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Abstract

Subresultants and polynomial remainder sequences are an important tool in poly-
nomial computer algebra. In this survey, we sketch the history, discuss the various
notions, and report on implementations.

1 Introduction

1.1 Historical context

The Euclidean Algorithm was first documented by Euclid (c. 320-275 BC).
According to Knuth (1981), p. 318, “we might call it the granddaddy of all
algorithms, because it is the oldest nontrivial algorithm that has survived
to the present day.” It executes division with remainder repeatedly until the
remainder becomes zero. With inputs 13 and 9 it performs the following:

This allows us to compute the greatest common divisor (ged) of two integers
as the last non-vanishing remainder. In the example, the gcd of 13 and 9 is
computed as 1.

When the concept of polynomials started to evolve, researchers were interested
in finding the common roots of two polynomials f and g. Simon Stevin was

Preprint submitted to Elsevier Preprint 27 June 2000



the first to apply the Euclidean Algorithm to polynomials, in 1585. In 1707,
Newton considered this problem and showed that the method always works

in Q[z].
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In this example f = 2® 4+ 222 — 2 — 2 and g = 222 — 22 — 4 have a greatest
common divisor 4z +4, and therefore the only common root is —1. In a certain
sense the Euclidean Algorithm computes all common roots (in an algebraically
closed extension such as C). If we only want to know whether f and g have
at least one common root, then still the whole Euclidean Algorithm has to
be executed. Thus a goal was to find an indicator for common roots without
using any division with remainder.

The key to success was found in 1748 by Euler, and later by Bézout. They
were looking for a resultant of f and g as a polynomial in the coefficients of
f and g that vanishes if and only if f and ¢ have a common root. In his 1764
paper, Bézout coined the word équation résultante and was the first to find a
matrix whose determinant is the resultant. The entries of this Bézout matrix
are bilinear functions of the coefficients of f and ¢. Today one often uses
the matrix discovered by Sylvester in 1840, known as the Sylvester matriz. Its
entries are simply coefficients of the polynomials f and g. Sylvester generalized
his definition and introduced what we now call subresultants as determinants
of certain submatrices of the Sylvester matrix. They are nonzero if and only if
the corresponding degree appears as a degree of a remainder of the Euclidean
Algorithm.

These indicators, in particular the resultant, also work for polynomials in Z[z].
But it is in general not possible to apply the Euclidean Algorithm to f and ¢
in Z[z] without leaving Z[x], as illustrated in the example above, since division
with remainder is not always defined in Z|[x], although the ged exists. In the
example it is x + 1.

However, in 1836 Jacobi found a way out. He introduced pseudo-division:
he multiplied f with a certain power of the leading coefficient of g before
performing the division with remainder. This is always possible in Z[z]. So
using pseudo-division instead of division with remainder in every step in the
Euclidean Algorithm yields an algorithm with all intermediate results in Z[z].

About 40 years later Kronecker did research on the Laurent series in ! of
g/ [ for two polynomials f and g. He considered the determinants of a matrix
whose entries are the coefficients of the Laurent series of g/f. He obtained
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r, if nonzero, agrees with a remainder in the Euclidean Algorithm, up to a
constant multiple. This was the first occurrence of polynomial subresultants.

Starting in the 1960s, people built early computer algebra systems like PM
and ALPAK that made it possible to perform more and more complicated
algorithms faster and faster. However, using pseudo-division in every step
of the Euclidean Algorithm causes exponential coefficient growth. This was
suspected in the late 1960’s. Collins (1967), p. 139, explains that the ith in-
termediate coefficients are approximately longer by a factor of (1 4+ +/2)? than
the input coefficients, and writes: “Thus, for the Fuclidean algorithm, the
lengths of the coefficients increases exponentially.” In Brown & Traub (1971)
we find: “Although the Euclidean PRS algorithm is easy to state, it is thor-
oughly impractical since the coefficients grow exponentially.” An exponential
upper bound is in Knuth (1993)77?, equation (27) in 4.6.1: “Thus the upper
bound [...] would be approximately N**Z*9" "and experiments show that
the simple algorithm does in fact have this behavior; the number of digits
in the coefficients grows exponentially at each step!”. An exponential lower
bound is in 7, 3.3.3, and we provide in Theorem 7.3 a more precise lower
bound that essentially matches Collin’s and Knuth’s upper bound.

One way out of this exponential trap is to make every intermediate result
primitive, that is, to divide the remainders by the greatest common divisors
of their coefficients, the so-called content. However, computing the content
seemed to be very expensive, especially for multivariate polynomials. So the
scientists tried to find divisors of the content without using any ged compu-
tation. Around 1970, first Collins and then Brown & Traub reinvented the
polynomial subresultants as determinants of a certain variant of the Sylvester
matrix. Habicht had also defined them independently in 1948. Collins and
Brown & Traub showed that they agree with the remainders of the Euclidean
Algorithm up to constant factors. They gave simple formulas to compute these
factors and introduced the concept of polynomial remainder sequences (PRS),
generalizing the concept of Jacobi. The final result is the subresultant PRS
that features linear coefficient growth with intermediate results in Z[x].

Since then two further concepts have come up. On the one hand the fast EEA
allows to compute an arbitrary intermediate line in the Euclidean Scheme di-
rectly. Using the fast O(n lognlog logn) multiplication algorithm of Schénhage
and Strassen, we can reduce the time to compute the ged from O(n?) to
O(nlog?nlog logn) field operations (see Strassen (1983)). On the other hand,
the modular EEA, also introduced by Collins, is very efficient. These two
topics are not considered in this survey; for further information we refer to
von zur Gathen & Gerhard (1999), Chapters 6 and 11. Figure 1 illustrates the
historical evolution.



1.2  Owutline

After introducing the notation and some well-known facts in Section 2, we
start with an overview and comparison of various definitions of subresultants
in Section 3. Mulders (1997) describes an error in software implementations
of an integration algorithm which was due to the confusion caused by the
these various definitions. It turns out that there are essentially two different
notions: the scalar and the polynomial subresultants. We determine how they
are related to each other. In the remainder of this work we will mainly consider
the scalar subresultants.

In Section 4 we give a formal definition of polynomial remainder sequences and
derive the most famous ones as special cases of our general notion. The relation
between polynomial remainder sequences and subresultants is exhibited in
the Fundamental Theorem 5.3 in Section 5. It unifies many results in the
literature on various types of PRS. In Section 6 we apply it to the various
types of polynomial remainder sequences. This yields a collection of results
from Collins (1966, 1967, 1971, 1973), Brown (1971, 1978), Brown & Traub
(1971), Lickteig & Roy (1997) and von zur Gathen & Gerhard (1999), often
with simplification in the statements and proofs.

Finally we report on implementations of the various polynomial remainder
sequences. We analyze the coefficient growth and the running time of the
various PRS in Section 7, and compare their running times in Section 8. It
turns out that computing the content is quite fast for random inputs, and that
the primitive PRS behaves much better than expected.

However, this is not meant to suggest these algorithms as a practical alter-
native. In most situations, the modular algorithms will outperform the PRS
discussed in this survey.

All examples in this paper are from Z[z], but the methods apply equally well
to multivariate polyomials, and are even more useful there. We choose those
examples because they are more concise to specify.

1.3 Acknowledgements

We thank Johannes Blomer and Erich Kaltofen for pointers to the literature.
This work is part of the second author’s Diplomarbeit (Liicking (2000)), and
an Extended Abstract appeared at Latin '00 (von zur Gathen & Liicking
(2000)).



2 Foundations

We refer to Hungerford (1990) and von zur Gathen & Gerhard (1999), Sec-
tions 2.2 and 25.5, for the notation and fundamental facts about greatest
common divisors and determinants.

2.1 Polynomials

Let R be a ring. In what follows, this always means a commutative ring with 1.
A basic tool in computer algebra is division with remainder. For given poly-
nomials f and g in R[x] the task is to find polynomials ¢ and r in R[z] with

f=qg+rand degr < degg. (2.1)
Unfortunately such ¢ and r do not always exist.

EXAMPLE 2.2. It is not possible to divide 22 by 2z +3 with remainder in Z[z]
because 22 = (uz + v)(2z + 3) + r with u,v,r € Q has the unique solution
u=1/2,v=0and r = —3/2, which is not over Z. O

If defined and unique we call ¢ = f quog the quotient and r = fremg the
remainder. A ring with a length function (like the degree of polynomials) and
where division with remainder is always defined is a Fuclidean domain. R[z]
is a Euclidean domain if and only if R is a field. A solution of (2.1) is not
necessarily unique if the leading coefficient lc(g) of g is a zero divisor.

EXAMPLE 2.3. Let R = Zg and consider f = 422 + 2z and g = 2z + 1. With

G = 2, ry =0,
@ =2r+4, 2 =4,

we have two distinct solutions (g, ;) and (ga,72) of (2.1). O

A way to get solutions for all commutative rings is the general pseudo-division
which allows multiplication of f by a ring element a:

af =qg+r, degr < degg. (2.4)

If n = deg f, m = degg, and o = lc(g)" ™", then this is the (classical)
pseudo-division as proposed in Jacobi (1836). If lc(g) is not a zero divisor,
then (2.4) with o = le(g)" ™! always has a unique solution in R[z]. We call
g = f pquo g the pseudo-quotient and r = f prem g the pseudo-remainder.



EXAMPLE 2.2 CONTINUED. For 22 and 2x + 3 we get the pseudo-division
2.0t = (22 —3)(22r +3) +9

A simple computation shows that we cannot choose a = 2. O

LEMMA 2.5. Let f,g € R[z]| have degrees n, m, respectively, and g # 0.

