + 1.

However, in 1836 Jacobi found a way out. He introduced pseudo-division:
he multiplied f with a certain power of the leading coefficient of g before per-
forming the division with remainder. This is always possible in Z[z]. So using
pseudo-division instead of division with remainder in every step in the Euclidean
Algorithm yields an algorithm with all intermediate results in Z[z].

About 40 years later Kronecker did research on the Laurent series in z=! of
g/ f for two polynomials f and g. He considered the determinants of a matrix
whose entries are the coefficients of the Laurent series of g/ f. He obtained the
same results as Sylvester, namely that these determinants are nonzero if and
only if the corresponding degree appears in the degree sequence of the Euclidean
Algorithm. Furthermore Kronecker gave a direct way to compute low degree
polynomials s, ¢ and r with sf + tg = r via determinants of matrices derived
again from the Laurant series of g/f, and showed that these polynomials are
essentially the only ones. He also proved that the polynomial r, if nonzero,
agrees with a remainder in the Euclidean Algorithm, up to a constant multiple.
This was the first occurrence of polynomial subresultants.

In the middle of our century, again 70 years later, the realization of comput-
ers made it possible to perform more and more complicated algorithms faster
and faster. However, using pseudo-division in every step of the Euclidean Al-
gorithm causes exponential coefficient growth. This was suspected in the late
1960’s. Collins (1967), p. 139 writes: “Thus, for the Euclidean algorithm, the
lengths of the coefficients increases exponentially.” In Brown & Traub (1971)
we find: “Although the Euclidean PRS algorithm is easy to state, it is thor-
oughly impractical since the coefficients grow exponentially.” An exponential
upper bound is in Knuth (1981), p. 414: “Thus the upper bound |[...] would
be approximately N0-52414)" " and experiments show that the simple algorithm
does in fact have this behavior; the number of digits in the coefficients grows

SUBRESULTANTS REVISITED 3

exponentially at each step!”. However, we did not find a proof of an exponential
lower bound; our bound in Theorem 7.3 seems to be new.

One way out of this exponential trap is to make every intermediate result
primitive, that is, to divide the remainders by the greatest common divisors of
their coefficients, the so-called content. However, computing the contents seemed
to be very expensive since in the worst case the ged of all coefficients has to be
computed. So the scientists tried to find divisors of the contents without using
any gcd computation. Around 1970, first Collins and then Brown & Traub rein-
vented the polynomial subresultants as determinants of a certain variant of the
Sylvester matrix. Habicht had also defined them independently in 1948. Collins
and Brown & Traub showed that they agree with the remainders of the Euclidean
Algorithm up to a constant factor. They gave simple formulas to compute this
factor and introduced the concept of polynomial remainder sequences (PRS),
generalizing the concept of Jacobi. The final result is the subresultant PRS that
features linear coefficient growth with intermediate results in Z[z].

Since then two further concepts have come up. On the one hand the fast
EFEA allows to compute an arbitrary intermediate line in the Euclidean Scheme
directly. Using the fast O(n logn log logn) multiplication algorithm of Schénhage
and Strassen, the time for a ged reduces from O(n?) to O(nlog?nlog logn)
field operations (see Strassen (1983)). On the other hand, the modular EEA
is very efficient. These two topics are not considered in this thesis; for further
information we refer to von zur Gathen & Gerhard (1999), Chapters 6 and 11.

1.2 Outline

After introducing the notation and some well-known facts in Section 2, we start
with an overview and comparison of various definitions of subresultants in Sec-
tion 3. Mulders (1997) describes an error in software implementations of an in-
tegration algorithm which was due to the confusion caused by the these various
definitions. It turns out that there are essentially two different ways of defining
them: the scalar and the polynomial subresultants. Furthermore we show their
relation with the help of the Euclidean Algorithm. In the remainder of this work
we will mainly consider the scalar subresultants.

In Section 4 we give a formal definition of polynomial remainder sequences
and derive the most famous ones as special cases of our general notion. The
relation between polynomial remainder sequences and subresultants is exhibited
in the Fundamental Theorem 5.1 in Section 5. It unifies many results in the
literature on various types of PRS which can be derived as corollaries from
this theorem. In Section 6 we apply it to the various definitions of polynomial
remainder sequences already introduced. This yields a collection of results from
Collins (1966, 1967, 1971, 1973), Brown (1971, 1978), Brown & Traub (1971),
Lickteig & Roy (1997) and von zur Gathen & Gerhard (1999). Lickteig & Roy
(1997) found a recursion formula for polynomial subresultants not covered by the
Fundamental Theorem. We translate it into a formula for scalar subresultants
and use it to finally solve an open question in Brown (1971), p. 486. In Section 7
we analyse the coefficient growth and the running time of the various PRS.

4 JOACHIM VON ZUR GATHEN AND THOMAS LUCKING

Finally in Section 8 we report on implementations of the various polynomial
remainder sequences and compare their running times. It turns out that comput-
ing contents is quite fast for random inputs, and that the primitive PRS behaves
much better than expected.

Much of this Extended Abstract is based on the existing literature. The
following results are new:

— rigorous and general definition of division rules and PRS,

— proof that all constant multipliers in the subresultant PRS for polynomials
over an integral domain R are also in R,

— exponential lower bound for the running time of the pseudo PRS (algorithm).

2 Foundations

In this chapter we introduce the basic algebraic notions. We refer to von zur Ga-
then & Gerhard (1999), Sections 2.2 and 25.5, for the notation and fundamental
facts about greatest common divisors and determinants. More information on
these topics is in Hungerford (1990).

2.1 Polynomials

Let R be a ring. In what follows, this always means a commutative ring with 1.

A basic tool in computer algebra is division with remainder. For given poly-
nomials f and ¢ in R[z] of degrees n and m, respectively, the task is to find
polynomials ¢ and r in R[z] with

f=qg+rand degr < degg. (2.1)
Unfortunately such ¢ and r do not always exist.

Example 2.2. Tt is not possible to divide z? by 2z + 3 with remainder in Z[z]
because 2 = (uz + v)(2z + 3) + r with u,v,r € Q has the unique solution
uw=1/2,v =0 and r = —3/2, which is not over Z.

If defined and unique we call ¢ = quo(f,g) the quotient and r = rem(f, g)
the remainder. A ring with a length function (like the degree of polynomials)
and where division with remainder is always defined is a Euclidean domain. R[x]
is a Euclidean domain if and only if R is a field. Moreover a solution of (2.1) is
not necessarily unique if the leading coefficient lc(g) of g is a zero divisor.

