
SUBRESULTANTS REVISITEDJoa
him von zur Gathen and Thomas L�u
kingFa
hberei
h Mathematik-Informatik, Universit�at Paderborn,33095 Paderborn, Germany, fgathen|lu
kg�upb.deAbstra
tSubresultants and polynomial remainder sequen
es are an important tool in poly-nomial 
omputer algebra. In this survey, we sket
h the history, dis
uss the variousnotions, and report on implementations.1 Introdu
tion1.1 Histori
al 
ontextThe Eu
lidean Algorithm was �rst do
umented by Eu
lid (
. 320{275 BC).A

ording to Knuth (1981), p. 318, \we might 
all it the granddaddy of allalgorithms, be
ause it is the oldest nontrivial algorithm that has survivedto the present day." It exe
utes division with remainder repeatedly until theremainder be
omes zero. With inputs 13 and 9 it performs the following:13= 1 � 9 + 4;9= 2 � 4 + 1 ;4= 4 � 1 + 0:This allows us to 
ompute the greatest 
ommon divisor (g
d) of two integersas the last non-vanishing remainder. In the example, the g
d of 13 and 9 is
omputed as 1.When the 
on
ept of polynomials started to evolve, resear
hers were interestedin �nding the 
ommon roots of two polynomials f and g. Simon Stevin wasPreprint submitted to Elsevier Preprint 27 June 2000JO
A

C
H

IM
V

O
N

Z
U

R
G

A
T

H
E

N
&

T
H

O
M

A
S

L
Ü

C
K

IN
G

(2
00

3)
.

Su
br

es
ul

ta
nt

s
re

vi
si

te
d.

Th
eo

re
tic

al
C

om
pu

te
r

Sc
ie

nc
e

29
7,

19
9–

23
9.

U
R

L
h
t
t
p
:
/
/
d
x
.
d
o
i
.
o
r
g
/
1
0
.
1
0
1
6
/
S
0
3
0
4
-
3
9
7
5
(
0
2
)
0
0
6
3
9
-
4

.
E

xt
en

de
d

A
bs

tr
ac

ti
n

P
ro

ce
ed

in
gs

of
LA

TI
N

20
00

,P
un

ta
de

lE
st

e,
U

ru
gu

ay
(2

00
0)

.
T

hi
sd

oc
um

en
ti

sp
ro

vi
de

d
as

a
m

ea
ns

to
en

su
re

tim
el

y
di

ss
em

in
at

io
n

of
sc

ho
la

rl
y

an
d

te
ch

ni
ca

lw
or

k
on

a
no

n-
co

m
m

er
ci

al
ba

si
s.

C
op

yr
ig

ht
an

d
al

lr
ig

ht
s

th
er

ei
n

ar
e

m
ai

nt
ai

ne
d

by
th

e
au

th
or

s
or

by
ot

he
rc

op
yr

ig
ht

ho
ld

er
s,

no
tw

ith
st

an
di

ng
th

at
th

es
e

w
or

ks
ar

e
po

st
ed

he
re

el
ec

tr
on

ic
al

ly
.I

ti
s

un
de

rs
to

od
th

at
al

lp
er

so
ns

co
py

-
in

g
an

y
of

th
es

e
do

cu
m

en
ts

w
ill

ad
he

re
to

th
e

te
rm

s
an

d
co

ns
tr

ai
nt

s
in

vo
ke

d
by

ea
ch

co
py

ri
gh

t
ho

ld
er

,a
nd

in
pa

rt
ic

ul
ar

us
e

th
em

on
ly

fo
r

no
nc

om
m

er
ci

al
pu

r-
po

se
s.

T
he

se
w

or
ks

m
ay

no
tb

e
po

st
ed

el
se

w
he

re
w

ith
ou

tt
he

ex
pl

ic
it

w
ri

tte
n

pe
r-

m
is

si
on

of
th

e
co

py
ri

gh
th

ol
de

r.
(L

as
tu

pd
at

e
20

16
/0

5/
18

-1
4

:2
0.

)



the �rst to apply the Eu
lidean Algorithm to polynomials, in 1585. In 1707,Newton 
onsidered this problem and showed that the method always worksin Q [x℄.x3 + 2x2 � x� 2= (12x + 32)(2x2 � 2x� 4) + 4x+ 42x2 � 2x� 4= (12x� 1)(4x+ 4) + 0:In this example f = x3 + 2x2 � x � 2 and g = 2x2 � 2x � 4 have a greatest
ommon divisor 4x+4, and therefore the only 
ommon root is �1. In a 
ertainsense the Eu
lidean Algorithm 
omputes all 
ommon roots (in an algebrai
ally
losed extension su
h as C ). If we only want to know whether f and g haveat least one 
ommon root, then still the whole Eu
lidean Algorithm has tobe exe
uted. Thus a goal was to �nd an indi
ator for 
ommon roots withoutusing any division with remainder.The key to su

ess was found in 1748 by Euler, and later by B�ezout. Theywere looking for a resultant of f and g as a polynomial in the 
oeÆ
ients off and g that vanishes if and only if f and g have a 
ommon root. In his 1764paper, B�ezout 
oined the word �equation r�esultante and was the �rst to �nd amatrix whose determinant is the resultant. The entries of this B�ezout matrixare bilinear fun
tions of the 
oeÆ
ients of f and g. Today one often usesthe matrix dis
overed by Sylvester in 1840, known as the Sylvester matrix. Itsentries are simply 
oeÆ
ients of the polynomials f and g. Sylvester generalizedhis de�nition and introdu
ed what we now 
all subresultants as determinantsof 
ertain submatri
es of the Sylvester matrix. They are nonzero if and only ifthe 
orresponding degree appears as a degree of a remainder of the Eu
lideanAlgorithm.These indi
ators, in parti
ular the resultant, also work for polynomials in Z[x℄.But it is in general not possible to apply the Eu
lidean Algorithm to f and gin Z[x℄ without leaving Z[x℄, as illustrated in the example above, sin
e divisionwith remainder is not always de�ned in Z[x℄, although the g
d exists. In theexample it is x+ 1.However, in 1836 Ja
obi found a way out. He introdu
ed pseudo-division:he multiplied f with a 
ertain power of the leading 
oeÆ
ient of g beforeperforming the division with remainder. This is always possible in Z[x℄. Sousing pseudo-division instead of division with remainder in every step in theEu
lidean Algorithm yields an algorithm with all intermediate results in Z[x℄.About 40 years later Krone
ker did resear
h on the Laurent series in x�1 ofg=f for two polynomials f and g. He 
onsidered the determinants of a matrixwhose entries are the 
oeÆ
ients of the Laurent series of g=f . He obtained2
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Figure 1: Histori
al evolution

thesameresultsasSylvester,namelythatthesedeterminantsarenonzeroif
andonlyifthe
orrespondingdegreeappearsinthedegreesequen
eofthe
Eu
lideanAlgorithm.FurthermoreKrone
kergaveadire
twayto
ompute
lowdegreepolynomialss,tandrwithsf+tg=rviadeterminantsof
matri
esderivedagainfromtheLaurantseriesofg=f,andshowedthatthese
polynomialsareessentiallytheonlyones.Healsoprovedthatthepolynomial
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r, if nonzero, agrees with a remainder in the Eu
lidean Algorithm, up to a
onstant multiple. This was the �rst o

urren
e of polynomial subresultants.Starting in the 1960s, people built early 
omputer algebra systems like PMand ALPAK that made it possible to perform more and more 
ompli
atedalgorithms faster and faster. However, using pseudo-division in every stepof the Eu
lidean Algorithm 
auses exponential 
oeÆ
ient growth. This wassuspe
ted in the late 1960's. Collins (1967), p. 139, explains that the ith in-termediate 
oeÆ
ients are approximately longer by a fa
tor of (1 +p2)i thanthe input 
oeÆ
ients, and writes: \Thus, for the Eu
lidean algorithm, thelengths of the 
oeÆ
ients in
reases exponentially." In Brown & Traub (1971)we �nd: \Although the Eu
lidean PRS algorithm is easy to state, it is thor-oughly impra
ti
al sin
e the 
oeÆ
ients grow exponentially." An exponentialupper bound is in Knuth (1993)???, equation (27) in 4.6.1: \Thus the upperbound [: : : ℄ would be approximately N0:5(2:414)n , and experiments show thatthe simple algorithm does in fa
t have this behavior; the number of digitsin the 
oeÆ
ients grows exponentially at ea
h step!". An exponential lowerbound is in ?, 3.3.3, and we provide in Theorem 7.3 a more pre
ise lowerbound that essentially mat
hes Collin's and Knuth's upper bound.One way out of this exponential trap is to make every intermediate resultprimitive, that is, to divide the remainders by the greatest 
ommon divisorsof their 
oeÆ
ients, the so-
alled 
ontent. However, 
omputing the 
ontentseemed to be very expensive, espe
ially for multivariate polynomials. So thes
ientists tried to �nd divisors of the 
ontent without using any g
d 
ompu-tation. Around 1970, �rst Collins and then Brown & Traub reinvented thepolynomial subresultants as determinants of a 
ertain variant of the Sylvestermatrix. Habi
ht had also de�ned them independently in 1948. Collins andBrown & Traub showed that they agree with the remainders of the Eu
lideanAlgorithm up to 
onstant fa
tors. They gave simple formulas to 
ompute thesefa
tors and introdu
ed the 
on
ept of polynomial remainder sequen
es (PRS),generalizing the 
on
ept of Ja
obi. The �nal result is the subresultant PRSthat features linear 
oeÆ
ient growth with intermediate results in Z[x℄.Sin
e then two further 
on
epts have 
ome up. On the one hand the fast EEAallows to 
ompute an arbitrary intermediate line in the Eu
lidean S
heme di-re
tly. Using the fastO(n logn log logn) multipli
ation algorithm of S
h�onhageand Strassen, we 
an redu
e the time to 
ompute the g
d from O(n2) toO(n log 2n log logn) �eld operations (see Strassen (1983)). On the other hand,the modular EEA, also introdu
ed by Collins, is very eÆ
ient. These twotopi
s are not 
onsidered in this survey; for further information we refer tovon zur Gathen & Gerhard (1999), Chapters 6 and 11. Figure 1 illustrates thehistori
al evolution. 4