(i) Pseudo-division always yields a solution of (2.4) in R[z].
(ii) Iflc(g) is not a zero divisor, then any solution of (2.4) has deg ¢ = n—m.
(iii) The solution (q,r) of (2.4) is uniquely determined if and only if 1c(g) is
not a zero-divisor.

PrOOF. (i) We prove the claim by induction on n = deg f. For n < m =
deg g we have the solution ¢ = 0 and » = f. Now assume that n > m,
and let f* = g, f — fax™ ™g where f,, and g,, are the leading coefficients
of f and g, respectively. Then

gz,;m+1f — (fng;z;mxnfm)g + gz,;mf*

Now deg f* < deg f, and by the induction hypothesis there exist ¢* and
r* in R[z] with

gngl)ferlf* =q"'g+r" and degr® < degg.

Therefore ¢ = frgn"™x™™ + ¢* and r = r* give a solution of (2.4).
(ii) Let (g,r) be a solution of (2.4). Since degr < degg and lc(g) is not a
zero-divisor, we have

n =deg f = degqg = degq + deg g = degq + m.

(iii) “=":Suppose lc(g) = g, is not a zero divisor, and that q;, 71, go, o € R[x]
are such that

af =qg+r =g+
We claim that (g;,71) = (go,7r2). Now

(@1 = g2)g =12 — 11 (2.6)

Since q; = ¢, implies r; = ry, we may assume that ¢; # ¢o. Now we write
g = gma™ + ¢* and ¢ — q» = yat + ¢* where degg* < m, £ >0 and v =
le(q1 —q2) # 0, and note that g,y # 0. Therefore deg((q1 — ¢2)g) = m+/{
and

deg((q1 — q2)g) > m > deg(ry — ry).

This contradiction to (2.6) proves our claim.



“<": We assume lc(g) = gy, to be a zero divisor, and v € R to be nonzero
with g,y = 0, and let (¢;,71) be a solution of (2.4). Then ¢ = ¢; + and
r=r; — g yield

qg+r=(@+7)9—v9+m =qg+r =af

with degr < degg. Thus (g, r) is another solution of (2.4). O

2.2 FEaxtended Euclidean Algorithm (EEA)

We use the notation for the Extended Euclidean Algorithm (EEA) from von zur
Gathen & Gerhard (1999), Chapter 3, with remainders r;, quotients ¢; and
Bézout coefficients s; and t;, for 0 < ¢ < /.

ExamPLE 2.7. The Extended Euclidean Scheme of the two polynomials f =
34+ 622 + 11z + 6 and g = 2% — 3z + 2 € Q[z] is:

i T qi Si t;

0| 2> +622+11lz+6 1 0

1 z? — 3z +2 z+9 0 1

2 36z — 12 *T — & 1 —z—9

; B o3| o+ | et ket

4 0 %xQ—%x+g —f—ox3—%7x2—%x—%7

So the Euclidean length of (f, ¢) is £ = 3. Since r3 = % € Q is a unit, the ged

of f and ¢ is 1. O
In general, (degro,...,degr,) is the degree sequence; in the example it is
(6,4,2,1,0).

We have deg,. +deg, <degf, and r; = s;f + ;g is a “small” linear combina-
tion of f and ¢ with “small” coefficients. The following theorem, essentially
due to 7, says that the entries of the EEA are essentially the only way to
get such a small linear combination; see Lemma 5.15 from von zur Gathen &
Gerhard (1999).

UNIQUE REPRESENTATION THEOREM 2.8. Let F' be a field, f,qg,r,s,t €
F[z] with r = sf + tg and t # 0, and suppose that

degr +degt < n =deg f.



Moreover, let r;, s;, t; for 0 < i < /41 be the rows of the Extended Fuclidean
Algorithm for the pair (f,g). If we define 1 < j < {+1 by

degr; < degr < degr;_i,
then there exists a nonzero o € F[z] such that

r=arj, s =as;, t = at;.

3 Various notions of subresultants

Throughout the following we have a commutative ring R and two polynomials

f=> fia', g= > g¢;2' € R[z]

0<j<n 0<j<m

of degrees n, m, respectively.

3.1 The Sylvester matriz

The various definitions of the subresultant are based on the Sylvester ma-
triz. We first take a look at the historical motivation for this special matrix.
Our goal is to decide whether two polynomials f and g have a nontrivial
common factor. To find an answer to this question, Euler (1748) and Bézout
(1764) introduced the (classical) resultant that vanishes if (and only if) this is
true. Bézout also succeeded in finding a matrix whose determinant is equal to
the resultant, today called the Bézout matriz, but we will follow the elegant
derivation in Sylvester (1840). The two linear equations

fatn + focip_r + -0 + fizn + forg = 0,

ImTm + Gm—1Tm—1 + -+ + 121 + Goxo = 0

in the indeterminates z,... ,, are satisfied if z; = o/ for all j, where o
is a common root of f and g. For n > 1 there are many more solutions of
these two linear equations in many variables, but Sylvester eliminates them
by adding the (m—1)+(n—1) linear equations that correspond to the following
additional conditions:

Y



These equations give a total of n + m linear relations among the variables

Tm4n—1,""",To-
fn$m+n—1 + -+ fOlim—l = 07
fnxn + fnflxnfl + -+ foU - 07
ImTmin-1 + - +  GoTn 1 - O;

ImTm + Gm-1Tm-1 + - + GoTo = 0.

Clearly z; = o’ gives a solution for any common root o of f and g, but
the point is that (essentially) the converse also holds: a solution of the linear
equations gives a common root (or factor). The (n + m) x (n + m) matrix,
consisting of coefficients of f and g, that belongs to this system of linear
equations is often called Sylvester matriz. We follow von zur Gathen & Gerhard
(1999), Section 6.3, p. 144, and take its transpose.

DEFINITION 3.1. The (n+m) x (n +m) matrix

In 9m
fnfl fn Im—-1 9m
fn g1
fn—1 90
Syl(f,9) =
9o 9m
fo
fo

Jo 90

is the Sylvester matrix of f and g.

REMARK 3.2. Multiplying the (n +m — j)th row by x’ and adding it to the

10



last row for 1 < j < n+ m, we get the (n+ m) x (n 4+ m) matrix

fn Im
fnfl fn Im—1 dm
fn g1
SYI'(f,9) = o
9o Im
fo
fo
fi g1
A ACOREEE f(z) a"tg(z) g(x)

Thus det(Syl(f, g)) = det(Syl*(f, g))-

More details on resultants can be found in Biermann (1891), Gordan (1885)
and Haskell (1892). Computations for both the univariate and multivariate
case are discussed in Collins (1971).

There is also considerable recent literature on the subject: ?

Landau and Zippel on algebraic decomposition, 7 on multivariate and algebraic
generalizations.

3.2  The scalar subresultant

We are interested in determining which degrees appear in the degree sequence
of the Extended Euclidean Algorithm. Scalar subresultants provide a solution.

DEFINITION 3.3. The determinant oy (f, g) € R of the (m +n — 2k) x (m +

11



n — 2k) matrix

In Im
fn*l fTL gmfl gm
fromakar- - fo Grpr e I
Jerr e Fn Grnthad = v o G
f2k7m+1 ...... fk Gokngl " G
mtk ntk

is called the kth (scalar) subresultant of f and g¢. By convention an f; or
g; with j < 0 is zero. If f and g are clear from the context, then we write Sy
and oy, instead of Sk(f, g) and ok (f, g).

Sylvester (1840) already contains an explicit description of the (scalar) subre-
sultants. In Habicht (1948), p. 104, oy is called Nebenresultante (minor resul-
tant) for polynomials f and g of degrees n and n — 1. The definition is also
in von zur Gathen (1984) and is used in von zur Gathen & Gerhard (1999),
Section 6.10.

REMARK 3.4.

(i) Sy = Syl(f, g) and therefore oy = det(Sp) is the resultant.

(ii) om = gp ™.

(iii) Sy is the matrix obtained from the Sylvester matrix by deleting the last
2k rows and the last k columns with coefficients of f, and the last k
columns with coefficients of g.

(iv) S is a submatrix of S; if k > i.

3.8 The polynomial subresultant

Two slightly different descriptions of polynomial subresultants are in the lit-
erature. The first one is from Collins (1967), p. 129, and the second one is
from Brown & Traub (1971), p. 507 and also in Zippel (1993), Chapter 9.3,
p. 150. They yield polynomials that are related to the intermediate results in

12



the Extended Euclidean Algorithm. We compare the two definitions and show
their relation to scalar subresultants. In the remainder of this text we then
focus on scalar subresultants.

DEFINITION 3.5. Let My, = My, (f,g) be the (n+m — 2k) x (n +m — 2k)
submatrix of Syl(f, g) obtained by deleting the last k of the m columns of
coefficients of f, the last k of the n columns of coefficients of g and the last
2k + 1 rows except row (n+m —i— k), for0 <k <mand 0 <i < n:

fn dm
fn—l fn Jm—1 Gm
Jn
My, = .
Gm
f2k—m+2 fk+1 ggk_n+2 gk+1
fl+k7m+1 ...... fl gl+k7n+1 ......... gz

The polynomial Ry.(f,g) = YXocic, det(M)a" € R[z] is called the kth poly-
nomial subresultant of f and g.

In fact, Collins (1967) considered the transposed matrices. If f and g are clear
from the context, then we write Ry, instead of R(f, g). Note that det(M;,) =0
if i > k, since then the last row of Mj, is identical to the (n +m — i — k)th
row. Thus Ry, = 3 yc;cp det (M)t

REMARK 3.6.