Ezample 2.3. Let R = Zg and consider f = 422 4+ 2z and g = 2z + 1. With
¢ =2z, r =20
g =2x+4,r, =4

we obtain

qg+r =222z +1) +0 =42 4+ 2z = f,
@g+ro= 2 +4)(2r+1)+4=42° + 10z + 8 = 4% + 22 = f.

Thus we have two distinct solutions (g1,71) and (ga2,72) of (2.1).

SUBRESULTANTS REVISITED 5

A way to get solutions for all commutative rings is the general pseudo-division
which allows multiplication of f by a ring element a:

af =qg+r, degr < degg. (2.4)

If @ = gn=™%! then this is the (classical) pseudo-division. If Ic(g) is not a zero
divisor, then (2.4) always has a unique solution in R[z]. We call ¢ = pquo(f, g)
the pseudo-quotient and r = prem(f, g) the pseudo-remainder.

Example 2.2 continued. For x? and 2z + 3 we get the pseudo-division
22.2%2 = (22 - 3)(2z+3) +9
A simple computation shows that we cannot choose a = 2.

Lemma 2.5.

(i) Pseudo-division always yields a solution of (2.4) in R|x].
(i) If Ic(g) is not a zero divisor, then any solution of (2.4) has degqg=n — m.

Lemma 2.6. The solution (q,r) of (2.4) is uniquely determined if and only if
lc(g) is not a zero-divisor.

Let R be a unique factorization domain. We then have ged(f,g) € R for
f,9 € R[z], and the content cont(f) = ged(fo,- .-, fn) € Rof f =3, fia.
The polynomial is primitive if cont(f) is a unit. The primitive part pp(f) is
defined by f = cont(f) - pp(f). Note that pp(f) is a primitive polynomial.

The Euclidean Algorithm computes the ged of two polynomials by iterating
the division with remainder:

Tic1l = T + Tit1. (2.7

3 Various notions of subresultants

3.1 The Sylvester matrix

The various definitions of the subresultant are based on the Sylvester matrix.
Therefore we first take a look at the historical motivation for this special matrix.
Our goal is to decide whether two polynomials f = Eog i<n f;z? and g =
20<j<m g;7? € R[z] of degree n > m > 0 over a commutative ring R in the
indeterminate x have a common root. To find an answer for this question, Euler
(1748) and Bézout (1764) introduced the (classical) resultant that vanishes if
and only if this is true. Although Bézout also succeeded in finding a matrix
whose determinant is equal to the resultant, today called Bézout matriz, we will
follow the elegant derivation in Sylvester (1840). The two linear equations

fo%n + foo1@n_1 + -0 + fizr + foxo =0
ImTm + Gm—1Tm—1 + -+ + g1%T1 + goxo =0

6 JOACHIM VON ZUR GATHEN AND THOMAS LUCKING

in the indeterminates o, ... ,z, are satisfied if z; = o7 for all j, where « is a
common root of f and g. For n > 1 there are many more solutions of these two
linear equations in many variables, but Sylvester eliminates them by adding the
(m — 1) + (n — 1) linear equations that correspond to the following additional

conditions:
zf(z) =0,..., 2™ f(z) =0,
zg(x) =0,..., a" tg(z) =0.

These equations give a total of n + m linear relations among the variables

$m+n71;"' >, Zo:
fnmm—i-n—l + -+ fOxm—l =0
fnTn + fno1Tpo1 + -0 + fozo =0

ImTmtn-1+ - + GoTn-1 =0

ImTm + Gm—1Tm—1 + -+ + goxo =0

Clearly z; = o gives a solution for any common root « of f and g, but the point
is that (essentially) the converse also holds: a solution of the linear equations
gives a common root (or factor). The (n + m) X (n + m) matrix, consisting
of coefficients of f and g, that belongs to this system of linear equations is
often called Sylvester matriz. In the sequel we follow von zur Gathen & Gerhard
(1999), Section 6.3, p. 144, and take its transpose.

Definition 3.1. Let R be a commutative ring and let f = EO<j<n [z’ and
9 = Do<j<m 9;27 € R[z] be polynomials of degree n > m > 0, respectively.
Then the (n +m) x (n +m) matriz

fn 9m
fnfl fn 9m—1 9m
fn [
Jn-1

Syl(f,9) = nhog
9o gm
fo :

fo
fo 90
m M

is called the Sylvester matrix of f and g.

SUBRESULTANTS REVISITED 7

Remark 8.2. Multiplying the (n + m — j)th row by 2/ and adding it to the
last row for 1 < j < n + m, we get the (n + m) x (n + m) matrix S*. Thus

det(Syl(f, g)) = det(Syl*(f,9))-

More details on resultants can be found in Biermann (1891), Gordan (1885) and
Haskell (1892). Computations for both the univariate and multivariate case are
discussed in Collins (1971).

3.2 The scalar subresultant

We are interested in finding out which degrees appear in the degree sequence of
the intermediate results in the Euclidean Algorithm. Below we will see that the
scalar subresultants provide a solution to this problem.

Definition 3.3. Let R be a commutative ring and f = Zogjgn fix? and g =
EO<j<m 9;%% € R[z] polynomials of degree n > m > 0, respectively. The deter-
minant o (f,g) € R of the (m +n — 2k) x (m +n — 2k) matriz

In 9m
fn—l fn Im—1 Im
Jn—mtkgr o0 oo fa Gryr oo Im
fk+1 fmgm—n+k+1""""""gm
f2k7m+1 fk g2k7n+1gk
m‘:k n‘:k

is called the kth (scalar) subresultant of f and g. By convention an f; or
g; with 3 < 0 is zero. If f and g are clear from the context, then we write Sy
and oy, for short instead of S, (f,9) and or(f,g).

Sylvester (1840) already contains an explicit description of the (scalar) subresul-
tants. In Habicht (1948), p. 104, oy, is called Nebenresultante (minor resultant)
for polynomials f and g of degrees n and n — 1. The definition is also in von zur
Gathen (1984) and is used in von zur Gathen & Gerhard (1999), Section 6.10,
p- 169.

Remark 3.4.
(i) So = Syl(f, g) and therefore o¢ = det(Sp) is the resultant.

(i) om =gn ™

8 JOACHIM VON ZUR GATHEN AND THOMAS LUCKING

(iii) Sy is the matrix obtained from the Sylvester matrix by deleting the last 2k
rows and the last k£ columns with coefficients of f, and the last columns with
coefficients of g.

(iv) Sk is a submatrix of S; if k > 4.