1.2 OutlineAfter introdu
ing the notation and some well-known fa
ts in Se
tion 2, westart with an overview and 
omparison of various de�nitions of subresultantsin Se
tion 3. Mulders (1997) des
ribes an error in software implementationsof an integration algorithm whi
h was due to the 
onfusion 
aused by thethese various de�nitions. It turns out that there are essentially two di�erentnotions: the s
alar and the polynomial subresultants. We determine how theyare related to ea
h other. In the remainder of this work we will mainly 
onsiderthe s
alar subresultants.In Se
tion 4 we give a formal de�nition of polynomial remainder sequen
es andderive the most famous ones as spe
ial 
ases of our general notion. The relationbetween polynomial remainder sequen
es and subresultants is exhibited inthe Fundamental Theorem 5.3 in Se
tion 5. It uni�es many results in theliterature on various types of PRS. In Se
tion 6 we apply it to the varioustypes of polynomial remainder sequen
es. This yields a 
olle
tion of resultsfrom Collins (1966, 1967, 1971, 1973), Brown (1971, 1978), Brown & Traub(1971), Li
kteig & Roy (1997) and von zur Gathen & Gerhard (1999), oftenwith simpli�
ation in the statements and proofs.Finally we report on implementations of the various polynomial remaindersequen
es. We analyze the 
oeÆ
ient growth and the running time of thevarious PRS in Se
tion 7, and 
ompare their running times in Se
tion 8. Itturns out that 
omputing the 
ontent is quite fast for random inputs, and thatthe primitive PRS behaves mu
h better than expe
ted.However, this is not meant to suggest these algorithms as a pra
ti
al alter-native. In most situations, the modular algorithms will outperform the PRSdis
ussed in this survey.All examples in this paper are from Z[x℄, but the methods apply equally wellto multivariate polyomials, and are even more useful there. We 
hoose thoseexamples be
ause they are more 
on
ise to spe
ify.1.3 A
knowledgementsWe thank Johannes Bl�omer and Eri
h Kaltofen for pointers to the literature.This work is part of the se
ond author's Diplomarbeit (L�u
king (2000)), andan Extended Abstra
t appeared at Latin '00 (von zur Gathen & L�u
king(2000)). 5



2 FoundationsWe refer to Hungerford (1990) and von zur Gathen & Gerhard (1999), Se
-tions 2.2 and 25.5, for the notation and fundamental fa
ts about greatest
ommon divisors and determinants.2.1 PolynomialsLet R be a ring. In what follows, this always means a 
ommutative ring with 1.A basi
 tool in 
omputer algebra is division with remainder. For given poly-nomials f and g in R[x℄ the task is to �nd polynomials q and r in R[x℄ withf = qg + r and deg r < deg g: (2.1)Unfortunately su
h q and r do not always exist.Example 2.2. It is not possible to divide x2 by 2x+3 with remainder in Z[x℄be
ause x2 = (ux + v)(2x + 3) + r with u; v; r 2 Q has the unique solutionu = 1=2, v = 0 and r = �3=2, whi
h is not over Z. �If de�ned and unique we 
all q = f quo g the quotient and r = f rem g theremainder. A ring with a length fun
tion (like the degree of polynomials) andwhere division with remainder is always de�ned is a Eu
lidean domain. R[x℄is a Eu
lidean domain if and only if R is a �eld. A solution of (2.1) is notne
essarily unique if the leading 
oeÆ
ient l
(g) of g is a zero divisor.Example 2.3. Let R = Z8 and 
onsider f = 4x2 + 2x and g = 2x+ 1. Withq1 = 2x, r1 = 0;q2 = 2x+ 4, r2 = 4;we have two distin
t solutions (q1; r1) and (q2; r2) of (2.1). �A way to get solutions for all 
ommutative rings is the general pseudo-divisionwhi
h allows multipli
ation of f by a ring element �:�f = qg + r, deg r < deg g: (2.4)If n = deg f , m = deg g, and � = l
(g)n�m+1, then this is the (
lassi
al)pseudo-division as proposed in Ja
obi (1836). If l
(g) is not a zero divisor,then (2.4) with � = l
(g)n�m+1 always has a unique solution in R[x℄. We 
allq = f pquo g the pseudo-quotient and r = f prem g the pseudo-remainder.6



Example 2.2 
ontinued. For x2 and 2x+ 3 we get the pseudo-division22 � x2 = (2x� 3)(2x+ 3) + 9A simple 
omputation shows that we 
annot 
hoose � = 2. �Lemma 2.5. Let f; g 2 R[x℄ have degrees n;m, respe
tively, and g 6= 0.(i) Pseudo-division always yields a solution of (2.4) in R[x℄.(ii) If l
(g) is not a zero divisor, then any solution of (2.4) has deg q = n�m.(iii) The solution (q; r) of (2.4) is uniquely determined if and only if l
(g) isnot a zero-divisor.Proof. (i) We prove the 
laim by indu
tion on n = deg f . For n < m =deg g we have the solution q = 0 and r = f . Now assume that n � m,and let f � = gmf � fnxn�mg where fn and gm are the leading 
oeÆ
ientsof f and g, respe
tively. Thengn�m+1m f = (fngn�mm xn�m)g + gn�mm f �:Now deg f � < deg f , and by the indu
tion hypothesis there exist q� andr� in R[x℄ withg(n�1)�m+1m f � = q�g + r� and deg r� < deg g:Therefore q = fngn�mm xn�m + q� and r = r� give a solution of (2.4).(ii) Let (q; r) be a solution of (2.4). Sin
e deg r < deg g and l
(g) is not azero-divisor, we haven = deg f = deg qg = deg q + deg g = deg q +m:(iii) \)": Suppose l
(g) = gm is not a zero divisor, and that q1; r1; q2; r2 2 R[x℄are su
h that �f = q1g + r1 = q2g + r2:We 
laim that (q1; r1) = (q2; r2). Now(q1 � q2)g = r2 � r1: (2.6)Sin
e q1 = q2 implies r1 = r2, we may assume that q1 6= q2. Now we writeg = gmxm + g� and q1 � q2 = 
x` + q� where deg g� < m, ` � 0 and 
 =l
(q1� q2) 6= 0, and note that gm
 6= 0. Therefore deg((q1� q2)g) = m+ `and deg((q1 � q2)g) � m > deg(r2 � r1):This 
ontradi
tion to (2.6) proves our 
laim.7



\(": We assume l
(g) = gm to be a zero divisor, and 
 2 R to be nonzerowith gm
 = 0, and let (q1; r1) be a solution of (2.4). Then q = q1+ 
 andr = r1 � 
g yieldqg + r = (q1 + 
)g � 
g + r1 = q1g + r1 = �fwith deg r < deg g. Thus (q; r) is another solution of (2.4). �2.2 Extended Eu
lidean Algorithm (EEA)We use the notation for the Extended Eu
lidean Algorithm (EEA) from von zurGathen & Gerhard (1999), Chapter 3, with remainders ri, quotients qi andB�ezout 
oeÆ
ients si and ti, for 0 � i � `.Example 2.7. The Extended Eu
lidean S
heme of the two polynomials f =x3 + 6x2 + 11x+ 6 and g = x2 � 3x+ 2 2 Q [x℄ is:i ri qi si ti0 x3 + 6x2 + 11x+ 6 1 01 x2 � 3x+ 2 x+ 9 0 12 36x� 12 136x� 227 1 �x� 93 109 1625 x� 545 � 136x+ 227 136x2 + 19108x+ 134 0 910x2 � 2710x+ 95 � 910x3 � 275 x2 � 9910x� 275So the Eu
lidean length of (f; g) is ` = 3. Sin
e r3 = 109 2 Q is a unit, the g
dof f and g is 1. �In general, (deg r0; : : : ; deg r`) is the degree sequen
e; in the example it is(6,4,2,1,0).We have degri +degti < deg f , and ri = sif + tig is a \small" linear 
ombina-tion of f and g with \small" 
oeÆ
ients. The following theorem, essentiallydue to ?, says that the entries of the EEA are essentially the only way toget su
h a small linear 
ombination; see Lemma 5.15 from von zur Gathen &Gerhard (1999).Unique Representation Theorem 2.8. Let F be a �eld, f; g; r; s; t 2F [x℄ with r = sf + tg and t 6= 0, and suppose thatdeg r + deg t < n = deg f:8



Moreover, let ri; si; ti for 0 � i � `+1 be the rows of the Extended Eu
lideanAlgorithm for the pair (f; g). If we de�ne 1 � j � ` + 1 bydeg rj � deg r < deg rj�1;then there exists a nonzero � 2 F [x℄ su
h thatr = �rj, s = �sj, t = �tj:3 Various notions of subresultantsThroughout the following we have a 
ommutative ring R and two polynomialsf = X0�j�n fjxj; g = X0�j�m gjxj 2 R[x℄of degrees n, m, respe
tively.3.1 The Sylvester matrixThe various de�nitions of the subresultant are based on the Sylvester ma-trix. We �rst take a look at the histori
al motivation for this spe
ial matrix.Our goal is to de
ide whether two polynomials f and g have a nontrivial
ommon fa
tor. To �nd an answer to this question, Euler (1748) and B�ezout(1764) introdu
ed the (
lassi
al) resultant that vanishes if (and only if) this istrue. B�ezout also su

eeded in �nding a matrix whose determinant is equal tothe resultant, today 
alled the B�ezout matrix, but we will follow the elegantderivation in Sylvester (1840). The two linear equationsfnxn + fn�1xn�1 + � � � + f1x1 + f0x0 = 0;gmxm + gm�1xm�1 + � � � + g1x1 + g0x0 = 0in the indeterminates x0; : : : ; xn are satis�ed if xj = �j for all j, where �is a 
ommon root of f and g. For n > 1 there are many more solutions ofthese two linear equations in many variables, but Sylvester eliminates themby adding the (m�1)+(n�1) linear equations that 
orrespond to the followingadditional 
onditions: xf(x) = 0 ; : : : ; xm�1f(x) = 0;xg(x) = 0 ; : : : ; xn�1g(x) = 0:9