(i) My = Syl(f, g) and therefore Ry = det(Myo) is the resultant.
(ii) Remark 3.4(i) implies that oy = Ry.

DEFINITION 3.7. We consider the determinant Zy(f, g) = det(M}) € R[z| of

13



the (n 4+ m — 2k) x (n + m — 2k) matrix

[fn Im
fn—l fn Im-1 9m
M; = f "
Im
fok—m+2 Jrk+1 Gok—n2 Jk+1
xm_k_lf(x) ...... f(x) xn_k_lg(x) ......... g(x)

If f and g are clear from the context, then we write Z; for short instead of
Zk(f,g). We note that M; is a submatrix of Syl*(f, g).

Table 1 gives an overview of the literature concerning these notions. Of course,
there is a much larger body of work about the special case of the resultant,
which we do not quote here.

3.4 Comparison of the various definitions

As in Brown & Traub (1971), p. 508, and Geddes et al. (1992), Section 7.3,
p. 290, we first prove the following theorem which shows that the definitions
in Collins (1967) and Brown & Traub (1971) describe the same polynomial.

THEOREM 3.8.

(i) If o) # 0, then oy is the leading coefficient of Ry. Otherwise, deg Ry < k.
(i) Ry = Zy.

PROOF. (i) Since the coefficient of ¥ in Ry, is det(My;) = det(Sy) = oy,
the first claim follows.
(ii) By linearity of the determinant, the claim follows from

Z xi(fz'—l—k—m-i-la oo Jis Givknyts - - - ,gi)T
0<i<n
= @ f (@), f(@), e g (), g () 0

14



Definition Authors
or(f,g9) = det(Sg) € R Sylvester (1840)
Habicht (1948)
von zur Gathen (1984)
Uteshev & Cherkasov (1998)
von zur Gathen & Gerhard (1999)
Ri(f,g) = > det(My)z' | Collins (1967)
osi=n Loos (1982)

Il Geddes et al. (1992)
Winkler (1996)
Zp(f,g) = det(M}) € R[z] | Brown & Traub (1971)
Zippel (1993)
Lickteig & Roy (1997)
Reischert (1997)

Table 1
The various subresultants

REMARK 3.9. Laplace expansion of Zj along the last column of M, yields
two polynomials s,t € R[x| with degs < m — k, degt < n —k and sf + tg =
Zy, = Ry. This observation is due to Brown & Traub (1971), p. 507/508, see
also Zippel (1993), Chapter 9.3, p. 150.

The essential property of the subresultants is that they characterize the degree
sequence; for a proof, see e.g. von zur Gathen & Gerhard (1999), Section 6.10.

THEOREM 3.10. Let f and g be polynomials over a field F' of degrees ng >
ny > 0, respectively, let n; = degr; for 0 < ¢ < ¢ be the degrees in the
Euclidean Scheme, and let 0 < k < ny. Then

PROPOSITION 3.11. Let F be a field, f and g in F'[z] be polynomials of degree
n > m > 0, respectively, and let r;, s; and t; be the entries in the ith row of
the Extended Euclidean Scheme, for 0 < i < (. Moreover, let p; = lc(r;) and
n; = degr; for all i. Then

On;

Pi

-1 =R, for2 <i </,

15



Proor. Let 2 < i < /. Remark 3.9 shows that there exist polynomials s
and t of degrees less than m — n; and n — n;, respectively, with

sf+tg=R,,.

Thus

deg R,,, +degt <n;+n—n; —1 <n.
By Theorem 3.10 we know that the leading coefficient o, of R, is nonzero.
Since F'is a field and deg R,,, = n; < n = deg f we have ¢t # 0. Hence, by the
Unique Representation Theorem 2.8, there exists an o € F[x| with

s = as;, t = aty, Ry, = ary, (as;)f + (at;)g = ar; = R,,.

Furthermore, n; = degr; = deg R,,,. Comparing leading coefficients we find
On;

Pz'.

OJ

o=

REMARK 3.12. Let f and g be polynomials over an integral domain R, let F'
be the field of fractions of R, and consider the Extended Fuclidean Scheme of
f and g in F[z]|. Then the scalar and the polynomial subresultants are in R
and R[z], respectively, and Proposition 3.11 also holds:

On;

Pi

-r; = R,, € R[z].
Note that r; is not necessarily in R[z|, and p; not necessarily in R.

A careful reading of the proof of Proposition 3.11 also shows the relation be-
tween s, t from Remark 3.9 and the entries of the Extended Euclidean Scheme.

REMARK 3.13. Let 2 <i < /. Then

s=.g € R[] and t="

Pi Pi

Lt € R[l’],
in the notation of the proof of Proposition 3.11.

The conceptional advantage of the scalar subresultants is that they live in R
rather than R[x] and still provide enough information to build up the required
theory.

4 Division rules and Polynomial Remainder Sequences (PRS)

We cannot directly apply the Euclidean Algorithm to polynomials f and g
over an integral domain R since polynomial division with remainder in R[z],

16



which is used in every step of the Euclidean Algorithm, is not always defined.
Hence our goal now are definitions modified in such a way that they yield a
variant of the Euclidean Algorithm that works over an integral domain. We
introduce a generalization of the usual pseudo-division, the concept of division
rules, which leads to intermediate results in R[z].

DEFINITION 4.1. Let R be an integral domain. A one-step division rule is a
partial mapping

R: R[z]* - R?
such that for all (f,g) € def(R) there exist q,r € R[z| satisfying

(i) R(f,9) = (o, ),
(ii)) af = qg + Br and degr < degg.

Recall that def(R) C R[z]* is the domain of definition of R, that is, the set
of (f,g) € R[x]* at which R is defined. In particular, R: def(R) — R? is
a total map. In the examples below, we will usually define one-step division
rules by starting with a (total or partial) map Ro: R[z]*> —— R? and then
taking R to be the maximal one-step division rule consistent with Ry. Thus

o {(f, B e R[z] } |

(@, 8) = Ro(f, ) and (ii) holds
and R is Ry restricted to def(R).

Lemma 2.5(iii) says that for all (f, g) € def(R), ¢ and r are unique. Further-
more (f,0) is never in def(R) (“you can’t divide by zero”), so that

def(R) € Dmax = Rlz] x (R[z] \ {0}).

We are particularly interested in one-step division rules R with def(R) =
Dinax- In our examples, (0, g) will always be in def(R) if g # 0.

We may consider the usual remainder as a partial function rem: R[z]* —— R|[x]
with rem(f, g) = r if there exist ¢,r € R[z] with f = gg+r and degr < degg,
and def(rem) maximal. Recall from Section 2 the definitions of rem, prem and
cont.

ExamMPLE 4.2. Let f and g be polynomials over an integral domain R of
degrees n and m, respectively, and let f, = lc(f), gm = lc(g) # 0 be their
leading coefficients. Then the three most famous types of division rules are as
follows:

o classical division rule: R(f,g) = (1,1).
o monic division rule: R(f,g) = (1,1c(rem(f, g))).
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o Sturmian division rule: R(f,g) = (1, —1).

Examples are given below. When R is a field, these three division rules have
the largest possible domain of definition def(R) = Dpax, but otherwise, it may
be smaller; we will illustrate this in Example 4.7. Hence they do not help us
in achieving our goal of finding rules with maximal domain D,,,,. But there
exist two division rules which, in contrast to the first examples, always yield
solutions in R|[x]:

o pseudo-division rule: R(f,q) = (gﬁfmﬂ, 1).

In case R is a unique factorization domain, we have the

o primitive division rule: R(f,g) = (g% ™! cont(prem(f, g))).

For algorithmic purposes, it is then useful for R to be a Euclidean domain.

The disadvantage of the pseudo-division rule, however, is that in the Euclidean
Algorithm it leads to exponential coefficient growth; the coefficients of the
intermediate results are usually enormous, their bit length may be exponential
in the bit length of the input polynomials f and g. If R is a UFD, we get the
smallest intermediate results if we use the primitive division rule, but the
computation of the content in every step of the Euclidean Algorithm seems
to be expensive. Collins (1967) already observed this in his experiments. Thus
he tries to avoid the computation of the content and to keep the intermediate
results “small” at the same time by using information from all intermediate
results in the EEA, not only the two previous remainders. Our concept of one-
step division rules does not cover his method. So we now extend our previous
definition, and will actually capture all the “recursive” division rules from
Collins (1967, 1971, 1973), Brown & Traub (1971) and Brown (1971) under
one umbrella.

DEFINITION 4.3. Let R be an integral domain. A division rule is a partial
mapping

R: R[z]> — (R?)*
associating to (f,g) € def(R) a sequence ((ag, fa), ..., (a1, Per1)) of arbi-
trary length ¢ > 0 such that for all (f,g) € def(R) there exist { € N,
Qy---,q € R[z] and rq,... ,rey € R[z] satisfying for 2 <i < {+1

(1) TU:f;r1:g7

(111) QTi—9 = (;—1Ti—1 + 51'7“1' and deg r; < deg Ti—1.

A division rule where ¢ = 1 for all values is the same as a one-step division
rule, and from an arbitrary division rule we can obtain a one-step division rule
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by projecting to the first coordinate (aq, f82) if £ > 2. Using Lemma 2.5(iii),
we find that for all (f, g) € def(R), ¢;—1 and r; are unique for 2 < ¢ < ¢+ 1.
If we have a one-step division rule R* which is defined at all (r; o,r; 1) for
2 < i <{+1 (defined recursively), then we obtain a division rule R by using
R* in every step:
Ri(f,9) = R*(ri2,ri1) = (o, B).