3.3 The polynomial subresultant

We now introduce two slightly different definitions of polynomial subresultants.
The first one is from Collins (1967), p. 129, and the second one is from Brown
& Traub (1971), p. 507 and also in Zippel (1993), Chapter 9.3, p. 150. They
yield polynomials that are related to the intermediate results in the Euclidean
Algorithm.

Definition 3.5. Let R be a commutative ring, and f = EOSJ’Sn fiz? and g =
20<j<m g;7% € R[] polynomials of degree n > m > 0. Let My, = M (f,g) be
the (n+m —2k) x (n+m —2k) submatriz of Syl(f, g) obtained by deleting the last
k of the m columns of coefficients of f, the last k of the n columns of coefficients
of g and the last 2k + 1 rows except row (n+m —i—k), for 0 < k <m and 0 <
i < n. The polynomial Ry(f,9) = Y g<ic, det(M)z’ € R[z] is called the kth
polynomial subresultant of f and g. In fact Collins (1967) considered the
transposed matrices. If f and g are clear from the context, then we write Ry for
short instead of Ry (f,g). Note that det(M;x) = 0 if i > k since then the last row
of My, is identical to the (n+m —i— k)th row. Thus Ry =Y ;<) det(Mr)z'.

Remark 3.6.

(i) Moo = Syl(f, g) and therefore Ry = det(Myo) is the resultant.
(ii) Remark 3.4(i) implies o9 = Ry.

Definition 3.7. Let R be a commutative ring and f = ZO<j<n fi7? and g =

20<j<m 9;27 € R[z] polynomials of degree n > m > 0. We consider the determi-
nant Zy(f, g) = det(M}) € R[z] of the (n+m—2k) x (n+m—2k) matriz M;; ob-
tained from My, by replacing the last row with (x™ k=1 f ... f an k-1lg ... g).

Table 1 gives an overview of the literature concerning these notions. There
is a much larger body of work about the special case of the resultant, which we
do not quote here.

3.4 Comparison of the various definitions

As in Brown & Traub (1971), p. 508, and Geddes et al. (1992), Section 7.3,
p- 290, we first have the following theorem which shows that the definitions in
Collins (1967) and Brown & Traub (1971) describe the same polynomial.

Theorem 3.8.

(i) If or(f,9) # 0, then ox(f, g) is the leading coefficient of R (f,g). Otherwise,
deg Ry (f,9) < k.

SUBRESULTANTS REVISITED 9

Definition Authors

or(f,g9) =det(Sk) € R Sylvester (1840), Habicht (1948)

von zur Gathen (1984)

von zur Gathen & Gerhard (1999)
Ri(f,9) = Yo<icn det(Mix)a’ |Collins (1967), Loos (1982)

Geddes et al. (1992)

= Zr(f,g) = det(My) € R[z] |Brown & Traub (1971)

Zippel (1993), Lickteig & Roy (1997)
Reischert (1997)

Table 1. Definitions of subresultants

Lemma 3.9. Let F be a field, f and g in F[z] be polynomials of degree n >
m > 0, respectively, and let r;, s; and t; be the entries in the ith row of the
Extended Fuclidean Scheme, so that r; = s;f + t;g for 0 < i < £. Moreover, let
pi = lc(r;) and n; = degr; for all i. Then

On;

-1 = Ry, for2 <i < /.

i
Remark 3.10. Let f and g be polynomials over an integral domain R, let F' be
the field of fractions of R, and consider the Extended Euclidean Scheme of f
and g in F[z]. Then the scalar and the polynomial subresultants are in R and
R[z], respectively, and Lemma 3.9 also holds:

On;

-r; = Ry, € R[z].

(]

Note that r; is not necessarily in R[z], and p; not necessarily in R.

4 Division rules and Polynomial Remainder Sequences
(PRS)

We cannot directly apply the Euclidean Algorithm to polynomials f and g over
an integral domain R since polynomial division with remainder in R[z], which
is used in every step of the Euclidean Algorithm, is not always defined. Hence
our goal now are definitions modified in such a way that they yield a variant of
the Euclidean Algorithm that works over an integral domain. We introduce a
generalization of the usual pseudo-division, the concept of division rules, which
leads to intermediate results in R[x].

10 JOACHIM VON ZUR GATHEN AND THOMAS LUCKING

Definition 4.1. Let R be an integral domain. A one-step division rule is a par-
tial mapping
R: R[z]* - R?

such that for all (f,g) € def(R) there exist q,r € R[x] satisfying

(i) R(f,9) = (a,B),
(i) af = qg+ Br and degr < degg.

Recall that def(R) C R[z]? is the domain of definition of R, that is, the set
of (f,g) € R[z]?> at which R is defined. In particular, R: def(R) — R? is a
total map. In the examples below, we will usually define one-step division rules
by starting with a (total or partial) map Ro: R[z]?> = R? and then taking R
to be the maximal one-step division rule consistent with Ry. Thus

def(R) = {(f,9) € Rlz]* :3a, 8 € R, 3¢, € Rla]
(@,8) = Ro(f,9) and (ii) holds},

and R is Ry restricted to def(R). Furthermore (f,0) is never in def(R) (“you
can’t divide by zero”), so that

def(R) € Dmax = R[z] x (R[z] \ {0}).

We are particularly interested in one-step division rules R with def(R) = Dppax.
In our examples, (0, g) will always be in def(R) if g # 0.

We may consider the usual remainder as a partial function rem: R[z]? ——
R[z] with rem(f,g) = r if there exist ¢,r € R[z] with f = gg + r and degr <
deg g, and def(rem) maximal. Recall from Section 2 the definitions of rem, prem
and cont.

Example 4.2. Let f and g be polynomials over an integral domain R of degrees
n and m, respectively, and let f, = lc(f), gm = lc(g) # 0 be their leading
coefficients. Then the three most famous types of division rules are as follows:

— classical division rule: R(f,9) = (1,1).
— monic division rule: R(f,g) = (1,lc(rem(f, g))).
— Sturmian division rule: R(f,g) = (1,-1).

Examples are given below. When R is a field, these three division rules have
the largest possible domain of definition def(R) = Dmax, but otherwise, it may
be smaller; we will illustrate this in Example 4.7. Hence they do not help us in
achieving our goal of finding rules with maximal domain Dy,,,. But there exist
two division rules which, in contrast to the first examples, always yield solutions
in R[z]:
— pseudo-division rule: R(f,g) = (g% ™+, 1).