These equations give a total of n + m linear relations among the variablesxm+n�1; � � � ; x0:fnxm+n�1 + � � � + f0xm�1 = 0;...fnxn + fn�1xn�1 + � � � + f0x0 = 0;gmxm+n�1 + � � � + g0xn�1 = 0;...gmxm + gm�1xm�1 + � � � + g0x0 = 0:Clearly xj = �j gives a solution for any 
ommon root � of f and g, butthe point is that (essentially) the 
onverse also holds: a solution of the linearequations gives a 
ommon root (or fa
tor). The (n + m) � (n + m) matrix,
onsisting of 
oeÆ
ients of f and g, that belongs to this system of linearequations is often 
alled Sylvester matrix. We follow von zur Gathen & Gerhard(1999), Se
tion 6.3, p. 144, and take its transpose.Definition 3.1. The (n+m)� (n +m) matrix
Syl(f; g) =

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBB�

fnfn�1 fn... ... . . .... ... fn... ... fn�1... ... ...f0 ... ...f0 .... . . ...f0

gmgm�1 gm... ... . . .g1 ... . . .g0 ... . . .g0 gm. . . .... . . .... . . ...g0

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA| {z }m | {z }nis the Sylvester matrix of f and g.Remark 3.2. Multiplying the (n+m� j)th row by xj and adding it to the10



last row for 1 � j < n+m, we get the (n+m)� (n+m) matrix
Syl�(f; g) =

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBB�

fnfn�1 fn... ... . . .... ... fn... ... fn�1... ... ...f0 ... ...f0 .... . . f1xm�1f(x) � � � � � � f(x)

gmgm�1 gm... ... . . .g1 ... . . .g0 ... . . .g0 gm. . . .... . . .... . . g1xn�1g(x) � � � � � � � � � � � � g(x)

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA| {z }m | {z }n
:

Thus det(Syl(f; g)) = det(Syl�(f; g)).More details on resultants 
an be found in Biermann (1891), Gordan (1885)and Haskell (1892). Computations for both the univariate and multivariate
ase are dis
ussed in Collins (1971).There is also 
onsiderable re
ent literature on the subje
t: ?Landau and Zippel on algebrai
 de
omposition, ? on multivariate and algebrai
generalizations.
3.2 The s
alar subresultantWe are interested in determining whi
h degrees appear in the degree sequen
eof the Extended Eu
lidean Algorithm. S
alar subresultants provide a solution.Definition 3.3. The determinant �k(f; g) 2 R of the (m + n� 2k)� (m +11



n� 2k) matrix
Sk(f; g) =

0BBBBBBBBBBBBBBBBBBBBBBBBBBB�

fnfn�1 fn... . . .fn�m+k+1 � � � � � � fn... ...fk+1 � � � � � � fm... ...... ...f2k�m+1 � � � � � � fk

gmgm�1 gm... . . .gk+1 � � � � � � gm... . . .gm�n+k+1 � � � � � � � � � � � � gm... ...... ...g2k�n+1 � � � � � � � � � � � � gk

1CCCCCCCCCCCCCCCCCCCCCCCCCCCA| {z }m�k | {z }n�kis 
alled the kth (s
alar) subresultant of f and g. By 
onvention an fj orgj with j < 0 is zero. If f and g are 
lear from the 
ontext, then we write Skand �k instead of Sk(f; g) and �k(f; g).Sylvester (1840) already 
ontains an expli
it des
ription of the (s
alar) subre-sultants. In Habi
ht (1948), p. 104, �k is 
alled Nebenresultante (minor resul-tant) for polynomials f and g of degrees n and n � 1. The de�nition is alsoin von zur Gathen (1984) and is used in von zur Gathen & Gerhard (1999),Se
tion 6.10.Remark 3.4.(i) S0 = Syl(f; g) and therefore �0 = det(S0) is the resultant.(ii) �m = gn�mm .(iii) Sk is the matrix obtained from the Sylvester matrix by deleting the last2k rows and the last k 
olumns with 
oeÆ
ients of f , and the last k
olumns with 
oeÆ
ients of g.(iv) Sk is a submatrix of Si if k � i.3.3 The polynomial subresultantTwo slightly di�erent des
riptions of polynomial subresultants are in the lit-erature. The �rst one is from Collins (1967), p. 129, and the se
ond one isfrom Brown & Traub (1971), p. 507 and also in Zippel (1993), Chapter 9.3,p. 150. They yield polynomials that are related to the intermediate results in12



the Extended Eu
lidean Algorithm. We 
ompare the two de�nitions and showtheir relation to s
alar subresultants. In the remainder of this text we thenfo
us on s
alar subresultants.Definition 3.5. Let Mik = Mik(f; g) be the (n +m � 2k) � (n +m � 2k)submatrix of Syl(f; g) obtained by deleting the last k of the m 
olumns of
oeÆ
ients of f , the last k of the n 
olumns of 
oeÆ
ients of g and the last2k + 1 rows ex
ept row (n+m� i� k), for 0 � k � m and 0 � i � n:
Mik =

0BBBBBBBBBBBBBBBBBBBBBBB�
fn gmfn�1 fn gm�1 gm... . . . ... . . .... fn ... . . .... ... ... gm... ... ... ...f2k�m+2 fk+1 g2k�n+2 gk+1fi+k�m+1 � � � � � � fi gi+k�n+1 � � � � � � � � � gi

1CCCCCCCCCCCCCCCCCCCCCCCA
:

The polynomial Rk(f; g) = P0�i�n det(Mik)xi 2 R[x℄ is 
alled the kth poly-nomial subresultant of f and g.In fa
t, Collins (1967) 
onsidered the transposed matri
es. If f and g are 
learfrom the 
ontext, then we write Rk instead of Rk(f; g). Note that det(Mik) = 0if i > k, sin
e then the last row of Mik is identi
al to the (n +m � i � k)throw. Thus Rk = P0�i�k det(Mik)xi.Remark 3.6.(i) M00 = Syl(f; g) and therefore R0 = det(M00) is the resultant.(ii) Remark 3.4(i) implies that �0 = R0.
Definition 3.7. We 
onsider the determinant Zk(f; g) = det(M�k ) 2 R[x℄ of13



the (n+m� 2k)� (n+m� 2k) matrix
M�k =

0BBBBBBBBBBBBBBBBBBBBBBB�
fn gmfn�1 fn gm�1 gm... . . . ... . . .... fn ... . . .... ... ... gm... ... ... ...f2k�m+2 fk+1 g2k�n+2 gk+1xm�k�1f(x) � � � � � � f(x) xn�k�1g(x) � � � � � � � � � g(x)

1CCCCCCCCCCCCCCCCCCCCCCCA
:

If f and g are 
lear from the 
ontext, then we write Zk for short instead ofZk(f; g). We note that M�k is a submatrix of Syl�(f; g).Table 1 gives an overview of the literature 
on
erning these notions. Of 
ourse,there is a mu
h larger body of work about the spe
ial 
ase of the resultant,whi
h we do not quote here.3.4 Comparison of the various de�nitionsAs in Brown & Traub (1971), p. 508, and Geddes et al. (1992), Se
tion 7.3,p. 290, we �rst prove the following theorem whi
h shows that the de�nitionsin Collins (1967) and Brown & Traub (1971) des
ribe the same polynomial.Theorem 3.8.(i) If �k 6= 0, then �k is the leading 
oeÆ
ient of Rk. Otherwise, degRk < k.(ii) Rk = Zk.Proof. (i) Sin
e the 
oeÆ
ient of xk in Rk is det(Mkk) = det(Sk) = �k,the �rst 
laim follows.(ii) By linearity of the determinant, the 
laim follows fromX0�i�n xi(fi+k�m+1; : : : ; fi; gi+k�n+1; : : : ; gi)T= (xm�k�1f(x); : : : ; f(x); xn�k�1g(x); : : : ; g(x))T : �14



De�nition Authors�k(f; g) = det(Sk) 2 R Sylvester (1840)Habi
ht (1948)von zur Gathen (1984)Uteshev & Cherkasov (1998)von zur Gathen & Gerhard (1999)Rk(f; g) = X0�i�ndet(Mik)xi Collins (1967)Loos (1982)Geddes et al. (1992)Winkler (1996)Zk(f; g) = det(M�k ) 2 R[x℄ Brown & Traub (1971)Zippel (1993)Li
kteig & Roy (1997)Reis
hert (1997)
=

Table 1The various subresultantsRemark 3.9. Lapla
e expansion of Zk along the last 
olumn of M�k yieldstwo polynomials s,t 2 R[x℄ with deg s < m� k, deg t < n� k and sf + tg =Zk = Rk. This observation is due to Brown & Traub (1971), p. 507/508, seealso Zippel (1993), Chapter 9.3, p. 150.The essential property of the subresultants is that they 
hara
terize the degreesequen
e; for a proof, see e.g. von zur Gathen & Gerhard (1999), Se
tion 6.10.Theorem 3.10. Let f and g be polynomials over a �eld F of degrees n0 �n1 > 0, respe
tively, let ni = deg ri for 0 � i � ` be the degrees in theEu
lidean S
heme, and let 0 � k < n1. Then�k 6= 0() 9i � ` k = ni:Proposition 3.11. Let F be a �eld, f and g in F [x℄ be polynomials of degreen � m > 0, respe
tively, and let ri, si and ti be the entries in the ith row ofthe Extended Eu
lidean S
heme, for 0 � i � `. Moreover, let �i = l
(ri) andni = deg ri for all i. Then�ni�i � ri = Rni for 2 � i � `:15