If we truncate R at the first coordinate, we get R* back. But the notion of
division rules is strictly richer than that of one-step division rules; for example
the first step in the reduced division rule below is just the pseudo-division
rule, but using the pseudo-division rule repeatedly does not yield the reduced
division rule.

EXAMPLE 4.2 CONTINUED. Let f = ry,g = m € R[z] be polynomials of
degrees ng > ny, respectively, and let pg = lc(rg) and p; = le(ry) be their
leading coefficients. We now present three different types of recursive division
rules. They are based on polynomial subresultants. It is not obvious that they
have domain of definition D,,.y, since divisions occur in their definitions. We
will show that this is indeed the case in Remarks 6.10 and 6.14.

o reduced division rule: R;(f, g)

= (Ofi,ﬁi) f0r2§z§€+1,
where we set a; = 1 and for 2 <74

< ¢+ 1 recursively define

(aia ﬁz) = ( ;ii—12+1, aifl)a

then r; by Definition 4.3 (iii), p; = le(r;), n; = degr;, and d;_; = n;_1 — n,.
o subresultant division rule: R;(f,qg) = (ay, B;) for 2 <i <l +1,
where we set po = 1 and for 2 < i < £+ 1 recursively define

(aia Bz) = ( ?112+17 _pi72w?i72)7
s -1 fori =2
=

(—pi2)%=39; - otherwise ,
then r; by Definition 4.3 (iii), p; = le(r;), n; = degr;, and d;_; = n;_1 — n,.

The subresultant PRS can be improved if we can somehow determine divisors
~v; of the content of the intermediate results.

o improved division rule: R;(f, g) = (o, 5;) for 2 <i <41,
where we set pg =1, 71 = 1 and for 2 < ¢ < £+ 1 recursively define
di_2+1 di—o  —(dj—2+1
(ci, Bi) = ( i—12+ , —Pi—2V; 2%‘—(1 o )) i,
-1 forv =2
Yi=

o 1—di .
(—viopi_o)®i-34), ~"~* otherwise ,
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where ; is chosen such that r; given by Definition 4.3 (iii) is in R[x], p; =
lC(TZ'), n; = deg T, and di—l = N;—1 — N;. <>

The subresultant division rule was invented by Collins (1967), p. 130. He tried
to find a rule such that the r;’s agree with the polynomial subresultants up
to a small constant factor. Brown (1971), p. 486, then provided a recursive
definition of the a; and ; as given above.

We note that the exponents in the recursive definition of the v;’s in the subre-
sultant division rule and in the improved division rule may be negative. Hence
it is not clear that the (;’s are in R. However, we will show this in Theo-
rem 6.17 by proving that the v; are essentially the subresultants, as also done

QUESTION 4.4. “At the present time it is not known whether or not these
equations imply v;, B; € R.”

By definition, a division rule R defines a sequence (ry,... ,r;) of remainders;
recall that they are uniquely defined. Since it is more convenient to work with
these “polynomial remainder sequences”, we fix this notion in the following
definition, following Collins (1967), p. 128/129.

DEFINITION 4.5. Let R be a division rule. A sequence (rq, ... ,r;) of nonzero
polynomialsry, ... ,r, € R[x]\{0} is called the polynomial remainder sequence
(PRS) for (f, g) according to R if

(1) o = farl =9,

(i) Ri(f,g9) = (i, Bi),

(iii) oyri—g = qi—1rim1 + Biry,

for 2 < i < {+ 1, where ( is the length of R(f,qg). The PRS is complete
if (iii) is satisfied for i = ¢ + 1 with rpy; = 0. It is called normal if d; =
degr; —degr;y; =1for1 <i</{—1.

In fact the remainders for PRS according to arbitrary division rules over an
integral domain only differ by a nonzero constant factor.

PROPOSITION 4.6. Let R be an integral domain, f,g € R[x] and let r =
(ro,...,re) and r* = (rl,... 7)) be PRS for (f,g) according to two division
rules R and R*, respectively, none of whose results «;, 3;, o, 37 is zero. Then
ri = y;r; with

;o Bi—2k

vi= Il ——==—eF\{0}

0<k<i/2—1 ok 5oy,
for 0 < i < min{/, ¢*}, where F is the field of fractions of R.
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ProoOF. We show the proposition by induction on 7. It is clear for 2+ < 1, and
we assume that ¢ > 2. Then with R;(f,g) = («, 8;) and RI(f, g) = (of, BF)
we have

QGTi—9 = Qi—1Ti—1 + BiT;,
®ok % * * K
0T 9 =q; 1 Tiy + ;7.

The induction hypothesis plugged into the second equation and multiplication
by «; yields

(Qie;Yi—2) - Tice = (@Yi1q; 1) - mio1 + () -1}
Multiplying the first equation above by a; 7, o we obtain

(0 yiz2)  Tico = (0 Vi—aGi—1) * Tic1 + (] Yie23i) - 75

From Lemma 2.5(iii) we obtain (a;3}) - rf = (afvi—2/3;) - 73 and r} = ~;r; with

i

o; Bi
i =—— -7 o€ F 0}.
%= \ {0}
By induction this completes the proof of the proposition. (]

The proposition yields a direct way to compute the PRS for (f, g) according to
R* from the PRS for (f, g) according to R and the «y, §;, o, BF. In particular,
the degrees of the remainders in any two PRS are identical.

In Example 4.2 we have seen eight different division rules. Now we consider
the different polynomial remainder sequences according to these rules. Each
PRS will be illustrated by the following example.

ExaMPLE 4.7. We perform the computations on the polynomials
f=ry=92°—272 — 272% + 722? + 182 — 45 and
g=r =3zt —42%> -9z +21
over R = QQ and, wherever possible, also over R = Z. In order to illustrate the
coefficient growth of the various PRS, we first present the subresultants of f
and g. They are given in reverse order to make it easier to compare them with

the intermediate results of the different PRS.

We choose the integers as our ground domain because we then have a reason-
ably concise presentation of our polynomials.
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i oi(f,9) factorization of o;(f, g)
4 =degr; 9 32

3 0 0

2 = degry 9801 3. 112

1 =degrs | 13355280 24.36.5.229
0=degry | 9657273681 3%.11-133811

Furthermore we give the factorizations of the «;, 5; and the leading coefficients
of the r; below the corresponding entries. O

4.1 Classical PRS

The most familiar PRS for (f, ¢) is obtained according to the classical division
rule. Collins (1973), p. 736, calls this the natural Euclidean PRS (algorithm).
The intermediate results of the classical PRS and of the Euclidean Algorithm
coincide.

EXAMPLE 4.7 CONTINUED.

i | oy | B T
0 9 28 — 272% — 2723 + 7222 + 182 — 45
32
1 3zt —4z? — 9 + 21
3
21111 —112% — 27z + 60
—11
164 880 248 931
3111 — s Tt 3t
—24.32.5.229/113
1959 126 851
411 1 T 7335622400
—11%.133811/28 .52 .2202

The first division works over 7Z, but not the subsequent ones. In our formalism,
this means the following. If we take Ro: R[x]* — Z* with Rqo(h, k) = (1,1) for
all (h,k) € Z[x]?, then we obtain the division rule R on Z[z]* with R(f,g) =
((1,1)) of length ¢ = 1.
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4.2 Monic PRS

In Collins (1973), p. 736, the PRS for (f,g) according to the monic division
rule is called monic PRS (algorithm). The r; are monic for 2 < ¢ < /, and
we get the same intermediate results as in the monic Fuclidean Algorithm in
von zur Gathen & Gerhard (1999), Section 3.2.

EXAMPLE 4.7 CONTINUED.

(Ae? Bi T
0 9 26 — 272% — 2723 + 7222 + 18z — 45
32
1 3zt —42? — 9z + 21
3
2, 27 60
211 —11 T +HT — 37
—11 1
164 880 27659
311 ~ 1331 T — 18320
—24.32.5.229/113 1
178102441
411 335 622 400
113.133811/28.52.2292 L

4.8  Sturmian PRS

We choose the PRS for (f, g) according to the Sturmian division rule as intro-
duced in Sturm (1835). Kronecker (1873), p. 117, Habicht (1948), p. 102,
and Loos (1982), p. 119, deal with this generalized Sturmian PRS (algo-
rithm). Kronecker (1873) calls it Sturmsche Reihe (Sturmian sequence), and in
Habicht (1948) it is the verallgemeinerte Sturmsche Kette (generalized Stur-
mian chain). If g = 0f /0z as in Habicht (1948), p. 99, then this is the classical
Sturmian PRS (algorithm). Note that the Sturmian PRS agrees with the clas-
sical PRS up to sign.

EXAMPLE 4.7 CONTINUED.

i | o | B Ti
0 9 26 — 272* — 2723 + 7222 4 182 — 45
32
1 3zt —4z? — 9 + 21
3
211 ] —1 1122 — 27z + 60
11
164 880 248 931
311 ]-1 1331 + T30
2%.32.5.220/113
1959 126 851
411 -1 T 7335622400
—11%.133811/28 .52 .2292
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If we assume that R is an integral domain but not a field, the example shows
that the first three types of PRS do not have Dy, as their domain of definition.
In the example they are only of length 1. But fortunately there are division
rules that have this property.