In case R is a unique factorization domain, we have the

n—m+41

— primitive division rule: R(f,g) = (¢ ,cont(prem(f, g)))-

SUBRESULTANTS REVISITED 11

For algorithmic purposes, it is then useful for R to be a Euclidean domain.

The disadvantage of the pseudo-division rule, however, is that in the Eu-
clidean Algorithm it leads to exponential coefficient growth; the coefficients of
the intermediate results are usually enormous, their bit length may be exponen-
tial in the bit length of the input polynomials f and g. If R is a UFD, we get
the smallest intermediate results if we use the primitive division rule, but the
computation of the content in every step of the Euclidean Algorithm seems to
be expensive. Collins (1967) already observed this in his experiments. Thus he
tries to avoid the computation of contents and to keep the intermediate results
“small” at the same time by using information from all intermediate results in
the EEA, not only the two previous remainders. Our concept of one-step division
rules does not cover his method. So we now extend our previous definition, and
will actually capture all the “recursive” division rules from Collins (1967, 1971,
1973), Brown & Traub (1971) and Brown (1971) under one umbrella.

Definition 4.3. Let R be an integral domain. A division rule is a partial map-
ping

R: R[z)* = (R?)*
associating to (f,g) € def(R) a sequence ((az,B2),--- , (@er1,Ber1)) of arbitrary
length £ such that for oll (f,g) € def(R) there exist £ € N>q, ¢1,...,q¢ € R[]
and ro, ... ,rer1 € R[z] satisfying

(7’) To = f;rl =9

(i%3) a;ri—o = qi—1Ti—1 + Bir; and degr; < degri_1
for2<i<{£+1. The integer £ = |R(f,g)| is the length of the sequence.

A division rule where £ = 1 for all values is the same as a one-step division
rule, and from an arbitrary division rule we can obtain a one-step division rule
by projecting to the first coordinate (az, 32) if £ > 2. Using Lemma 2.6, we find
that for all (f,g) € def(R), ¢;_1 and r; are unique for 2 < ¢ < £+ 1. If we have
a one-step division rule R* which is defined at all (r;_o,7; 1) for 2<i</£+1
(defined recursively), then we obtain a division rule R by using R* in every step:

Ri(f,9) = R*(ri-2,7i1) = (o, B).

If we truncate R at the first coordinate, we get R* back. But the notion of
division rules is strictly richer than that of one-step division rules; for example
the first step in the reduced division rule below is just the pseudo-division rule,
but using the pseudo-division rule repeatedly does not yield the reduced division
rule.

Ezample 4.2 continued. Let f =r19,9 = T1,72,...,7¢ € R[x] be as in Definition
4.3, let n; = degr; be their degrees, p; = le(r;) their leading coefficients, and
d; = n; —nijp1 € N>g for 0 < i < £ (if ng > nq). We now present two different
types of recursive division rules. They are based on polynomial subresultants. It

12 JOACHIM VON ZUR GATHEN AND THOMAS LUCKING

is not obvious that they have domain of definition Dy, since divisions occur in
their definitions. We will show that this is indeed the case in Remarks 6.8 and
6.12.

— reduced division rule: R;(f,9) = (a;, ;) for 2 <i</l+1,
where we set a1 = 1 and

(i, Bi) = (PF T uy) for 2<i < L +1.

— subresultant division rule: R;(f,9) = (o, 5;) for 2 <i <L +1,
where we set pg = 1, 92 = —1, ¥3,... ,¥y1 € R with

(i, B) = (pF5H —piagp{=*) for 2<i <41,
i = (=pica) * L for 3<i < U+ 1.

The subresultant division rule was invented by Collins (1967), p. 130. He tried
to find a rule such that the r;’s agree with the polynomial subresultants up to a
small constant factor. Brown (1971), p. 486, then provided a recursive definition
of the a; and f; as given above. Brown (1971) also describes an “improved
division rule”, where one has some magical divisor of p;.

We note that the exponents in the recursive definition of the ;’s in the
subresultant division rule may be negative. Hence it is not clear that the 3;’s are
in R. However, we will show this in Theorem 6.15, and so answer the following
open question that was posed in Brown (1971), p. 486:

Question 4.4. “At the present time it is not known whether or not these equa-
tions imply V;,3; € R.”

By definition, a division rule R defines a sequence (ro,...,7r¢) of remain-
ders; recall that they are uniquely defined. Since it is more convenient to work
with these “polynomial remainder sequences”, we fix this notion in the following
definition.

Definition 4.5. Let R be a division rule. A sequence (ro,... ,r¢) with each r; €
R[x] \ {0} is called a polynomial remainder sequence (PRS) for (f,g) according
to R if

(7’) To = .f;rl =9,
(”) Rz(fa g) = (aiaﬂi))

(i#) a;ri—2 = qi—1Ti—1 + BiTs,

for 2 < i < £+ 1, where £ is the length of R(f,g). The PRS is complete if
rev1 = 0. It is called normal if d; = degr; —degrips =1 for1 <i</{-1
(Collins (1967), p. 128/129).

In fact the remainders for PRS according to arbitrary division rules over an
integral domain only differ by a nonzero constant factor.

SUBRESULTANTS REVISITED 13

Proposition 4.6. Let R be an integral domain, f,g € R[z] andr = (ro,... ,T¢)
and r* = (r§,... ,7}.) be two PRS for (f,g) according to two division rules R
and R*, respectively, none of whose results a;, 3;,aj, B; is zero. Then r; = v;r;

with < 8
a;_opBiok
Vi = H % € F\ {0}
0<k<ij2z—1 i 2kPi-2k

for 0 <i < min{l,¢*}, where F is the field of fractions of R.

The proposition yields a direct way to compute the PRS for (f, g) according
to R* from the PRS for (f, g) according to R and the «;, 8;, af, 8F. In particular,
the degrees of the remainders in any two PRS are identical.

In Example 4.2 we have seen seven different division rules. Now we consider
the different polynomial remainder sequences according to these rules. Each PRS
will be illustrated by the following example.