Proof. Let 2 � i � `. Remark 3.9 shows that there exist polynomials sand t of degrees less than m� ni and n� ni, respe
tively, withsf + tg = Rni :Thus degRni + deg t � ni + n� ni � 1 < n:By Theorem 3.10 we know that the leading 
oeÆ
ient �ni of Rni is nonzero.Sin
e F is a �eld and degRni = ni < n = deg f we have t 6= 0. Hen
e, by theUnique Representation Theorem 2.8, there exists an � 2 F [x℄ withs = �si, t = �ti, Rni = �ri, (�si)f + (�ti)g = �ri = Rni:Furthermore, ni = deg ri = degRni. Comparing leading 
oeÆ
ients we �nd� = �ni�i : �Remark 3.12. Let f and g be polynomials over an integral domain R, let Fbe the �eld of fra
tions of R, and 
onsider the Extended Eu
lidean S
heme off and g in F [x℄. Then the s
alar and the polynomial subresultants are in Rand R[x℄, respe
tively, and Proposition 3.11 also holds:�ni�i � ri = Rni 2 R[x℄:Note that ri is not ne
essarily in R[x℄, and �i not ne
essarily in R.A 
areful reading of the proof of Proposition 3.11 also shows the relation be-tween s; t from Remark 3.9 and the entries of the Extended Eu
lidean S
heme.Remark 3.13. Let 2 � i � `. Thens = �ni�i � si 2 R[x℄ and t = �ni�i � ti 2 R[x℄;in the notation of the proof of Proposition 3.11.The 
on
eptional advantage of the s
alar subresultants is that they live in Rrather than R[x℄ and still provide enough information to build up the requiredtheory.4 Division rules and Polynomial Remainder Sequen
es (PRS)We 
annot dire
tly apply the Eu
lidean Algorithm to polynomials f and gover an integral domain R sin
e polynomial division with remainder in R[x℄,16



whi
h is used in every step of the Eu
lidean Algorithm, is not always de�ned.Hen
e our goal now are de�nitions modi�ed in su
h a way that they yield avariant of the Eu
lidean Algorithm that works over an integral domain. Weintrodu
e a generalization of the usual pseudo-division, the 
on
ept of divisionrules, whi
h leads to intermediate results in R[x℄.Definition 4.1. Let R be an integral domain. A one-step division rule is apartial mapping R : R[x℄2 !� R2su
h that for all (f; g) 2 def(R) there exist q; r 2 R[x℄ satisfying(i) R(f; g) = (�; �),(ii) �f = qg + �r and deg r < deg g.Re
all that def(R) � R[x℄2 is the domain of de�nition of R, that is, the setof (f; g) 2 R[x℄2 at whi
h R is de�ned. In parti
ular, R : def(R) �! R2 isa total map. In the examples below, we will usually de�ne one-step divisionrules by starting with a (total or partial) map R0 : R[x℄2 !� R2 and thentaking R to be the maximal one-step division rule 
onsistent with R0. Thusdef(R) = 8><>:(f; g) 2 R[x℄2 : 9�; � 2 R, 9q; r 2 R[x℄(�; �) = R0(f; g) and (ii) holds9>=>; ;and R is R0 restri
ted to def(R).Lemma 2.5(iii) says that for all (f; g) 2 def(R), q and r are unique. Further-more (f; 0) is never in def(R) (\you 
an't divide by zero"), so thatdef(R) � Dmax = R[x℄� (R[x℄ n f0g):We are parti
ularly interested in one-step division rules R with def(R) =Dmax. In our examples, (0; g) will always be in def(R) if g 6= 0.We may 
onsider the usual remainder as a partial fun
tion rem: R[x℄2 !� R[x℄with rem(f; g) = r if there exist q; r 2 R[x℄ with f = qg+r and deg r < deg g,and def(rem) maximal. Re
all from Se
tion 2 the de�nitions of rem, prem and
ont.Example 4.2. Let f and g be polynomials over an integral domain R ofdegrees n and m, respe
tively, and let fn = l
(f), gm = l
(g) 6= 0 be theirleading 
oeÆ
ients. Then the three most famous types of division rules are asfollows:Æ 
lassi
al division rule: R(f; g) = (1; 1).Æ moni
 division rule: R(f; g) = (1; l
(rem(f; g))).17



Æ Sturmian division rule: R(f; g) = (1;�1).Examples are given below. When R is a �eld, these three division rules havethe largest possible domain of de�nition def(R) = Dmax, but otherwise, it maybe smaller; we will illustrate this in Example 4.7. Hen
e they do not help usin a
hieving our goal of �nding rules with maximal domain Dmax. But thereexist two division rules whi
h, in 
ontrast to the �rst examples, always yieldsolutions in R[x℄:Æ pseudo-division rule: R(f; g) = (gn�m+1m ; 1).In 
ase R is a unique fa
torization domain, we have theÆ primitive division rule: R(f; g) = (gn�m+1m ; 
ont(prem(f; g))).For algorithmi
 purposes, it is then useful for R to be a Eu
lidean domain.�The disadvantage of the pseudo-division rule, however, is that in the Eu
lideanAlgorithm it leads to exponential 
oeÆ
ient growth; the 
oeÆ
ients of theintermediate results are usually enormous, their bit length may be exponentialin the bit length of the input polynomials f and g. If R is a UFD, we get thesmallest intermediate results if we use the primitive division rule, but the
omputation of the 
ontent in every step of the Eu
lidean Algorithm seemsto be expensive. Collins (1967) already observed this in his experiments. Thushe tries to avoid the 
omputation of the 
ontent and to keep the intermediateresults \small" at the same time by using information from all intermediateresults in the EEA, not only the two previous remainders. Our 
on
ept of one-step division rules does not 
over his method. So we now extend our previousde�nition, and will a
tually 
apture all the \re
ursive" division rules fromCollins (1967, 1971, 1973), Brown & Traub (1971) and Brown (1971) underone umbrella.Definition 4.3. Let R be an integral domain. A division rule is a partialmapping R : R[x℄2 !� (R2)�asso
iating to (f; g) 2 def(R) a sequen
e ((�2; �2); : : : ; (�`+1; �`+1)) of arbi-trary length ` � 0 su
h that for all (f; g) 2 def(R) there exist ` 2 N�0 ,q1; : : : ; q` 2 R[x℄ and r0; : : : ; r`+1 2 R[x℄ satisfying for 2 � i � `+ 1(i) r0 = f; r1 = g,(ii) Ri(f; g) = R(f; g)i = (�i; �i),(iii) �iri�2 = qi�1ri�1 + �iri and deg ri < deg ri�1.A division rule where ` = 1 for all values is the same as a one-step divisionrule, and from an arbitrary division rule we 
an obtain a one-step division rule18



by proje
ting to the �rst 
oordinate (�2; �2) if ` � 2. Using Lemma 2.5(iii),we �nd that for all (f; g) 2 def(R), qi�1 and ri are unique for 2 � i � ` + 1.If we have a one-step division rule R� whi
h is de�ned at all (ri�2; ri�1) for2 � i � `+ 1 (de�ned re
ursively), then we obtain a division rule R by usingR� in every step: Ri(f; g) = R�(ri�2; ri�1) = (�; �):If we trun
ate R at the �rst 
oordinate, we get R� ba
k. But the notion ofdivision rules is stri
tly ri
her than that of one-step division rules; for examplethe �rst step in the redu
ed division rule below is just the pseudo-divisionrule, but using the pseudo-division rule repeatedly does not yield the redu
eddivision rule.Example 4.2 
ontinued. Let f = r0; g = r1 2 R[x℄ be polynomials ofdegrees n0 � n1, respe
tively, and let �0 = l
(r0) and �1 = l
(r1) be theirleading 
oeÆ
ients. We now present three di�erent types of re
ursive divisionrules. They are based on polynomial subresultants. It is not obvious that theyhave domain of de�nition Dmax, sin
e divisions o

ur in their de�nitions. Wewill show that this is indeed the 
ase in Remarks 6.10 and 6.14.Æ redu
ed division rule: Ri(f; g) = (�i; �i) for 2 � i � `+ 1,where we set �1 = 1 and for 2 � i � `+ 1 re
ursively de�ne(�i; �i)= (�di�2+1i�1 ; �i�1);then ri by De�nition 4.3 (iii), �i = l
(ri), ni = deg ri, and di�1 = ni�1 � ni.Æ subresultant division rule: Ri(f; g) = (�i; �i) for 2 � i � `+ 1,where we set �0 = 1 and for 2 � i � `+ 1 re
ursively de�ne(�i; �i)= (�di�2+1i�1 ;��i�2 di�2i ); i=8><>:�1 for i = 2(��i�2)di�3 1�di�3i�1 otherwise ;then ri by De�nition 4.3 (iii), �i = l
(ri), ni = deg ri, and di�1 = ni�1 � ni.The subresultant PRS 
an be improved if we 
an somehow determine divisors
i of the 
ontent of the intermediate results.Æ improved division rule: Ri(f; g) = (�i; �i) for 2 � i � ` + 1,where we set �0 = 1, 
1 = 1 and for 2 � i � `+ 1 re
ursively de�ne(�i; �i)= (�di�2+1i�1 ;��i�2 di�2i 
�(di�2+1)i�1 ) � 
i; i=8><>:�1 for i = 2(�
i�2�i�2)di�3 1�di�3i�1 otherwise ;19