4.4  Pseudo PRS

If we choose the PRS according to the pseudo-division rule, then we get the
pseudo PRS. Collins (1967), p. 138, calls this the Euclidean PRS (algorithm)
because it is the most obvious generalization of the Euclidean Algorithm to
polynomials over an integral domain R that is not a field. In Collins (1973),
p. 737, it is called the pseudo-remainder PRS.

EXAMPLE 4.7 CONTINUED.

i @; Bi T
0 9 28 — 27z — 2723 4 7227 + 187 — 45
32
1 3zt — 422 — 9z 4 21
3
2 27 1 — 297 22 — 729z + 1620
33 —33.11
3 — 26198073 1 3245333040 z — 4899708 873
(—33.11)3 2%.311.5.929
4 1 10532186540515641600 | 1 — 1659945865 306 233 453 993
(24.311.5.229)2 —325.11%.133811

4.5 Primitive PRS

To obtain a PRS over R with minimal coefficient growth, we choose the PRS
according to the primitive division rule which yields primitive intermediate
results. Brown (1971), p. 484, calls this the primitive PRS (algorithm,).

EXAMPLE 4.7 CONTINUED.
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4.6

i Q; Bi Ti
0 9 28 — 27z — 2723 4 7222 + 187 — 45
32
1 3zt —42® — 92+ 21
3
2 27 — 1122 — 27z + 60
33 3 —11
3 — 1331 9 18320 z — 27659
(—11)3 32 24.5.229
4 | 335622400 | 1959126851 —1
(24.5.229)2 114.133811 -1

Reduced PRS

A perceived drawback of the primitive PRS is the (seemingly) costly compu-
tation of the content. With probabilistic methods, this can in fact be done
with an expected number of about one pairwise ged calculation for multi-
variate polynomials (see von zur Gathen & Gerhard (1999), 7) and less than
two pairwise ged’s for integers Cooperman et al. (1999). In fact, in our experi-
ments in Section 8, the primitive PRS sometimes turns out to be most efficient
among those discussed here. But Collins (1967) introduced his reduced PRS
(algorithm) in order to avoid the computation of the content completely. His
algorithm uses the reduced division rule and keeps the intermediate coefficients
reasonably small but not necessarily as small as with the primitive PRS.

EXAMPLE 4.7 CONTINUED.

i Q; Bi T
0 9 28 — 272 — 2723 + 7222 + 187 — 45
32
1 3xt — 422 — 9z + 21
3
2 27 1 — 297 2% — 729z + 1620
33 1 —33.11
3 — 26198073 27 120197520 z — 181470 699
(—33.11)3 33 2%.38.5.229
4| 14447443814150400 | — 26198073 86915463 129
(24.38.5.229)2 —39.113 310.11.133811
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4.7 Subresultant PRS

The reduced PRS is not the only way to keep the coefficients small without
computing contents. We can also use the subresultant division rule. According
to Collins (1967), p. 130, this is the subresultant PRS (algorithm).

EXAMPLE 4.7 CONTINUED.

i a; Bi T
0 9 28 — 272 — 2723 4 722% + 187 — 45
32
1 3xt — 422 — 97 + 21
3
2 27 -1 297 2 + 7291 — 1620
33 -1 33.11
3 26198073 — 243 13355280 x — 20163411
33.11)3 —35 2%.36.5.229
4 | 178363 503878400 | 2910897 9657273681
(24.36.5.229)2 37.113 38.11.133811

4.8 Improved PRS

It is possible to improve the subresultant PRS (algorithm) if we can determine
divisors 7; of the content of the intermediate results. Then we are allowed to
use the PRS according to the improved division rule. In Brown (1971), p. 487,
and Brown (1978), p. 243-245, this is called improved PRS (algorithm). So
obviously r; € R[z] for 2 <i < . It is not clear to us how to find such ~; in a
manner that essentially avoids the content computation.

5 Fundamental Theorem on subresultants

The Fundamental Theorem on subresultants was discovered independently in
1968 by Brown and by (Collins, footnote on page 519). It expresses an ar-
bitrary subresultant as a power product of certain data in the PRS, namely
the multipliers o and S and the leading coefficients of the remainders in the
Euclidean Algorithm. In this section our first goal is to prove the Fundamental
Theorem on subresultants for polynomial remainder sequences according to
an arbitrary division rule R. From this theorem we then derive results for the
various PRS according to the division rules in Example 4.2. We start with
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two technical lemmas. The first one gives a relation between the subresul-
tants of (f,g) and (g,r) when r = fremg. Proofs can be found in Geddes
et al. (1992), Chapter 7.3, p. 292/293, Lemma 7.1; von zur Gathen & Ger-
hard (1999), Lemma 11.12; and Brown & Traub (1971), p. 509, Lemma 1, for
polynomial subresultants.

LEMMA 5.1. Let f and g € R[x] be polynomials of degrees n > m > 0,
respectively, over an integral domain R, and let q,r € R[z] with f = qg + r
and degr = k <m. Then

—1)("_j)(m_j)lc(g)"_kaj(g,r) for 0 < j <k,
Uj(fa g) =

for k < j <m.

We apply Lemma 5.1 to polynomial remainder sequences. For polynomial
subresultants this result is in Brown & Traub (1971), p. 510, Lemma 2, and
for reduced PRS in Collins (1967), p. 131, Lemma 1.

LEMMA 5.2. Let f and g € R|x] be polynomials of degrees n > m > 0,
respectively, over an integral domain R, let R be a division rule, (f,g) €
def(R) and (rg, ... ,r¢) be the PRS for (f, g) according to R, («v;, 5;) = Ri(f, 9)
the constant multipliers, n; = degr; and p; = lc(r;) for 0 < i < £. Then

N\ Pi-1—]
o (Ti—Qa Ti—l) — (_1)(ni—2—])(ni—1_]) (@) p?i—12—nzo_j (Ti—la Ti)

Q;

if 0 < J < ny, and O'j(TZ'_Q,TZ'_l) =0 if n; <j < mi_q.

In particular, this implies that a?i‘l_j divides in R the numerator of the right
hand side.

Now we are ready to give a proof of the following result which is shown for
PRS in Brown & Traub (1971), p. 511, Fundamental theorem, and for reduced
PRS in Collins (1967), p. 132, Lemma 2, and p. 133, Theorem 1.

FUNDAMENTAL THEOREM 5.3. Let f and g € R[z] be polynomials of degrees
n > m > 0, respectively, over an integral domain R, let R be a division rule
and (rg,...,rs) be the PRS for (f,qg) according to R, (o, ;) = Ri(f,9)
the constant multipliers, n; = degr; and p; = lc(r;) for 0 < i < ¢, and
di=n; —n;yq for0<i</?—1.

(i) For 0 < j < ny, the jth subresultant of (f,g) is

. ni_1-—n; Bk e ng_o—"n
0j(f.9) = (=) p " ] <_ P

2<k<i \ Yk
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if j = n; for some 1 < i < {, otherwise 0, where b; = Y o) ;(ng—o —

;) (ng—1 — n;).
(ii) The subresultants satisfy for 1 < i < { the recursive formulas

on, (f,9) = p* and
d;
Oniy1 (fa g) — Op; (fa g) . (_1)di(n0_ni+l+i+1)(piJrlpi)di H <&>

2<k<i+1 \ Ok

PROOF. (i) We define i by the conditions that 1 < i < fand n;4; < j < n;.
By induction on 7, we find from Lemma 5.2

. ) Bk Ng_1—J
05(f,9) = oj(rica,rs) T (=1)0-2)01=d) <_> Rz
2<k<i g
if j =n;, and 0;(f, g) = 0 if n;41 < j < n;. Furthermore, if j = n;, then
Pi
Uﬂi(rifla ri) =det | * . — p:-li_l_ni,

Pi

(ii) Firstly, (i) implies that oy, (f,g) = p{°. Now assume 7 > 1. Then from (i)

we obtain
U”H—l (fa g)
/8 NE—1—"Mi4+1
s TT (e ()7
2<k<i+1 A
/8 Np—1—N;
= pgjrl H (_1)(”1972 n;)(ng—1-—n;) (_k> ka 12 ng
2<k<i A
T —Ni41
[ (—1)dustmst (&)
2<k<i 897
Bit1

ni—Ni41
pnz 1—Ni41
2

— pz—l—lpz di—1tni—1—n; Uni(f,g) . (_l)di(no—ni+1+z’+1) H (&)
2<k<i+1

(_1)(”i—1*”i)(ni*”i+l) (

Qi1
A
This completes the proof of the fundamental theorem. O

We now have the following generalization of Theorem 3.10.
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COROLLARY 5.4. Let R be a division rule and (rg,...,r;) be the PRS for
(f,g) according to R, let n; = degr; for 0 < i < ¢ be the degrees in the PRS,
and let 0 < k <mn;. Then

o Z0<= B <l k=n,.

6 Applications of the Fundamental Theorem

We now derive results for the various PRS for polynomials f, g € R[x] of de-
grees n. > m > 0, respectively, over an integral domain R, according to the
division rules in Example 4.2. The first type of result expresses the subresul-
tants o, = ox(f,g) in terms of the quantities p; = lc(r;), n; = degr;, and
d; = n; — n;y1, and others in the PRS. The second type gives a recursive
equation expressing p,,., as a multiple of p,,. Both types of formula simplify
considerably in the normal case. Finally, we can also reverse these equations
in the normal case and express the p; in terms of the other quantities. We
start with a technical lemma.

LEMMA 6.1. Let b; = Yo pcij(ng—a — n;)(ng—1 — n;) be as in Fundamental
Theorem 5.3. If the PRS is normal, then

bi=(dg+1)(i+1)mod2 for2<i<F/.