Ezxample 4.7. We perform the computations on the polynomials

f=ro=92%—272* — 2723 + 722 + 18z — 45 and
g=ry =3z*—422 -9z + 21

over R = QQ and, wherever possible, also over R = Z.

i classical ‘ monic Sturmian pseudo
0 9z° — 272" — 272 + 722° + 18z — 45
1 3z* — 4z® — 9z + 21
2| —11z® — 27z + 60 |2° + 21z — 80| 112®> — 272+ 60| —297z> — 729z + 1620
3| 164880, 4 248981, _ 27659 164880, 4 24893113945 333 040z — 4899 708 873
4 198120851 1 — 1959126851 | 1659 945 865 306 233 453 993
% primitive reduced subresultant
0 925 — 272" — 272 + 722 + 18z — 45
1 3z* — 42? — 9r + 21
2|—11z* — 27z + 60| —297z> — 729z + 1620 | 297z> + 729z — 1620
3| 18320z — 27659 |120 197 520z — 181470 699|13 355 280z — 20 163 411
4 -1 86915 463 129 9657273 681

1. Classical PRS. The most familiar PRS for (f,g) is obtained according
to the classical division rule. Collins (1973), p. 736, calls this the natural
Euclidean PRS (algorithm). The intermediate results of the classical PRS
and of the Euclidean Algorithm coincide.

2. Monic PRS. In Collins (1973), p. 736, the PRS for (f, g) according to the
monic division rule is called monic PRS (algorithm). The r; are monic for
2 < i < £, and we get the same intermediate results as in the monic Euclidean
Algorithm in von zur Gathen & Gerhard (1999), Section 3.2, p. 47.

14 JOACHIM VON ZUR GATHEN AND THOMAS LUCKING

3. Sturmian PRS. We choose the PRS for (f, g) according to the Sturmian di-
vision rule as introduced in Sturm (1835). Kronecker (1873), p. 117, Habicht
(1948), p. 102, and Loos (1982), p. 119, deal with this generalized Sturmian
PRS (algorithm). Kronecker (1873) calls it Sturmsche Reihe (Sturmian se-
quence), and in Habicht (1948) it is the verallgemeinerte Sturmsche Kette
(g9eneralized Sturmian chain). If g = 0f /0x as in Habicht (1948), p. 99, then
this is the classical Sturmian PRS (algorithm). Note that the Sturmian PRS
agrees with the classical PRS up to sign.

If R is not a field, then Example 4.7 shows that the first three types of PRS
may not have Dy, as their domain of definition. In the example they are only
of length 1. But fortunately there are division rules that have this property.

4. Pseudo PRS. If we choose the PRS according to the pseudo-division rule,
then we get the so-called pseudo PRS. Collins (1967), p. 138, calls this the
Euclidean PRS (algorithm) because it is the most obvious generalization of
the Euclidean Algorithm to polynomials over an integral domain R that is
not a field. Collins (1973), p. 737, also calls it pseudo-remainder PRS.

5. Primitive PRS. To obtain a PRS over R with minimal coeflicient growth,
we choose the PRS according to the primitive division rule which yields
primitive intermediate results. Brown (1971), p. 484, calls this the primitive
PRS (algorithm).

6. Reduced PRS. A perceived drawback of the primitive PRS is the (seem-
ingly) costly computation of the content; recently the algorithm of Cooper-
man et al. (1999) achieves this with an expected number of less than two
integer ged’s. In fact, in our experiments in Section 8, the primitive PRS
turns out to be most efficient among those discussed here. But Collins (1967)
introduced his reduced PRS (algorithm) in order to avoid the computation of
contents completely. His algorithm uses the reduced division rule and keeps
the intermediate coeflicients reasonably small but not necessarily as small as
with the primitive PRS.

7. Subresultant PRS. The reduced PRS is not the only way to keep the coef-
ficients small without computing contents. We can also use the subresultant
division rule. According to Collins (1967), p. 130, this is the subresultant
PRS (algorithm).

5 Fundamental Theorem on subresultants

Collins’ Fundamental Theorem on subresultants expresses an arbitrary subresul-
tant as a power product of certain data in the PRS, namely the multipliers o and
[and the leading coefficients of the remainders in the Euclidean Algorithm. In
this section our first goal is to prove the Fundamental Theorem on subresultants
for polynomial remainder sequences according to an arbitrary division rule R.

The following result is shown for PRS in Brown & Traub (1971), p. 511,
Fundamental theorem, and for reduced PRS in Collins (1967), p. 132, Lemma 2,
and p. 133, Theorem 1.

SUBRESULTANTS REVISITED 15

Fundamental Theorem 5.1. Let f and g € R[x] be polynomials of degrees
n > m > 0, respectively, over an integral domain R, let R be a division rule and
(ro,---,7¢) be the PRS for (f,g) according to R, («;, B;) = Ri(f,g) the constant
multipliers, n; = degr; and p; = lc(r;) for 0 < i < ¢, and d; = n; — niq1 for
0<i<l—1.

(i) For 0 < j < nq, the jth subresultant of (f,g) is

B\
o;(f,9) = (=1)Pp 7] (a_> pret
2<k<i K
if j = n; for some 1 < i < £, otherwise 0, where b; = Y 5 fc;(Np—2 —
n;) (Ng—1 — ng).

(i) The subresultants satisfy for 1 < i < £ the recursive formulas

Ony (.fa g) = pfo and i
Onite (f,9) =on:(f,9)- (_1)di(no_ni+1+i+1) (pi+1pi)di H2Sk§z’+1 (g_:)

Corollary 5.2. Let R be a division rule and (rg,... ,r¢) be the PRS for (f,g)
according to R, let n; = degr; for 0 < i < £ be the degrees in the PRS, and let
0<k<ny. Then

o £ 0<= Fi: k =n,.

6 Applications of the Fundamental Theorem

Following our program, we now derive results for the various PRS for polynomials
f,9 € R[z] of degrees n > m > 0, respectively, over an integral domain R,
according to the division rules in Example 4.2.

Corollary 6.1. Let (r9,-.. ,7¢) be a classical PRS and 1 <i < {. Then
. . odi— Ng_2—"N
(i) oni(f9) = (1"p II et ™.

2<k<i
(i5) The subresultants satisfy the recursive formulas

ony (f,9) = p°, and ,

Onit1 (f7 g) = 0On; (f7 g) : (_l)di (Ro—mit1titl) (pi—i—lpz')di .
If the PRS is normal, then this simplifies to:
(i) O (f9) = (=1)(@FVED pplott TT 2 | fori > 2.

3<k<i
(iv) The subresultants satisfy the recursive formulas

Uﬂl (f: g) = pf(): and
Onitq (f7 g) = On; (f7 g) : (_1)d0+1pi+1pz’-

16 JOACHIM VON ZUR GATHEN AND THOMAS LUCKING

The following is the Fundamental Theorem 11.13 in von zur Gathen & Ger-
hard (1999), Chapter 11.2, p. 307.