where 
i is 
hosen su
h that ri given by De�nition 4.3 (iii) is in R[x℄, �i =l
(ri), ni = deg ri, and di�1 = ni�1 � ni. �The subresultant division rule was invented by Collins (1967), p. 130. He triedto �nd a rule su
h that the ri's agree with the polynomial subresultants upto a small 
onstant fa
tor. Brown (1971), p. 486, then provided a re
ursivede�nition of the �i and �i as given above.We note that the exponents in the re
ursive de�nition of the  i's in the subre-sultant division rule and in the improved division rule may be negative. Hen
eit is not 
lear that the �i's are in R. However, we will show this in Theo-rem 6.17 by proving that the  i are essentially the subresultants, as also donein Brown (1971) ????.Question 4.4. \At the present time it is not known whether or not theseequations imply  i; �i 2 R."By de�nition, a division rule R de�nes a sequen
e (r0; : : : ; r`) of remainders;re
all that they are uniquely de�ned. Sin
e it is more 
onvenient to work withthese \polynomial remainder sequen
es", we �x this notion in the followingde�nition, following Collins (1967), p. 128/129.Definition 4.5. Let R be a division rule. A sequen
e (r0; : : : ; r`) of nonzeropolynomials r0; : : : ; r` 2 R[x℄nf0g is 
alled the polynomial remainder sequen
e(PRS) for (f; g) a

ording to R if(i) r0 = f; r1 = g,(ii) Ri(f; g) = (�i; �i),(iii) �iri�2 = qi�1ri�1 + �iri,for 2 � i � ` + 1, where ` is the length of R(f; g). The PRS is 
ompleteif (iii) is satis�ed for i = ` + 1 with r`+1 = 0. It is 
alled normal if di =deg ri � deg ri+1 = 1 for 1 � i � `� 1.In fa
t the remainders for PRS a

ording to arbitrary division rules over anintegral domain only di�er by a nonzero 
onstant fa
tor.Proposition 4.6. Let R be an integral domain, f; g 2 R[x℄ and let r =(r0; : : : ; r`) and r� = (r�0; : : : ; r�̀�) be PRS for (f; g) a

ording to two divisionrules R and R�, respe
tively, none of whose results �i; �i; ��i ; ��i is zero. Thenr�i = 
iri with 
i = Y0�k�i=2�1 ��i�2k�i�2k�i�2k��i�2k 2 F n f0gfor 0 � i � minf`; `�g, where F is the �eld of fra
tions of R.20



Proof. We show the proposition by indu
tion on i. It is 
lear for i � 1, andwe assume that i � 2. Then with Ri(f; g) = (�i; �i) and R�i (f; g) = (��i ; ��i )we have �iri�2 = qi�1ri�1 + �iri;��i r�i�2 = q�i�1r�i�1 + ��i r�i :The indu
tion hypothesis plugged into the se
ond equation and multipli
ationby �i yields (�i��i 
i�2) � ri�2 = (�i
i�1q�i�1) � ri�1 + (�i��i ) � r�i :Multiplying the �rst equation above by ��i 
i�2 we obtain(�i��i 
i�2) � ri�2 = (��i 
i�2qi�1) � ri�1 + (��i 
i�2�i) � riFrom Lemma 2.5(iii) we obtain (�i��i ) � r�i = (��i 
i�2�i) � ri and r�i = 
iri with
i = ��i�i�i��i � 
i�2 2 F n f0g:By indu
tion this 
ompletes the proof of the proposition. �The proposition yields a dire
t way to 
ompute the PRS for (f; g) a

ording toR� from the PRS for (f; g) a

ording to R and the �i; �i; ��i ; ��i . In parti
ular,the degrees of the remainders in any two PRS are identi
al.In Example 4.2 we have seen eight di�erent division rules. Now we 
onsiderthe di�erent polynomial remainder sequen
es a

ording to these rules. Ea
hPRS will be illustrated by the following example.Example 4.7. We perform the 
omputations on the polynomialsf = r0 = 9x6 � 27x4 � 27x3 + 72x2 + 18x� 45 andg = r1 = 3x4 � 4x2 � 9x + 21over R = Q and, wherever possible, also over R = Z. In order to illustrate the
oeÆ
ient growth of the various PRS, we �rst present the subresultants of fand g. They are given in reverse order to make it easier to 
ompare them withthe intermediate results of the di�erent PRS.We 
hoose the integers as our ground domain be
ause we then have a reason-ably 
on
ise presentation of our polynomials.21



i �i(f; g) fa
torization of �i(f; g)4 = deg r1 9 323 0 02 = deg r2 9801 34 � 1121 = deg r3 13 355 280 24 � 36 � 5 � 2290 = deg r4 9 657 273 681 38 � 11 � 133811Furthermore we give the fa
torizations of the �i, �i and the leading 
oeÆ
ientsof the ri below the 
orresponding entries. �
4.1 Classi
al PRSThe most familiar PRS for (f; g) is obtained a

ording to the 
lassi
al divisionrule. Collins (1973), p. 736, 
alls this the natural Eu
lidean PRS (algorithm).The intermediate results of the 
lassi
al PRS and of the Eu
lidean Algorithm
oin
ide.Example 4.7 
ontinued.i �i �i ri0 932 x6 � 27x4 � 27x3 + 72x2 + 18x� 451 33 x4 � 4x2 � 9x+ 212 1 1 � 11�11 x2 � 27x+ 603 1 1 � 164 8801331�24�32�5�229=113 x+ 248 93113314 1 1 � 1 959 126 851335 622 400�114�133811=28 �52�2292 �The �rst division works over Z, but not the subsequent ones. In our formalism,this means the following. If we takeR0 : R[x℄2 �! Z2 withR0(h; k) = (1; 1) forall (h; k) 2 Z[x℄2, then we obtain the division rule R on Z[x℄2 with R(f; g) =((1; 1)) of length ` = 1. 22



4.2 Moni
 PRSIn Collins (1973), p. 736, the PRS for (f; g) a

ording to the moni
 divisionrule is 
alled moni
 PRS (algorithm). The ri are moni
 for 2 � i � `, andwe get the same intermediate results as in the moni
 Eu
lidean Algorithm invon zur Gathen & Gerhard (1999), Se
tion 3.2.Example 4.7 
ontinued.i �i �i ri0 932 x6 � 27x4 � 27x3 + 72x2 + 18x� 451 33 x4 � 4x2 � 9x+ 212 1 � 11�11 x21 +2711x� 60113 1 � 164 8801331�24�32�5�229=113 x1 �27 65918 3204 1 178 102 441335 622 400113 �133811=28 �52�2292 11 �4.3 Sturmian PRSWe 
hoose the PRS for (f; g) a

ording to the Sturmian division rule as intro-du
ed in Sturm (1835). Krone
ker (1873), p. 117, Habi
ht (1948), p. 102,and Loos (1982), p. 119, deal with this generalized Sturmian PRS (algo-rithm). Krone
ker (1873) 
alls it Sturms
he Reihe (Sturmian sequen
e), and inHabi
ht (1948) it is the verallgemeinerte Sturms
he Kette (generalized Stur-mian 
hain). If g = �f=�x as in Habi
ht (1948), p. 99, then this is the 
lassi
alSturmian PRS (algorithm). Note that the Sturmian PRS agrees with the 
las-si
al PRS up to sign.Example 4.7 
ontinued.i �i �i ri0 932 x6 � 27x4 � 27x3 + 72x2 + 18x� 451 33 x4 � 4x2 � 9x+ 212 1 �1 1111 x2 � 27x+ 603 1 �1 164 880133124�32�5�229=113 x+ 248 93113314 1 �1 � 1 959 126 851335 622 400�114�133811=28 �52�229223



�If we assume that R is an integral domain but not a �eld, the example showsthat the �rst three types of PRS do not have Dmax as their domain of de�nition.In the example they are only of length 1. But fortunately there are divisionrules that have this property.
4.4 Pseudo PRSIf we 
hoose the PRS a

ording to the pseudo-division rule, then we get thepseudo PRS. Collins (1967), p. 138, 
alls this the Eu
lidean PRS (algorithm)be
ause it is the most obvious generalization of the Eu
lidean Algorithm topolynomials over an integral domain R that is not a �eld. In Collins (1973),p. 737, it is 
alled the pseudo-remainder PRS.Example 4.7 
ontinued.i �i �i ri0 932 x6 � 27x4 � 27x3 + 72x2 + 18x� 451 33 x4 � 4x2 � 9x+ 212 2733 1 � 297�33�11 x2 � 729x+ 16203 � 26 198 073(�33�11)3 1 3 245 333 04024�311 �5�229 x� 4 899 708 8734 10 532 186 540 515 641 600(24�311 �5�229)2 1 � 1 659 945 865 306 233 453 993�325 �114�133811 �
4.5 Primitive PRSTo obtain a PRS over R with minimal 
oeÆ
ient growth, we 
hoose the PRSa

ording to the primitive division rule whi
h yields primitive intermediateresults. Brown (1971), p. 484, 
alls this the primitive PRS (algorithm).Example 4.7 
ontinued. 24



i �i �i ri0 932 x6 � 27x4 � 27x3 + 72x2 + 18x� 451 33 x4 � 4x2 � 9x+ 212 2733 33 � 11�11 x2 � 27x+ 603 � 1331(�11)3 932 18 32024�5�229 x� 27 6594 335 622 400(24�5�229)2 1 959 126 851114�133811 � 1�1 �
4.6 Redu
ed PRSA per
eived drawba
k of the primitive PRS is the (seemingly) 
ostly 
ompu-tation of the 
ontent. With probabilisti
 methods, this 
an in fa
t be donewith an expe
ted number of about one pairwise g
d 
al
ulation for multi-variate polynomials (see von zur Gathen & Gerhard (1999), ?) and less thantwo pairwise g
d's for integers Cooperman et al. (1999). In fa
t, in our experi-ments in Se
tion 8, the primitive PRS sometimes turns out to be most eÆ
ientamong those dis
ussed here. But Collins (1967) introdu
ed his redu
ed PRS(algorithm) in order to avoid the 
omputation of the 
ontent 
ompletely. Hisalgorithm uses the redu
ed division rule and keeps the intermediate 
oeÆ
ientsreasonably small but not ne
essarily as small as with the primitive PRS.Example 4.7 
ontinued.i �i �i ri0 932 x6 � 27x4 � 27x3 + 72x2 + 18x� 451 33 x4 � 4x2 � 9x+ 212 2733 11 � 297�33�11 x2 � 729x+ 16203 � 26 198 073(�33�11)3 2733 120 197 52024�38�5�229 x� 181 470 6994 14 447 443 814 150 400(24�38�5�229)2 � 26 198 073�39�113 86 915 463 129310 �11�133811 �25