Proor. Since the PRS is normal, we have d; =1 for 1 < j </, and get

b= > (nk—2 — n;)(nk—1 — n;)

:(c_lo_+i—1)(i—1)+ Z.(i—k+2)(i—k+1)
= (dy+1)(i+ 1) mod 2. 0

6.1 Classical PRS

The following claims for the classical PRS are proved by substituting («;, ;) =
(1,1) for 2 < i < (¢ in the Fundamental Theorem 5.3.

COROLLARY 6.2. Let (rg,...,r) be a classical PRS and 1 < i < ¢. Then
(i) o = (=)"pf 7 IT ot ™
2<k<i
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(ii) The subresultants satisfy the recursive formulas

Ony = pc1i07 and

Oniy1 — On; -~ (_1)di(n0_ni+l+i+1)(pi+1pi)di'
If the PRS is normal, then this simplifies to:

(iii) o, = (= 1) @I pplott T pi -y for i > 2.
3<k<i
(iv) The subresultants satisfy the recursive formulas
Ony = ptll07 and

— do+1
O-nH_l — Uni ' (_]‘) 0 pi-l-lpi'

6.2 Monic PRS

For the monic PRS, the Fundamental Theorem 5.3 yields the following corol-
lary which is the Fundamental Theorem 11.13 in von zur Gathen & Gerhard
(1999).

COROLLARY 6.3. Let (rg,...,r;) be a monic PRS, and 2 <i < (. Then
(i) On, = p, and
Uni — (_1)bip?0—nz H 5]76%71*774.
2<k<i

(ii) The subresultants satisfy the recursive formulas

Ony = ptlioa
Opy, = Op, - (_1)d1(n°_n2+2)(p152)d1, and
Oniyr = On; (_1)di(n07ni+1+i+1) H 5]211
2<k<it1
If the PRS is normal, then this simplifies to:
(iii) op, = P, and
Op, = (_]_)(d0+1)(i+1)p?0+1 H 52—(k_1).
2<k<i
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(iv) The subresultants satisfy the recursive formulas

Ony = ptlio
Ony = 0p, - (=1)(@+D2p 3, “and
Oniy1 = On; ( 1 (do+1)(+1) H Bk

2<k<i+1

6.3 Sturmian PRS

For the Sturmian PRS, the results read as follows.

COROLLARY 6.4. Let (rg,...,ry) be a Sturmian PRS, and 1 < i < {. Then
(1) On: :( )b JrZ:2<k<l ng—1—ni) pll 1 H Pnk 2=nk
2<k<i

(ii) The subresultants satisfy the recursive formulas

d
Ony = pf& and
_ d; —n; 1 d;
Oniyr = On; (_1) i(no—nit1+ )(pi+1pi) ’

If the PRS is normal, then this simplifies to:

(iii) o, = (=) OTVED ot T iy fori > 2.
3<h<i
(iv) The subresultants satisfy the recursive formulas

_ do
Ony = P15 and

: (_1)d°+i+lﬂz‘+1ﬂi-

Onit1 — On;

6./ Pseudo PRS

Again the Fundamental Theorem 5.3, after substituting (a;, ;) = (p¥'7 ", 1)

for 2 < i </, provides the following corollary for the pseudo PRS. It can also
be found in Collins (1966), p. 710, Theorem 1, for polynomial subresultants.

COROLLARY 6.5. Let (rg,...,r;) be a pseudo PRS, and 1 <i < (. Then

. _ b d 1 N z ng—(ng—1-n;)(dg_2+1)
(i) On; = o H P ' .
2<k<s
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(ii) The subresultants satisfy the recursive formulas

_ do
Ony = P15 and

Oniyy — On; - (—1)di(noini+1+i+1) (pi+1pi)di H p];yik72+1)di-
2<k<it1

If the PRS is normal, then this simplifies to:

(iii) o (_1)(d0+1)(i+1)pgdo+1)(2*i)pi H pi(lc;i) fori> 2.
3<k<i—1
(iv) The subresultants satisfy the recursive formulas

_ do
Ony = P15 and

_ do+1 —(do+1) -2
Onipr = On; * (—1) P1 Pi+1Pi H Pr—1-
3<k<i+1

REMARK 6.6. If the PRS is normal, then Corollary 6.5(iii) implies that

P Tl

i do+1)(i—2 2(i—k
pi = Oy (—1) (DD o G=2) T 200k,

3<k<i—1

Thus o, divides p;. This result is also shown for polynomial subresultants in
Collins (1966), p. 711, Corollary 1.

6.5 Primitive PRS

Since the content of two polynomials cannot be expressed in terms of our
parameters p; and n;, we do not consider the Fundamental Theorem for this
type of PRS. We only make the following remark.

REMARK 6.7. Let (rg,...,r;) be a primitive PRS. Then p; divides o,, for
2 < i < { since oy, - r;p; € R[z] according to Proposition 3.11 and r; is
primitive.

If R =7, then the required gcd calculations can become quite expensive, but
see Cooperman et al. (1999) for an efficient proposal.

6.6 Reduced PRS

For reduced PRS the Fundamental Theorem 5.3 yields the following corol-
lary. The non-normal parts are shown for polynomial subresultants in Collins
(1967), p. 135, Corollary 1.2, and Collins (1967), p. 135, Corollary 1.4, respec-
tively.
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COROLLARY 6.8. Let (rg,...,ry) be a reduced PRS, and 1 <i < (. Then

. d;_ d 1—d
(i) Ony = (=1)0ipft T pie2™ %),

2<k<i
(ii) The subresultants satisfy for the recursive formulas

_ do
Ony = P1s and

o1 i1d;
O'm'+1 =0p,; * (_1)dl(n0 nH—l—H-H)pH-lpz ' .

If the PRS is normal, then this simplifies to:

(iii) O, = (—1)HDED oo for > 2,

(iv) The subresultants satisfy the recursive formulas

_ do
Ony = P15 and

Oniyr = Ony ( 1) 0+1pt lpz .

PROOF.  Since (as, f2) = (pP*1,1) and (v, 8;) = (o737, ;1) we get

/8 Ng—1—";
I1 <_k> = IT oft ™ 0 o™

2<k<i 3<k<i 2<k<i
:a;(niqfni) H aZk—l_nk
2<k<i—1
H a_dk- 1 _ H i (dlk o+1)dy— L
2<k<i 2<k<i
Together with Fundamental Theorem 5.3 this yields the claims. |

REMARK 6.9. We obtain from Corollary 6.8(i)

Pz —Uni H (_1)(nk—2—ni)(nk—1—ni)pik:f(dkflfl)_

Thus o, divides p{"™". This result can also be found in Collins (1967), p.135,
Corollary 1.2.

REMARK 6.10. For every reduced PRS, r; is in R[x] for 2 < i < (. Note
that Corollary 6.8(iii) implies r; = (—1)@+DED R (f, g). So the normal case
is clear. A proof for the general case based on polynomial subresultants is in
Collins (1967), p. 134, Corollary 1.1, and Brown (1971), p. 485/486.
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6.7 Subresultant PRS

We now derive some results for subresultant PRS with the help of the Funda-
mental Theorem 5.3. To simplify our formulas we use

ei,j = jfl H (1 - dk)

j<k<i

Our first goal is to solve the recurrence for the 3; and eliminate the ;. This
is done in the following two technical lemmas.

LEMMA 6.11. Let v; be defined recursively as in Example 4.2 by 1, = —1
and ; = (—pi_s)%=2¢p; " * for 3 < i < (. Then

bi=— JI i for2<i<t.

1<j<i—2

PrROOF. For a proof by induction, we first verify the claim for ¢ = 2:

R |

1<5<0

Now we assume that ¢ > 2. Then

1—di—2
o di —d;— il di s i—3,j
i = (—1)%2pfi 002 = (1) %2 pf (_ I » 3])

1<j<i=2
di_ 1-d;—2)ei—3,; €(i+1)—3,j
— _pi712 H pg 2)€i-3,j — _ H pj( +1)—3,j )
1<5<i—2 1<G<(i+1)-2
By induction, this completes the proof of the lemma. 0]

LEMMA 6.12. Let o = p?i‘fﬂ for 2 < i < {, and let §, = (—1)™*! and
B = —pi_oth{® for 3 < i < (. Then

B

_ (_1)nofni71+iflpz_i(fi72+1) H plzei72,k for2<i </
Qg

2<k<i 1<k<i—2

PROOF. Since

Io; (=1 no—n - —e
P2 — (_1)d0+1 (ptlio-l-l) — (_1) 0 1-|-1p1 (do+1) H p 0,k

k )
(65} 1<k<0

the claim is true for 7 = 2. Now assume that the claim holds for 7 — 1 > 2 and
consider
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IT O _ II @:—Pi—ﬂbgi*zﬂ;jfﬂﬂ) IT @

o<k<i Vb Yiocpi Yk 2<k<i—1 Yk
From Lemma 6.11 we get

di—2
11 ﬁz—mq <— II Pzi_?”k) pip Y 11 b

1<k<i—2 9<k<i—1 Ok

di—2
:( 1) i 2+1 ( H pez 3k> 0; (11 2+1)

1<k<i—2
ng—n;_s+i—2 *(di73+1) —€i—-3,k
(=1) Pi—2 H Pk
1<k<i—3
di—o—1
_ no—ni_1+i—1 —(di—2+1) d;_3(d;—2—1) € 3.k
=(-1) Pi—1 Pi—2 H Pk
1<k<i—3

di—o—1
:(_1)77,0 ni—1+i— 1 - z 2+1) ( H pel 2k) .