Corollary 6.2. Let (rg,... ,m¢) be a monic PRS, and 1 <i < {. Then

(?:) an(f,)_()b, n1—mn; no n; H ﬁnk 1-ni

2<k<i
(i) The subresultants satisfy the recursive formulas

Onq (fa g) = p(foa and)
Oniss (F,9) = o, (f,9) - (1) Emommicat D (pop) By - - By)%

If the PRS is normal, then this simplifies to:

(i) Oni(fr9) = (~1) DD pit ploi=t TT == g5 > 9,
2<k<i
(i) The subresultants satisfy for 1 < i < £ the recursive formulas

anl (f:g) = pllio7 and
On;tq (f7 g) = On; (fa g) ' (_1)d°+1P0P1ﬂ2 te ﬂi—i—l-

Corollary 6.3. Let (rg,... ,r¢) be a Sturmian PRS, and 1 <i < {. Then

(i) Ons(f,9) = (—1) Bamsimecsm) it T ppucae,

2<k<i
(i) The subresultants satisfy the recursive formulas

Ony (fa g) = Pfo, and
Onit1 (f: g) = On; (f: g) ' (_1)di(n0_ni+1+1) (pi-‘rlpi)di

If the PRS is normal, then this simplifies to:

(iii) on; (f,9) = (=1 ADED ot g TT pi_y fori > 2,
3<k<i
(i) The subresultants satisfy the recursive formulas

On, (f:g) = p‘f B and
Oniq1 (f:) On; (f;) ()d°+’+1p +1Pi-

The following corollary can be found in Collins (1966), p. 710, Theorem 1,
for polynomial subresultants.

Corollary 6.4. Let (rg,... ,7¢) be a pseudo PRS, and 1 <i < £. Then

(’L) Um(f7) dz 1 H pnk 2=k —(nk—1—"n:)(dr— 2+1)
2<k<i

SUBRESULTANTS REVISITED 17

(i) The subresultants satisfy the recursive formulas

ony (f,9) = p{°, and
i(no—mn; i i —(dr—2+1)d;
Onit1 (f,9) =0on,(f.9)- (_l)dl(o mitatitl) (pi-i-lpi)d H plc_(llC =+ :
2<k<i+1

If the PRS is normal, then this simplifies to:

(iii) on(fig) = (-1)AFDED pEADE=D 5 TT gD for i > 2,
3<k<i—1
(i) The subresultants satisfy the recursive formulas

Ony (f7 g) = Pfo: and
—(do+1 —
On;tq (f; g) = On; (fa g) : (_1)d0+1p1 (do)pi+1pi H szy

3<k<i+1

Remark 6.5. If the PRS is normal, then Corollary 6.4(iii) implies that

O (f,9)(—1)Co+DEHD pldodDE=2) TT - 2608 —
3<k<i—1

Thus oy, (f, g) divides p;. This result is also shown for polynomial subresultants
in Collins (1966), p. 711, Corollary 1.

Since the content of two polynomials cannot be expressed in terms of our pa-

rameters p; and n;, we do not consider the Fundamental theorem for primitive
PRS.

The following is shown for polynomial subresultants in Collins (1967), p. 135,
Corollaries 1.2 and 1.4.

Corollary 6.6. Let (rg,...,r¢) be a reduced PRS, and 1 <i < £. Then

(i) on: (f,9) = (—l)bip;ii—l H pzk__lg(lfdk_l)

2<k<i

(i5) The subresultants satisfy for the recursive formulas

Jnl (fa g) = ptlio} and ‘ 4 .
On;tq (fa g) = On; (fa g)) (_1)di("07ni+1+z+1)p?fi.1pi i1 v

If the PRS is normal, then this simplifies to:

(iit) o (£,9) = (=1)[@D p; for i > 2.
(iv) The subresultants satisfy the recursive formulas

on: (f,9) = pi°, and . 1
On;tq (fa g) = 0On; (fa g) . (_1) ot pi-{—lp; .

18 JOACHIM VON ZUR GATHEN AND THOMAS LUCKING

Remark 6.7. We obtain from Corollary 6.6(i)

oni(f,9) JI (-)memamndlmummnd gleopimst) = i,
2<k<i

Thus oy, (f,g) divides p?i‘l. This result can also be found in Collins (1967),
p.135, Corollary 1.2.

Remark 6.8. For every reduced PRS, r; is in R[x] for 2 < ¢ < £. Note that
Corollary 6.6(iii) implies 7; = (=1)(d+tDE+DR;(f g). So the normal case is
clear. An easy proof for the general case based on polynomial subresultants is
in Collins (1967), p. 134, Corollary 1.1, and Brown (1971), p. 485/486.

Lemma 6.9. Lete; ; =d;j_1 Hj<k<i(1_dk): and let 1; be as in the subresultant
division rule. Then T

;= — H p;i_s’j for2<i</{.

1<j<i—2

Corollary 6.10. Let (ro,- .. ,7¢) be a subresultant PRS, and 1 <i < £. Then

(i) on(f,9) = [[P
1<k<i
(i) The subresultants satisfy the recursive formulas

on, (f,9) = pi°, and
. 7di8i_
Un,'+1(fag) = 0On; (fag) : p;'i-li-l H Py o
1<k<i

If the PRS is normal, then this simplifies to:

(iii) on,(f,9) = pi fori>2.
(i) The subresultants satisfy the recursive formulas

on, (f,9) = pi®, and .
Oniq1 (f7 g) = On; (f; g) CPit1P; -

Now we have all tools to prove the relation between normal reduced and nor-
mal subresultant PRS which can be found in Collins (1967), p. 135, Corollary 1.3,
and Collins (1973), p. 738.

Corollary 6.11. Let (rg,...,7r¢) be a normal reduced PRS and (ag,... ,a;) a
normal subresultant PRS for the polynomials ro = a9 = f and r1 = a1 = g.
Then the following holds for 2 < i < ¥:

le(r;) = (—1)("07"")(”1’"") -le(az)-

SUBRESULTANTS REVISITED 19

Remark 6.12. For every subresultant PRS the polynomials r; are in R[z] for
2 <4 < £. Note that Corollary 6.10(iii) implies r; = R;(f, g). So the normal case
is clear. An easy proof for the general case based on polynomial subresultants is
in Collins (1967), p. 130, and Brown (1971), p. 486.

Corollary 6.10 does not provide the only recursive formula for subresultants.
Another one is based on an idea in Lickteig & Roy (1997), p. 12, and Reischert
(1997), p. 238, where the following formula has been proven for polynomial sub-
resultants. The translation of this result into a theorem on scalar subresultants
leads us to an answer to Question 4.4.