4.7 Subresultant PRSThe redu
ed PRS is not the only way to keep the 
oeÆ
ients small without
omputing 
ontents. We 
an also use the subresultant division rule. A

ordingto Collins (1967), p. 130, this is the subresultant PRS (algorithm).Example 4.7 
ontinued.i �i �i ri0 932 x6 � 27x4 � 27x3 + 72x2 + 18x� 451 33 x4 � 4x2 � 9x+ 212 2733 � 1�1 29733�11 x2 + 729x � 16203 26 198 073(33�11)3 � 243�35 13 355 28024�36�5�229 x� 20 163 4114 178 363 503 878 400(24�36�5�229)2 2 910 89737�113 9 657 273 68138�11�133811 �4.8 Improved PRSIt is possible to improve the subresultant PRS (algorithm) if we 
an determinedivisors 
i of the 
ontent of the intermediate results. Then we are allowed touse the PRS a

ording to the improved division rule. In Brown (1971), p. 487,and Brown (1978), p. 243{245, this is 
alled improved PRS (algorithm). Soobviously ri 2 R[x℄ for 2 � i � `. It is not 
lear to us how to �nd su
h 
i in amanner that essentially avoids the 
ontent 
omputation.5 Fundamental Theorem on subresultantsThe Fundamental Theorem on subresultants was dis
overed independently in1968 by Brown and by (Collins, footnote on page 519). It expresses an ar-bitrary subresultant as a power produ
t of 
ertain data in the PRS, namelythe multipliers � and � and the leading 
oeÆ
ients of the remainders in theEu
lidean Algorithm. In this se
tion our �rst goal is to prove the FundamentalTheorem on subresultants for polynomial remainder sequen
es a

ording toan arbitrary division rule R. From this theorem we then derive results for thevarious PRS a

ording to the division rules in Example 4.2. We start with26



two te
hni
al lemmas. The �rst one gives a relation between the subresul-tants of (f; g) and (g; r) when r = f rem g. Proofs 
an be found in Geddeset al. (1992), Chapter 7.3, p. 292/293, Lemma 7.1; von zur Gathen & Ger-hard (1999), Lemma 11.12; and Brown & Traub (1971), p. 509, Lemma 1, forpolynomial subresultants.Lemma 5.1. Let f and g 2 R[x℄ be polynomials of degrees n � m > 0,respe
tively, over an integral domain R, and let q,r 2 R[x℄ with f = qg + rand deg r = k < m. Then�j(f; g) = 8><>: (�1)(n�j)(m�j)l
(g)n�k�j(g; r) for 0 � j � k;0 for k < j < m:We apply Lemma 5.1 to polynomial remainder sequen
es. For polynomialsubresultants this result is in Brown & Traub (1971), p. 510, Lemma 2, andfor redu
ed PRS in Collins (1967), p. 131, Lemma 1.Lemma 5.2. Let f and g 2 R[x℄ be polynomials of degrees n � m > 0,respe
tively, over an integral domain R, let R be a division rule, (f; g) 2def(R) and (r0; : : : ; r`) be the PRS for (f; g) a

ording toR, (�i; �i) = Ri(f; g)the 
onstant multipliers, ni = deg ri and �i = l
(ri) for 0 � i � `. Then�j(ri�2; ri�1) = (�1)(ni�2�j)(ni�1�j) �i�i!ni�1�j�ni�2�nii�1 �j(ri�1; ri)if 0 � j � ni, and �j(ri�2; ri�1) = 0 if ni < j < ni�1.In parti
ular, this implies that �ni�1�ji divides in R the numerator of the righthand side.Now we are ready to give a proof of the following result whi
h is shown forPRS in Brown & Traub (1971), p. 511, Fundamental theorem, and for redu
edPRS in Collins (1967), p. 132, Lemma 2, and p. 133, Theorem 1.Fundamental Theorem 5.3. Let f and g 2 R[x℄ be polynomials of degreesn � m > 0, respe
tively, over an integral domain R, let R be a division ruleand (r0; : : : ; r`) be the PRS for (f; g) a

ording to R, (�i; �i) = Ri(f; g)the 
onstant multipliers, ni = deg ri and �i = l
(ri) for 0 � i � `, anddi = ni � ni+1 for 0 � i � `� 1.(i) For 0 � j � n1, the jth subresultant of (f; g) is�j(f; g) = (�1)bi�ni�1�nii Y2�k�i �k�k!nk�1�ni�nk�2�nkk�127



if j = ni for some 1 � i � `, otherwise 0, where bi = P2�k�i(nk�2 �ni)(nk�1 � ni).(ii) The subresultants satisfy for 1 � i < ` the re
ursive formulas�n1(f; g) = �d01 and�ni+1(f; g) = �ni(f; g) � (�1)di(n0�ni+1+i+1)(�i+1�i)di Y2�k�i+1 �k�k!di .Proof. (i) We de�ne i by the 
onditions that 1 � i � ` and ni+1 < j � ni.By indu
tion on i, we �nd from Lemma 5.2�j(f; g) = �j(ri�1; ri) Y2�k�i(�1)(nk�2�j)(nk�1�j) �k�k!nk�1�j�nk�2�nkk�1if j = ni, and �j(f; g) = 0 if ni+1 < j < ni. Furthermore, if j = ni, then�ni(ri�1; ri) = det0BBBBB� �i... . . .... �i
1CCCCCA = �ni�1�nii :(ii) Firstly, (i) implies that �n1(f; g) = �d01 . Now assume i � 1. Then from (i)we obtain�ni+1(f; g)= �dii+1 Y2�k�i+1 (�1)(nk�2�ni+1)(nk�1�ni+1)  �k�k!nk�1�ni+1 �nk�2�nkk�1= �dii+1 Y2�k�i (�1)(nk�2�ni)(nk�1�ni)  �k�k!nk�1�ni �nk�2�nkk�1 �Y2�k�i (�1)di(nk�2+nk�1+1)  �k�k!ni�ni+1 �(�1)(ni�1�ni)(ni�ni+1)  �i+1�i+1!ni�ni+1 �ni�1�ni+1i= �dii+1��di�1+ni�1�nii � �ni(f; g) � (�1)di(n0�ni+1+i+1) Y2�k�i+1 �k�k!di :This 
ompletes the proof of the fundamental theorem. �We now have the following generalization of Theorem 3.10.28



Corollary 5.4. Let R be a division rule and (r0; : : : ; r`) be the PRS for(f; g) a

ording to R, let ni = deg ri for 0 � i � ` be the degrees in the PRS,and let 0 � k � n1. Then�k 6= 0() 9i � ` k = ni:6 Appli
ations of the Fundamental TheoremWe now derive results for the various PRS for polynomials f; g 2 R[x℄ of de-grees n � m � 0, respe
tively, over an integral domain R, a

ording to thedivision rules in Example 4.2. The �rst type of result expresses the subresul-tants �k = �k(f; g) in terms of the quantities �i = l
(ri), ni = deg ri, anddi = ni � ni+1, and others in the PRS. The se
ond type gives a re
ursiveequation expressing �ni+1 as a multiple of �ni . Both types of formula simplify
onsiderably in the normal 
ase. Finally, we 
an also reverse these equationsin the normal 
ase and express the �i in terms of the other quantities. Westart with a te
hni
al lemma.Lemma 6.1. Let bi = P2�k�i(nk�2 � ni)(nk�1 � ni) be as in FundamentalTheorem 5.3. If the PRS is normal, thenbi � (d0 + 1)(i+ 1) mod 2 for 2 � i � `:Proof. Sin
e the PRS is normal, we have dj = 1 for 1 � j � `, and getbi = X2�k�i(nk�2 � ni)(nk�1 � ni)= (d0 + i� 1)(i� 1) + X3�k�i(i� k + 2)(i� k + 1)� (d0 + 1)(i+ 1) mod 2: �6.1 Classi
al PRSThe following 
laims for the 
lassi
al PRS are proved by substituting (�i; �i) =(1; 1) for 2 � i � ` in the Fundamental Theorem 5.3.Corollary 6.2. Let (r0; : : : ; r`) be a 
lassi
al PRS and 1 � i � `. Then(i) �ni = (�1)bi�di�1i Y2�k�i �nk�2�nkk�1 .29



(ii) The subresultants satisfy the re
ursive formulas�n1 = �d01 , and�ni+1 = �ni � (�1)di(n0�ni+1+i+1)(�i+1�i)di .If the PRS is normal, then this simpli�es to:(iii) �ni = (�1)(d0+1)(i+1)�i�d0+11 Y3�k�i �2k�1 for i � 2.(iv) The subresultants satisfy the re
ursive formulas�n1 = �d01 , and�ni+1 = �ni � (�1)d0+1�i+1�i:6.2 Moni
 PRSFor the moni
 PRS, the Fundamental Theorem 5.3 yields the following 
orol-lary whi
h is the Fundamental Theorem 11.13 in von zur Gathen & Gerhard(1999).Corollary 6.3. Let (r0; : : : ; r`) be a moni
 PRS, and 2 � i � `. Then(i) �n1 = �d01 , and�ni = (�1)bi�n0�n21 Y2�k�i�nk�1�nik :(ii) The subresultants satisfy the re
ursive formulas�n1 = �d01 ;�n2 = �n1 � (�1)d1(n0�n2+2)(�1�2)d1 , and�ni+1 = �ni � (�1)di(n0�ni+1+i+1) Y2�k�i+1�dik :If the PRS is normal, then this simpli�es to:(iii) �n1 = �d01 , and�ni = (�1)(d0+1)(i+1)�d0+11 Y2�k�i�i�(k�1)k :30