1<k<i—2

By induction, this completes the proof of the lemma. (]
COROLLARY 6.13. Let (ro,...,rs) be a subresultant PRS, and 1 < i < /(.
Then
(1‘) H pel 1, k:
1<k<i

(ii) The subresultants satisfy the recursive formulas

_ do
ni _pl ) and

. d; —die;_1k
Onity = On; " Pit1 H Pk :
1<k<i

If the PRS is normal, then this simplifies to:

(iii) O, = pi fori > 2.
(iv) The subresultants satisfy the recursive formulas

_ do
Unl - pl ’ and

_ —1
On;y1 = On; * Pit1P;

PrOOF.  We first prove (ii) and use it to show (i).
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(ii) From the Fundamental Theorem 5.3(ii) and Lemma 6.12 we find

d,
me 4 , B\
Uni+1 =0n,; * (_l)dl(no nl+1+z+1)(pi+1pi)dl H <_

2<k<i+1 \ Ok
(L)t ()

di(i+n07ni) *(di71+1)di 7diei71,k
(=1) Pi H Pk
1<k<i—1
_ di(d;+1) d; —die; 1k
= o, (=) Wl T o :
1<k<i

The claim now follows since d;(d; + 1) is even.
(i) The claim for ¢ = 1 is clear from Fundamental Theorem 5.3(i). Now
assume that the claim holds for some ¢ € N. Then (ii) yields

_ i —diei—1,j
Oniy1 = Pit1 H Py Ony»
1<j<i

and by induction we have

_d; —die; 11 di—1 €1k __ € k
Onir = Pt 11 os i I e = I w* O
1<k<i 1<k<i—1 1<k<it+1

REMARK 6.14. For every subresultant PRS the polynomials r; are in R[x] for
2 < i < (. Note that Corollary 6.13(iii) implies r; = R;(f,g). So the normal
case is clear. Proofs for the general case based on polynomial subresultants
are in Collins (1967), p. 130, and Brown (1971), p. 486.

Corollary 6.13 does not provide the only recursive formula for subresultants.
Another one is based on an idea in Lickteig & Roy (1997), p. 12, and Reischert
(1997), p. 238, where the following formula has been proven for polynomial
subresultants. It follows from Corollary 6.13.

COROLLARY 6.15. Let (rg,...,r;) be a subresultant PRS. Then the subre-
sultants satisfy for 1 < i < { the recursive formulas

on, = p° and

1-d

_ 1-d; d;
Oniy1 = Op; C Pt

These results also show that the subresultant PRS does take place in R[x], as
proven by Brown (1978).
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COROLLARY 6.16. Let ¢y = —1 and 1; = (—p;_s)%—2b, "% for 3 < i < (.

(i) i = —0y,, , for 3 <i < /.
(ii) The coefficients 1; and [3; of the subresultant PRS are always in R.

Proor. By Lemma 6.11 and Corollary 6.15, we have

1/)3 = _pfo = —Ony-
This proves the corollary for i = 3. Now assume ¢ > 3. Then again Lemma 6.11,
Corollary 6.15, and the induction hypothesis yield

’QZ}z' = (_pi—Q)di_3¢3:{ii_3 = " On;_y* ng:i 'O-ll_i,i_g = ~On;_y- O
THEOREM 6.17.
6.8 Comparison of reduced PRS and subresultant PRS

We conclude this section with a comparison of the reduced PRS and the subre-
sultant PRS. To this end we first prove a formula for p¢'* in the reduced PRS
only depending on subresultants, thus solving the recursion in Remark 6.9.

THEOREM 6.18. Let (rg,...,7s) be a reduced PRS. Then

dio1 _ O, - (_l)ai H (dk—l)HijSifl d;

Ony, )
1<k<i—1

where a; = ZQSkSi(nO — Nk + k) : Hk—lgjgi—l dj-

PrOOF.  Corollary 6.8(ii) implies that

di—1

-1 (_l)dl(no—nz+2) 1110d1 _ . (_1)d1(n0—n2+2) b=t

pgl = Un2 : Unl o
and this proves the claim for i = 2. Now assume i > 2. Then Corollary 6.8(ii)
and the induction hypothesis yield
di o~ (=14 (no—nipi+it) di—1d;
pi+1 - Uni+1 O-ni ( ) pz’
-1, (_l)di(no_ni+1+i+1)

= Jni+1 : O-TLZ‘
I "
R | B e
1<k<i—1
, (=TT, .. d;
=0Oniqy ° (=1)% Ony, g g O

1<k<i
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We can now prove the relation between reduced and subresultant PRS. The
normal case can be found in Collins (1967), p. 135, Corollary 1.3, and Collins
(1973), p. 738. Since we how deal with two different PRS, we use lc(r;), le(r))
instead of the unspecific notation p; here.

COROLLARY 6.19. Let (rg,...,r¢) be a reduced PRS and (r§,... ,r}) a sub-
resultant PRS for the polynomials 1o = r; = f and ry = r{ = g. Then the
following holds for 2 < i < {:

le(r)® = (~1)% [ one s e,

1<k<i—2

where a; = Yo pci(no — nk + k) - Tl 1<j<i 1 dj. If the PRS are normal, this
simplifies to

le(r;) = (—1)(”07”1')(”1’”1') le(r)).
Proor. Follows immediately from Theorem 6.18 and Corollary 6.15. U

Since the exponent of o,, is nonnegative, this means that the entries in the

reduced PRS are at least as large in absolute value as those in the subresultant
PRS.

7 Analysis of coefficient growth and running time

This section presents two types of results. We first show an exponential lower
bound on the size of the entries of the pseudo PRS that matches the upper
bound from Knuth (1981), 4.6.1. A slightly different lower bound is in 7, 3.3.3.
On the other hand, we show polynomial upper bounds for all other PRSs.

LEMMA 7.1. Let e =0, e3=1, and e;,1 = 2¢; + ¢; 1 for : > 3. Then

(i) Yo<k<io1 26k =€ + €1 — L.

(ii) ;= -

PROOF. Since 2e5 = 0 = e3+ e5 — e3, the claim holds for « = 3. Now assume
1 > 3. By induction hypothesis we get

Z 26k = 262' + Z 26k

2<k<(i+1)—1 2<k<i—1

:26i+€i+€i—1_63:6i+1+€i_€3- Ol
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LEMMA 7.2. Suppose that (f, g) € Z|z]*> have a normal pseudo PRS. Then

pi = Oy, (_1)(d0+1)(i+1)(p10-n1)8i H O-Zji—qul
2<j<i—2

withey =0,e3=1and e;; ;1 =2¢; +¢; 1 for3<i</{—1.

PrOOF. Since Remark 6.6 shows the claim for i < 3, we assume ¢ > 3. From
Corollary 6.5(iv) and the induction hypothesis we get

Pi+1
:Unmar:il (=1 (prow, ) pi II 7
2<k<i—1
:Uni+la_1 ’ (_1)d0+1(p10n1)0ni : (_1)(d0+1)(i+1)(p10n1)8i

ng

2
M o T (st T o
n; ngk pl ni n;
2<j<i—2 2<k<i—1 2<j<k—2

. (_1)(d0+1)(i+2) (p10n1)1+8i+22gk9712ek H g2ei-j+1 .

- ani+1 n;

2 . 48k,'+1

Il on- 1[I o
2<k<i—1 jH2<k<i—1
2<j<i—3

= Oniyr (_1)(d0+1)(i+2) (Planl)HeﬁZ?S’“Si*l%k H ai?i-m

2<j<i—2

2<j<i2

242 Ej+2§k§i—l 2ek—j+1
Il o :
2<5<i—1

With Lemma 7.1 we get

Pit1 = Onyypy - (_1)(d0+1)(i+2) (Plo'nl )8i+1 H 0-T2lji—j+1 H UTZL?,]-HJF%Z-,J-

2<j<i—2 2<j<i—1
- . (do+1)(i+2) €it1 2€i_j+2
= Onipy (_1) (planl) ' H O.njl e
2<j<i—1
By induction, this proves the lemma. |

THEOREM 7.3. The final remainder p, in the pseudo PRS is at least 22" in
some cases with input polynomials of degrees at most n and coefficients of
constant size.
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PrROOF. Let ¢; be as in Lemma 7.2 for 2 < i < {. Then we have

k
€; 21 €i—1 21 €i—L

€i—1 10 €i 2 10 i (k+1)

Since the eigenvalues of the matrix are 1 + \/5, we get

k 1

21 1 —1++2 . (1+V2)F 0 _ 1-1+v2)
10 1-1-+2 0 (1-v2+] \1-1-v2)

and this shows

o= e (14 VD).

Now let f, g € Z[z] have degrees n and n — 1, respectively, and have a normal
degree sequence and |lc(g)| > 65536 = 2'°. Then dy = 1, £ = n — 1 and by

Lemma 7.2
_2[*3

n

loe] > |pa |7 > 22727 =22

for large n. O
The algorithm writes down the final result p;, and takes at least as much time

as the bit length of |p,|, which is at least 2".

After this “negative” result, saying that the pseudo PRS is decided by im-
practical, we turn to “positive” upper bounds for the other PRS. We assume
[ = Yocjen fi#?) and g = $ycjc,n 9547 € Z[x] to be polynomials of degrees
n > m > 0, respectively. For the estimates we will use the maz-norm of f
which is defined as

[flloo = max{|f;| : 0 < j < n},

and the following famous result:

HADAMARD’S INEQUALITY 7.4. Let A € Z™*", with row vectors f1,..., fn €
7", and B € 7 such that all entries of A are at most B in absolute value. Then

| det A < n"/2B"

(see von zur Gathen & Gerhard (1999), Theorem 16.6).