Theorem 6.13. Let (rq,... ,r¢) be a subresultant PRS. Then the subresultants
satisfy for 1 < i < £ the recursive formulas

ony (f,9) = pi° and)
Oniys (f,9) = on (f, g)t - Piy1-

The proof of the conjecture now becomes pretty simple:

Corollary 6.14. Let 1o = —1 and ¢; = (—p,-_z)df—wp;:ld” for 3 < i < L.
Then
¢i = _Uni—Z(fJg) fO’l' 3<i< L.

Since all subresultants are in R, this gives an answer to Question 4.4:

Theorem 6.15. The coefficients 1; and B; of the subresultant PRS are always
in R.

7 Analysis of coefficient growth and running time

We first estimate the running times for normal PRS. A proof for an exponential
upper bound for the pseudo PRS is in Knuth (1981), p. 414, but our goal is to
show an exponential lower bound. To this end, we prove two such bounds on
the bit length of the leading coefficients p; in this PRS. Recall that p1 = lc(g)
and o, = plott.

Lemma 7.1. Suppose that (f,g) € Z[z]* have a normal pseudo PRS. Then
il > || for3<i <t

Lemma 7.2. Suppose that (f,g) € Z[x)? have a normal pseudo PRS, and that
|p1| = 1. Then

i—k—1 i
il 2 lom [omlfo9)? ™ fors<i<e.
2<k<i—2

Theorem 7.3. Computing the pseudo PRS takes exponential time, at least 2™,
in some cases with input polynomials of degrees at most n.

20 JOACHIM VON ZUR GATHEN AND THOMAS LUCKING

We have the following running time bound for the normal reduced PRS
algorithm.

Theorem 7.4. Let || f]lco; [|9]lcc < A4, B = (n+ 1)"A"™ and let (rq,... ,r¢)

be the normal reduced PRS for f,g. Then the maz-norm of the r; is at most
4B3, and the algorithm uses O(n®*mlog?(nA)) word operations.

Corollary 7.5. Since Corollary 6.11 shows that normal reduced PRS and nor-
mal subresultant PRS agree up to sign, the estimates in Theorem 7.4 are also
true for normal subresultant PRS.

We conclude the theoretical part of our comparison with an overview of all
worst-case running times for the various normal PRS in Table 2. The length of
the coefficients of f and g are assumed to be at most n. The estimations that
are not proven here can be found in von zur Gathen & Gerhard (1999).

PRS time proven in
classical/Sturmian n® von zur Gathen & Gerhard (1999)
monic n® von zur Gathen & Gerhard (1999)

pseudo " with ¢ > 2 Theorem 7.3
primitive n® von zur Gathen & Gerhard (1999)

reduced/subresultant n® Theorem 7.4

Table 2. Comparison of various normal PRS. The time in bit operations is for poly-
nomials of degree at most n and with coefficients of length at most n and ignores
logarithmic factors.

8 Experiments

We have implemented six of the PRS for polynomials with integral coefficients in
C++, using Victor Shoup’s “Number Theory Library” NTL 3.5a for integer and
polynomial arithmetic. Since the Sturmian PRS agrees with the classical PRS up
to sign, it is not mentioned here. The contents of the intermediate results in the
primitive PRS are simply computed by successive gcd computations. Cooperman
et al. (1999) propose a new algorithm that uses only an expected number of two
ged computations, but on random inputs it is slower than the naive approach.
All timings are the average over 10 pseudorandom inputs. The software ran on
a Sun Sparc Ultra 1 clocked at 167MHz.

In the first experiment we pseudorandomly and independently chose three
polynomials f, g, h € Z[z] of degree n — 1 with nonnegative coefficients of length
less than n, for various values of n. Then we used the various PRS algorithms

SUBRESULTANTS REVISITED 21

CPU seconds

—+— pseudo —— monic —=— subresultant
—=— classical —a&— reduced —o— primitive

Fig. 1. Computation of polynomial remainder sequences for polynomials of degree n—1
with coefficients of bit length less than n for 1 < n < 32.

to compute the ged of fh and gh of degrees less than 2n. The running times are
shown in Figures 1 and 2.

As seen in Table 2 the pseudo PRS turns out to be the slowest algorithm. The
reason is that for random inputs with coefficients of length at most n the second
polynomial is almost never monic. Thus Theorem 7.3 shows that for random
inputs the running time for pseudo PRS is mainly exponential. A surprising
result is that the primitive PRS, even implemented in a straightforward manner,
turns out to be the fastest PRS. Collins and Brown & Traub only invented
the subresultant PRS in order to avoid the primitive PRS since it seemed too
expensive, but our tests show that for our current software this is not a problem.

Polynomial remainder sequences of random polynomials tend to be normal.
Since Corollary 6.11 shows that reduced and subresultant PRS agree up to signs
in the normal case, their running times also differ by little.

We are also interested in comparing the reduced and subresultant PRS, so
we construct PRS which are not normal. To this end, we pseudorandomly and
independently choose six polynomials f, f1, g, g1, h, h1 for various degrees n as
follows:

22 JOACHIM VON ZUR GATHEN AND THOMAS LUCKING

60

50

40

30

CPU minutes

20

—— monic —=a— gsubresultant
—a— reduced —o— primitive

Fig. 2. Computation of polynomial remainder sequences for polynomials of degree n—1
with coefficients of bit length less than n for 32 < n < 96. Time is now measured in
minutes.

polynomial|degree|coefficient length
1,9 n/6 n/4

fi,01 n/3 n

h n/2 3n/4

h1 n n

So the polynomials

F=(fh-2"+ fi)h
G=(gh-z"+g1)h

have degrees less than 2n with coefficient length less than n, and every polyno-
mial remainder sequence of F' and G has a degree jump of 2 at degree 2n — ¢.
Then we used the various PRS algorithms to compute the ged of F' and G. The
running times are illustrated in Figures 3 and 4.

As in the first test series the pseudo PRS turns out to be the slowest, and
the primitive PRS is the fastest. Here the monic PRS is faster than the reduced
PRS. Since the PRS is non-normal, the «a;’s are powers of the leading coefficients

of the intermediate results, and their computation becomes quite expensive.

SUBRESULTANTS REVISITED 23

30 T T T T T

25 |- —

20 |~ —

15 - —

CPU seconds

—+— pseudo —— monic —=— subresultant
—=— classical —a&— reduced —o— primitive

Fig. 3. Computation of non-normal polynomial remainder sequences for polynomials
of degree 2n — 1 with coefficient length less than n and a degree jump of % at degree
2n— %, for 1 <n <32

References

ETiENNE BEzout, Recherches sur le degré des équations résultantes de
Pévanouissement des inconnues. Histoire de "académie royale des sciences (1764),
288-338. Summary 88-91.