(iv) The subresultants satisfy the re
ursive formulas�n1 = �d01�n2 = �n1 � (�1)(d0+1)2�1�2, and�ni+1 = �ni � (�1)(d0+1)(i+1) Y2�k�i+1�k:6.3 Sturmian PRSFor the Sturmian PRS, the results read as follows.Corollary 6.4. Let (r0; : : : ; r`) be a Sturmian PRS, and 1 � i � `. Then(i) �ni = (�1)bi+P2�k�i(nk�1�ni)�di�1i Y2�k�i �nk�2�nkk�1 .(ii) The subresultants satisfy the re
ursive formulas�n1 = �d01 , and�ni+1 = �ni � (�1)di(n0�ni+1+1)(�i+1�i)di:If the PRS is normal, then this simpli�es to:(iii) �ni = (�1)(d0+1)(i+1)�d0+11 �i Y3�k�i �2k�1 for i � 2.(iv) The subresultants satisfy the re
ursive formulas�n1 = �d01 , and�ni+1 = �ni � (�1)d0+i+1�i+1�i:6.4 Pseudo PRSAgain the Fundamental Theorem 5.3, after substituting (�i; �i) = (�di�2+1i�1 ; 1)for 2 � i � `, provides the following 
orollary for the pseudo PRS. It 
an alsobe found in Collins (1966), p. 710, Theorem 1, for polynomial subresultants.Corollary 6.5. Let (r0; : : : ; r`) be a pseudo PRS, and 1 � i � `. Then(i) �ni = (�1)bi�di�1i Y2�k�i �nk�2�nk�(nk�1�ni)(dk�2+1)k�1 .31



(ii) The subresultants satisfy the re
ursive formulas�n1 = �d01 , and�ni+1 = �ni � (�1)di(n0�ni+1+i+1)(�i+1�i)di Y2�k�i+1 ��(dk�2+1)dik�1 :If the PRS is normal, then this simpli�es to:(iii) �ni = (�1)(d0+1)(i+1)�(d0+1)(2�i)1 �i Y3�k�i�1 �2(k�i)k�1 for i � 2.(iv) The subresultants satisfy the re
ursive formulas�n1 = �d01 , and�ni+1 = �ni � (�1)d0+1��(d0+1)1 �i+1�i Y3�k�i+1 ��2k�1.Remark 6.6. If the PRS is normal, then Corollary 6.5(iii) implies that�i = �ni(�1)(d0+1)(i+1)�(d0+1)(i�2)1 Y3�k�i�1 �2(i�k)k�1 :Thus �ni divides �i. This result is also shown for polynomial subresultants inCollins (1966), p. 711, Corollary 1.6.5 Primitive PRSSin
e the 
ontent of two polynomials 
annot be expressed in terms of ourparameters �i and ni, we do not 
onsider the Fundamental Theorem for thistype of PRS. We only make the following remark.Remark 6.7. Let (r0; : : : ; r`) be a primitive PRS. Then �i divides �ni for2 � i � ` sin
e �ni � ri�i 2 R[x℄ a

ording to Proposition 3.11 and ri isprimitive.If R = Z, then the required g
d 
al
ulations 
an be
ome quite expensive, butsee Cooperman et al. (1999) for an eÆ
ient proposal.6.6 Redu
ed PRSFor redu
ed PRS the Fundamental Theorem 5.3 yields the following 
orol-lary. The non-normal parts are shown for polynomial subresultants in Collins(1967), p. 135, Corollary 1.2, and Collins (1967), p. 135, Corollary 1.4, respe
-tively. 32



Corollary 6.8. Let (r0; : : : ; r`) be a redu
ed PRS, and 1 � i � `. Then(i) �ni = (�1)bi�di�1i Y2�k�i �dk�2(1�dk�1)k�1 .(ii) The subresultants satisfy for the re
ursive formulas�n1 = �d01 , and�ni+1 = �ni � (�1)di(n0�ni+1+i+1)�dii+1��di�1dii :If the PRS is normal, then this simpli�es to:(iii) �ni = (�1)(d0+1)(i+1)�i for i � 2.(iv) The subresultants satisfy the re
ursive formulas�n1 = �d01 , and�ni+1 = �ni � (�1)d0+1�i+1��1i :Proof. Sin
e (�2; �2) = (�d0+11 ; 1) and (�i; �i) = (�di�2+1i�1 ; �i�1) we getY2�k�i �k�k!nk�1�ni = Y3�k�i�nk�1�nik�1 Y2�k�i��(nk�1�ni)k=��(ni�1�ni)i Y2�k�i�1�nk�1�nkk= Y2�k�i��dk�1k = Y2�k�i ��(dk�2+1)dk�1k�1 :Together with Fundamental Theorem 5.3 this yields the 
laims. �Remark 6.9. We obtain from Corollary 6.8(i)�di�1i = �ni Y2�k�i(�1)(nk�2�ni)(nk�1�ni)�dk�2(dk�1�1)k�1 :Thus �ni divides �di�1i . This result 
an also be found in Collins (1967), p.135,Corollary 1.2.Remark 6.10. For every redu
ed PRS, ri is in R[x℄ for 2 � i � `. Notethat Corollary 6.8(iii) implies ri = (�1)(d0+1)(i+1)Ri(f; g). So the normal 
aseis 
lear. A proof for the general 
ase based on polynomial subresultants is inCollins (1967), p. 134, Corollary 1.1, and Brown (1971), p. 485/486.33



6.7 Subresultant PRSWe now derive some results for subresultant PRS with the help of the Funda-mental Theorem 5.3. To simplify our formulas we useei;j = dj�1 Yj�k�i(1� dk):Our �rst goal is to solve the re
urren
e for the �i and eliminate the  i. Thisis done in the following two te
hni
al lemmas.Lemma 6.11. Let  i be de�ned re
ursively as in Example 4.2 by  2 = �1and  i = (��i�2)di�3 1�di�3i�1 for 3 � i � `. Then i = � Y1�j�i�2 �ei�3;jj for 2 � i � `:Proof. For a proof by indu
tion, we �rst verify the 
laim for i = 2: 2 = � Y1�j�0 �e�1;jj :Now we assume that i � 2. Then i+1=(�1)di�2�di�2i�1  1�di�2i = (�1)di�2�di�2i�1 0�� Y1�j�i�2 �ei�3;jj 1A1�di�2=��di�2i�1 Y1�j�i�2 �(1�di�2)ei�3;jj = � Y1�j�(i+1)�2 �e(i+1)�3;jj :By indu
tion, this 
ompletes the proof of the lemma. �Lemma 6.12. Let �i = �di�2+1i�1 for 2 � i � `, and let �2 = (�1)d0+1 and�i = ��i�2 di�2i for 3 � i � `. ThenY2�k�i �k�k = (�1)n0�ni�1+i�1��(di�2+1)i�1 Y1�k�i�2 ��ei�2;kk for 2 � i � `:Proof. Sin
e�2�2 =(�1)d0+1��d0+11 �(�1) = (�1)n0�n1+1��(d0+1)1 Y1�k�0 ��e0;kk ;the 
laim is true for i = 2. Now assume that the 
laim holds for i� 1 � 2 and
onsider 34



Y2�k�i �k�k = �i�i Y2�k�i�1 �k�k = ��i�2 di�2i ��(di�2+1)i�1 Y2�k�i�1 �k�k :From Lemma 6.11 we getY2�k�i �k�k =��i�20�� Y1�k�i�2 �ei�3;kk 1Adi�2��(di�2+1)i�1 Y2�k�i�1 �k�k=(�1)di�2+1�i�20� Y1�k�i�2 �ei�3;kk �1Adi�2��(di�2+1)i�1(�1)n0�ni�2+i�2��(di�3+1)i�2 Y1�k�i�3 ��ei�3;kk=(�1)n0�ni�1+i�1��(di�2+1)i�1 �di�3(di�2�1)i�2 0� Y1�k�i�3 �ei�3;kk 1Adi�2�1=(�1)n0�ni�1+i�1��(di�2+1)i�1 0� Y1�k�i�2 �ei�2;kk 1Adi�2�1:By indu
tion, this 
ompletes the proof of the lemma. �Corollary 6.13. Let (r0; : : : ; r`) be a subresultant PRS, and 1 � i � `.Then(i) �ni = Y1�k�i �ei�1;kk .(ii) The subresultants satisfy the re
ursive formulas�n1 = �d01 , and�ni+1 = �ni � �dii+1 Y1�k�i ��diei�1;kk :If the PRS is normal, then this simpli�es to:(iii) �ni = �i for i � 2.(iv) The subresultants satisfy the re
ursive formulas�n1 = �d01 , and�ni+1 = �ni � �i+1��1i :Proof. We �rst prove (ii) and use it to show (i).35