We now seek an upper bound for the running time of both the reduced PRS
and the subresultant PRS in the normal case. Therefore we first show estima-
tions for the coefficients of ¢ and r in the pseudo-division.
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LEMMA 7.5. Let ||flloc < A, ||lgllc < B and |g,,| = C. Furthermore let

0 = Yocjcn-m G, T = Yo<jcp 750’ be such that gi ™ f = qg 4+ r and
degr =k < m =degg. Then

(i) |gn-m_i| < AB+C)YC* """ for0 <i<n-—m,
(i) |l < A(B +C)* 7"+

PROOF. (i) Since degr < m we find
g:;erlfn—i = Gn-m—i9m + Z Gagy + 0. (76)
a+b=n—i

aF#n—m—i

Hence
|QTL7’ITL| - |g?n_mfn| S Cn_mA;

and this proves the claim for ¢ = 0. Now assume 0 < 7 < n — m. Then 7.6,
B > (' and the induction hypothesis imply

[dn-m-igm| < g™+ | flloo + A(B + €)' Cm =70
<A-CvmHL L A(B4C)lem YR
<AB+C)tenm U L A(B + ) tenrmiTh B
— A(B + C)icmm D,

By induction this proves the first claim.
(ii)) With Lemma 7.5(i) we get

17lloe < lgm ™M - LF1 + lalloo - llglloo
S A_cnfm+l_|_A(B_|_C)nme
<AB+C)"C+AB+C)"™B
— A(B+ Oy 0

With Lemma 7.5 we now prove the following running time of the normal
reduced PRS algorithm.

THEOREM 7.7. Let || f|lso, [|9]]o0 < A, B = (n+1)"A""™ and let (ro,... ,r¢)

be the normal reduced PRS for f,q. Then the max-norm of the r; is at most
4B3, and the algorithm uses O(n*mlog?(nA)) word operations.

ProoFr. Consider one step in the computation of the reduced PRS:

QT 92 = q; 111+ Q; 175.
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For 2 < i < ¢ we get with Corollary 6.8 Corollary 6.8(iii) that o,,(f,g) is
the leading coefficient of r;. Thus Remark 3.12 and Hadamard’s inequality 7.4
yield

[17illsc = [[Bn; (f; 9)lloo < B-
Since the PRS is normal, it follows that a; = p?_l for 3 < i < /. Hence

levirilloo = lon,y (f, 9)°] - 1Ras (f 9)I] < B

Furthermore Lemma 7.5 implies

||05i717"i||oo S B(QB)2 = 433
Gn—m—ille <B(2B)'B*¥~" < 2FBk+! = 22,

So the max-norm of all intermediate results is at most 433. The number of op-
erations in R is O(nm), and the estimate follows from log B € O(nlog2(nA)).
O

Since Corollary 6.19 shows that normal reduced PRS and normal subresultant
PRS agree up to sign, the estimates in Theorem 7.7 are also true for normal
subresultant PRS.

PRS time
classical /Sturmian/monic 0~ (n®)
0~ (n®)
pseudo O((1 = v/2)") | Theorem 7.3
primitive O~ (n®)
reduced /subresultant 0~ (n®) Theorem 7.7

Table 2

Comparison of various normal PRS. The time (= word operations) is for polynomials
of degree at most n in z and with coefficients of length at most n and ignores
logarithmic factors.

We conclude the theoretical part of our comparison with an overview of all
worst-case running times for the various normal PRS in Table 2. The length
of the coefficients of f and ¢ are assumed to be at most n. The estimates that
are not proven here can be found in von zur Gathen & Gerhard (1999).

8 Experiments

We have implemented six of the PRS for polynomials with integral coefficients
in C++, using Victor Shoup’s “Number Theory Library” NTL 3.5a for integer
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Fig. 2. Computation of polynomial remainder sequences for polynomials of degree
n — 2 with coefficients of bit length less than n for 2 < n < 64.

and polynomial arithmetic. Since the Sturmian PRS agrees with the classical
PRS up to sign, it is not mentioned here. The contents of the intermediate
results in the primitive PRS are simply computed by successive gcd compu-
tations. Cooperman et al. (1999) propose a new algorithm that uses only an
expected number of two gcd computations, but on random inputs it is slower
than the naive approach. All timings are the average over 10 pseudorandom
inputs. The software ran on a Sun Sparc Ultra 1 clocked at 167MHz.

In the first experiment we pseudorandomly and independently chose three
polynomials f, g, h € Z[z] of degree (n — 2)/2 with nonnegative coefficients of
length less than n/2, for various values of n. Then we used the various PRS
algorithms to compute the ged of fh and gh. Thus the degree of the gcd was
at least (n — 2)/2; in fact, it was equal to (n — 2)/2 in all cases when n > 6.
The running times are shown in Figures 2 and 3.

As seen in Table 2 the pseudo PRS turns out to be the slowest algorithm.
The reason is that for random inputs with coefficients of length at most n
the second polynomial is almost never monic. Theorem 7.3 shows that then
the running time for pseudo PRS is exponential. A surprising result is that
the primitive PRS, even implemented in a straightforward manner, turns out
to be the fastest PRS. Collins and Brown & Traub invented the subresultant
PRS in order to avoid the primitive PRS since it seemed too expensive. Our
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CPU minutes

128 160 192
n

—*— monic subresultant

—&— reduced —e— prlmltlve

Fig. 3. Computation of polynomial remainder sequences for polynomials of degree
n — 2 with coefficients of bit length less than n for 64 < n < 192. Time is now
measured in minutes.

tests show that this was unnecessary in case of large ged’s.

Polynomial remainder sequences of random polynomials tend to be normal.
Since Corollary 6.19 shows that reduced and subresultant PRS agree up to
signs in the normal case, their running times also differ by little.

We are also interested in comparing the reduced and subresultant PRS, so we
construct PRS which are not normal. To this end, we pseudorandomly and
independently choose six polynomials f, f1, g, g1, h, hy for various n as follows:

F=(f-h -2+ fi)h
G=(g - -h -2+ g )h

. noon n n

degree bound: n 5 1 G )

; . n 3n n n
coefficient length: n 3 5 5 5

So F' and G have degrees less than n — 2 with coefficient length less than n,
and every polynomial remainder sequence of F' and G has a degree jump of ¢
at degree n — {5. Then we used the various PRS algorithms to compute the
ged of F' and G. The running times are illustrated in Figures 4 and 5.
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Fig. 4. Computation of non-normal polynomial remainder sequences for polynomials
of degree n — 2 with coefficient length less than n and a degree jump of & at degree
n — 15, for 2 <n < 64.

As in the first test series the pseudo PRS turns out to be the slowest, and the
primitive PRS is the fastest. Here the monic PRS is faster than the reduced
PRS. Since the PRS is non-normal, the coefficients become quite large, as seen
in Theorem 6.18.

We already find running times for reduced and primitive PRS in Collins (1967),
p. 140. He used a IBM 7094 computer to calculate the ged of two polynomials
of degrees 5k with random integer coefficients of two decimal digits for various
k. His results are in Table 3. He found the reduced PRS to be faster than the
primitive PRS. This difference is presumably due to the fact that two pseu-
dorandom polynomials are usually coprime. Thus the PRS is longer and the
coefficient growth influences the running times more than in our tests, where
a half degree gcd was built in. Collins writes: “For a nonnormal p.r.s. [---]
we have no theory to indicate that the reduced p.r.s. algorithm would still
be more efficient than the primitive p.r.s. algorithm”. He also reports that
for larger ged’s, the primitive PRS “may even be sligthtly faster in extreme
cases” than the reduced one, but that this does not seem to compensate for
its relative inefficiency in the other cases.

In order to illustrate the dependency of the running times and the degree of the
ged’s, we implemented one more test. We pseudorandomly and independently
chose two polynomials f and g of degrees 63 — k with bit length less than
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64 96 128 160 192
n
—*— monic subresultant
—s— reduced —e— primitive

Fig. 5. Computation of non-normal polynomial remainder sequences for polynomials

of degree n — 2 with coefficient length less than n and a degree jump of & at degree

n — 1"—2, for 64 < n < 192. Time is now measured in minutes.

Degree | primitive reduced
5 0.009  0.0043
10 0.064 0.023
15 0.22 0.077
20 0.51 0.21
25 1.06 0.43
30 1.79 0.78
35 3.25 1.48

Table 3
Running times from Collins (1967), p. 140, in minutes.

64 — k, and a polynomial A of degree k and with bit length less than k. Then
we used the various PRS to compute the ged of fh and gh. So the running
times of the PRS only depended on the size of the ged. The result is in Figure 6.
For small gcd’s the reduced PRS is faster than the primitive PRS, but this
changes for growing gcd’s. Thus the choice of the optimal PRS is output-
driven: it depends on the degree of the gcd. In practice, one has to make this
decision beforehand, however. For “random” inputs, the expected degged is
small, and one will favor the reduced PRS. If one has reason to expect deg ged
to be large, one will choose the primitive PRS; this may be the case, e.g., in
recursive (primitive) PRS computations for multivariate polynomials.
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CPU seconds

63

—+— pseudo —*— monic subresultant
—=— classical —=— reduced —e— primitive

Fig. 6. Computation of polynomial remainder sequences for polynomials of degree
63 with coefficients of bit length less than 64 and ged of degree k with coefficients
of bit length less than k for 0 < k < 63.
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