OTTO BIERMANN, Uber die Resultante ganzer Functionen. Monatshefte fuer Mathe-
matik und Physik (1891), 143-146. II. Jahrgang.

W. S. BROWN, On Euclid’s Algorithm and the Computation of Polynomial Greatest
Common Divisors. Journal of the ACM 18(4) (1971), 478-504.

W. S. BROWN, The Subresultant PRS Algorithm. ACM Transactions on Mathematical
Software 4(3) (1978), 237-249.

W. S. BROWN AND J. F. TRAUB, On Euclid’s Algorithm and the Theory of Subresul-
tants. Journal of the ACM 18(4) (1971), 505-514.

G. E. CoLLINS, Polynomial remainder sequences and determinants. The American
Mathematical Monthly 73 (1966), 708-712.

GEORGE E. CoLLINS, Subresultants and Reduced Polynomial Remainder Sequences.
Journal of the ACM 14(1) (1967), 128-142.

GEORGE E. CoLLINs, The Calculation of Multivariate Polynomial Resultants. Journal
of the ACM 18(4) (1971), 515-532.

G. E. CoLLins, Computer algebra of polynomials and rational functions. The American
Mathematical Monthly 80 (1973), 725-755.

24 JOACHIM VON ZUR GATHEN AND THOMAS LUCKING

60

50

40

30

CPU minutes

20

10

80 96

—— monic —=a— gsubresultant
—a— reduced —o— primitive

Fig. 4. Computation of non-normal polynomial remainder sequences for polynomials
of degree 2n — 1 with coefficient length less than n and a degree jump of % at degree
2n — %, for 32 < n < 96. Time is now measured in minutes.

GENE COOPERMAN, SANDRA FEISEL, JOACHIM VON ZUR GATHEN, AND GEORGE
Havas, Ged of many integers. In COCOON 99, ed. T. ASANO ET AL., Lecture
Notes in Computer Science 1627. Springer-Verlag, 1999, 310-317.

LEONHARD EULER, Démonstration sur le nombre des points ou deux lignes des ordres
quelconques peuvent se couper. Mémoires de I’Académie des Sciences de Berlin 4
(1748), 1750, 234-248. Enestrom 148. Opera Omnia, ser. 1, vol. 26, Orell Fiissli,
Zirich, 1953, 46-59.

JOACHIM VON ZUR GATHEN, Parallel algorithms for algebraic problems. SIAM Journal
on Computing 13(4) (1984), 802-824.

JOACHIM VON ZUR GATHEN AND JURGEN GERHARD, Modern Computer Algebra. Cam-
bridge University Press, 1999.

K. O. GEDDEs, S. R. CzAPOR, AND G. LABAHN, Algorithms for Computer Algebra.
Kluwer Academic Publishers, 1992.

PAUL GORDAN, Vorlesungen iiber Invariantentheorie. Erster Band: Determinanten.
B. G. Teubner, Leipzig, 1885. Herausgegeben von GEORG KERSCHENSTEINER.
WALTER HABICHT, Eine Verallgemeinerung des Sturmschen Wurzelzéhlverfahrens.

Commentarii Mathematici Helvetici 21 (1948), 99-116.

M. W. HASKELL, Note on resultants. Bulletin of the New York Mathematical Society

1 (1892), 223-224.

SUBRESULTANTS REVISITED 25

THOMAS W. HUNGERFORD, Abstract Algebra: An Introduction. Saunders College
Publishing, Philadelphia PA, 1990.

C. G. J. JAcoBI, De eliminatione variabilis e duabus aequationibus algebraicis. Journal
fiir die Reine und Angewandte Mathematik 15 (1836), 101-124.

DoNALD E. KNUTH, The Art of Computer Programming, vol.2, Seminumerical Algo-
rithms. Addison-Wesley, Reading MA, 2nd edition, 1981.

L. KRONECKER, Die verschiedenen Sturmschen Reihen und ihre gegenseitigen
Beziehungen. Monatsberichte der Kéniglich Preussischen Akademie der Wis-
senschaften, Berlin (1873), 117-154.

L. KRONECKER, Zur Theorie der Elimination einer Variabeln aus zwei algebrais-
chen Gleichungen. Monatsberichte der Kéniglich Preussischen Akademie der Wis-
senschaften, Berlin (1881), 535-600. Werke, Zweiter Band, ed. K. HENSEL, Leipzig,
1897, 113-192. Reprint by Chelsea Publishing Co., New York, 1968.

THOMAS LICKTEIG AND MARIE-FRANGOISE ROY, Cauchy Index Computation. Calcolo
33 (1997), 331-357.

R. Loos, Generalized Polynomial Remainder Sequences. Computing 4 (1982), 115
137.

THOM MULDERS, A note on subresultants and the Lazard/Rioboo/Trager formula in
rational function integration. Journal of Symbolic Computation 24(1) (1997), 45—
50.

IsaAac NEWTON, Arithmetica Universalis, sive de compositione et resolutione arith-
metica liber. J. Senex, London, 1707. English translation as Universal Arithmetick:
or, A Treatise on Arithmetical composition and Resolution, translated by the late
Mr. Raphson and revised and corrected by Mr. Cunn, London, 1728. Reprinted in:
DEREK T. WHITESIDE, The mathematical works of Isaac Newton, Johnson Reprint
Co, New York, 1967, p. 4 ff.

DANIEL REISCHERT, Asymptotically Fast Computation of Subresultants. In Proceed-
ings of the 1997 International Symposium on Symbolic and Algebraic Computation
ISSAC ’97, Maui HI, ed. WOLFGANG W. KUCHLIN. ACM Press, 1997, 233-240.

V. STRASSEN, The computational complexity of continued fractions. STAM Journal on
Computing 12(1) (1983), 1-27.

C. STUurRM, Mémoire sur la résolution des équations numériques. Mémoires présentés
par divers savants a I’Académie des Sciences de I'Institut de France 6 (1835), 273~
318.

J. J. SYLVESTER, A method of determining by mere inspection the derivatives from two
equations of any degree. Philosophical Magazine 16 (1840), 132-135. Mathematical
Papers 1, Chelsea Publishing Co., New York, 1973, 54-57.

RICHARD ZIPPEL, Effective polynomial computation. Kluwer Academic Publishers,
1993.