(ii) From the Fundamental Theorem 5.3(ii) and Lemma 6.12 we �nd�ni+1 = �ni � (�1)di(n0�ni+1+i+1)(�i+1�i)di Y2�k�i+1 �k�k!di= �ni � (�1)di(n0�ni+1+i+1)(�i+1�i)di(�1)di(i+n0�ni)��(di�1+1)dii Y1�k�i�1 ��diei�1;kk= �ni � (�1)di(di+1)�dii+1 Y1�k�i ��diei�1;kk :The 
laim now follows sin
e di(di + 1) is even.(i) The 
laim for i = 1 is 
lear from Fundamental Theorem 5.3(i). Nowassume that the 
laim holds for some i 2 N . Then (ii) yields�ni+1 = �dii+1 Y1�j�i ��diei�1;jj �ni ;and by indu
tion we have�ni+1 = �dii+1 Y1�k�i ��diei�1;kk �di�1i Y1�k�i�1 �ei�1;kk = Y1�k�i+1 �ei;kk : �Remark 6.14. For every subresultant PRS the polynomials ri are in R[x℄ for2 � i � `. Note that Corollary 6.13(iii) implies ri = Ri(f; g). So the normal
ase is 
lear. Proofs for the general 
ase based on polynomial subresultantsare in Collins (1967), p. 130, and Brown (1971), p. 486.Corollary 6.13 does not provide the only re
ursive formula for subresultants.Another one is based on an idea in Li
kteig & Roy (1997), p. 12, and Reis
hert(1997), p. 238, where the following formula has been proven for polynomialsubresultants. It follows from Corollary 6.13.Corollary 6.15. Let (r0; : : : ; r`) be a subresultant PRS. Then the subre-sultants satisfy for 1 � i < ` the re
ursive formulas�n1 = �d01 and�ni+1 = �1�dini � �dii+1.These results also show that the subresultant PRS does take pla
e in R[x℄, asproven by Brown (1978). 36



Corollary 6.16. Let  2 = �1 and  i = (��i�2)di�3 1�di�3i�1 for 3 � i � `.(i)  i = ��ni�2 for 3 � i � `:(ii) The 
oeÆ
ients  i and �i of the subresultant PRS are always in R.Proof. By Lemma 6.11 and Corollary 6.15, we have 3 = ��d01 = ��n1 :This proves the 
orollary for i = 3. Now assume i > 3. Then again Lemma 6.11,Corollary 6.15, and the indu
tion hypothesis yield i = (��i�2)di�3 1�di�3i�1 = ��ni�2 � �di�3ni�3 � �1�di�3ni�3 = ��ni�2 : �Theorem 6.17.6.8 Comparison of redu
ed PRS and subresultant PRSWe 
on
lude this se
tion with a 
omparison of the redu
ed PRS and the subre-sultant PRS. To this end we �rst prove a formula for �di�1i in the redu
ed PRSonly depending on subresultants, thus solving the re
ursion in Remark 6.9.Theorem 6.18. Let (r0; : : : ; r`) be a redu
ed PRS. Then�di�1i = �ni � (�1)ai Y1�k�i�1�(dk�1)Qk�j�i�1 djnk ;where ai = P2�k�i(n0 � nk + k) �Qk�1�j�i�1 dj.Proof. Corollary 6.8(ii) implies that�d12 = �n2 � ��1n1 � (�1)d1(n0�n2+2)�d0d11 = �n2 � (�1)d1(n0�n2+2)�d1�1n1 ;and this proves the 
laim for i = 2. Now assume i � 2. Then Corollary 6.8(ii)and the indu
tion hypothesis yield�dii+1 = �ni+1 � ��1ni � (�1)d1(n0�ni+1+i+1)�di�1dii= �ni+1 � ��1ni � (�1)di(n0�ni+1+i+1)� 0��ni � (�1)ai Y1�k�i�1�(dk�1)�Qk�j�i�1 djnk 1Adi= �ni+1 � (�1)ai+1 Y1�k�i�(dk�1)�Qk�j�i djnk : �37



We 
an now prove the relation between redu
ed and subresultant PRS. Thenormal 
ase 
an be found in Collins (1967), p. 135, Corollary 1.3, and Collins(1973), p. 738. Sin
e we how deal with two di�erent PRS, we use l
(ri); l
(r�i )instead of the unspe
i�
 notation �i here.Corollary 6.19. Let (r0; : : : ; r`) be a redu
ed PRS and (r�0; : : : ; r�̀) a sub-resultant PRS for the polynomials r0 = r�0 = f and r1 = r�1 = g. Then thefollowing holds for 2 � i � `:l
(ri)di =(�1)ai Y1�k�i�2 �(dk�1)�Qk�j�i�1 djnk � l
(r�i )di ;where ai = P2�k�i(n0 � nk + k) �Qk�1�j�i�1 dj. If the PRS are normal, thissimpli�es tol
(ri)= (�1)(n0�ni)(n1�ni) � l
(r�i ):Proof. Follows immediately from Theorem 6.18 and Corollary 6.15. �Sin
e the exponent of �nk is nonnegative, this means that the entries in theredu
ed PRS are at least as large in absolute value as those in the subresultantPRS.7 Analysis of 
oeÆ
ient growth and running timeThis se
tion presents two types of results. We �rst show an exponential lowerbound on the size of the entries of the pseudo PRS that mat
hes the upperbound from Knuth (1981), 4.6.1. A slightly di�erent lower bound is in ?, 3.3.3.On the other hand, we show polynomial upper bounds for all other PRSs.Lemma 7.1. Let e2 = 0, e3 = 1, and ei+1 = 2ei + ei�1 for i � 3. Then(i) P2�k�i�1 2ek = ei + ei�1 � 1.(ii) ei = � � �Proof. Sin
e 2e2 = 0 = e3+ e2� e3, the 
laim holds for i = 3. Now assumei � 3. By indu
tion hypothesis we getX2�k�(i+1)�1 2ek = 2ei + X2�k�i�1 2ek= 2ei + ei + ei�1 � e3 = ei+1 + ei � e3: �38



Lemma 7.2. Suppose that (f; g) 2 Z[x℄2 have a normal pseudo PRS. Then�i = �ni � (�1)(d0+1)(i+1)(�1�n1)ei Y2�j�i�2 �2ei�j+1njwith e2 = 0, e3 = 1 and ei+1 = 2ei + ei�1 for 3 � i � `� 1.Proof. Sin
e Remark 6.6 shows the 
laim for i � 3, we assume i � 3. FromCorollary 6.5(iv) and the indu
tion hypothesis we get�i+1=�ni+1��1ni � (�1)d0+1(�1�n1)�i Y2�k�i�1 �2k=�ni+1��1ni � (�1)d0+1(�1�n1)�ni � (�1)(d0+1)(i+1)(�1�n1)ei� Y2�j�i�2�2ei�j+1nj � Y2�k�i�10��nk(�1�n1)ek Y2�j�k�2�2ek�j+1nj 1A2=�ni+1 � (�1)(d0+1)(i+2)(�1�n1)1+ei+P2�k�i�1 2ek Y2�j�i�2 �2ei�j+1nj �Y2�k�i�1 �2nk � Yj+2�k�i�12�j�i�3 �4ek�j+1nj=�ni+1 � (�1)(d0+1)(i+2)(�1�n1)1+ei+P2�k�i�1 2ek Y2�j�i�2 �2ei�j+1nj� Y2�j�i�1�2+2Pj+2�k�i�1 2ek�j+1nj :With Lemma 7.1 we get�i+1= �ni+1 � (�1)(d0+1)(i+2)(�1�n1)ei+1 Y2�j�i�2 �2ei�j+1nj Y2�j�i�1�2ei�j+1+2ei�jnj= �ni+1 � (�1)(d0+1)(i+2)(�1�n1)ei+1 Y2�j�i�1 �2ei�j+2nj :By indu
tion, this proves the lemma. �Theorem 7.3. The �nal remainder �` in the pseudo PRS is at least 22n insome 
ases with input polynomials of degrees at most n and 
oeÆ
ients of
onstant size. 39



Proof. Let ei be as in Lemma 7.2 for 2 � i � `. Then we have0B� eiei�11CA = 0B� 2 11 01CA0B� ei�1ei�21CA = : : : = 0B� 2 11 01CAk 0B� ei�kei�(k+1) 1CA :Sin
e the eigenvalues of the matrix are 1�p2, we get0B� 2 11 01CAk = 0B� 1 �1 +p21 �1�p21CA � 0B� (1 +p2)k 00 (1�p2)k 1CA � 0B� 1 �1 +p21 �1�p21CA�1 ;and this shows e` = � � � 2 
 �(1 +p2)`�3� :Now let f; g 2 Z[x℄ have degrees n and n� 1, respe
tively, and have a normaldegree sequen
e and jl
(g)j � 65536 = 216. Then d0 = 1, ` = n � 1 and byLemma 7.2 j�`j � j�1je` � 224�2`�3 = 22nfor large n. �The algorithm writes down the �nal result �`, and takes at least as mu
h timeas the bit length of j�`j, whi
h is at least 2n.After this \negative" result, saying that the pseudo PRS is de
ided by im-pra
ti
al, we turn to \positive" upper bounds for the other PRS. We assumef = P0�j�n fjxj and g = P0�j�m gjxj 2 Z[x℄ to be polynomials of degreesn � m � 0, respe
tively. For the estimates we will use the max-norm of fwhi
h is de�ned as kfk1 = maxfjfjj : 0 � j � ng;and the following famous result:Hadamard's inequality 7.4. Let A 2 Zn�n, with row ve
tors f1; : : : ; fn 2Zn, and B 2 Z su
h that all entries of A are at most B in absolute value. Thenj detAj � nn=2Bn(see von zur Gathen & Gerhard (1999), Theorem 16.6).We now seek an upper bound for the running time of both the redu
ed PRSand the subresultant PRS in the normal 
ase. Therefore we �rst show estima-tions for the 
oeÆ
ients of q and r in the pseudo-division.40



Lemma 7.5. Let kfk1 � A, kgk1 � B and jgmj = C. Furthermore letq = P0�j�n�m qjxj, r = P0�j�k rjxj be su
h that gn�m+1m f = qg + r anddeg r = k < m = deg g. Then(i) jqn�m�ij � A(B + C)iCn�m�i for 0 � i � n�m,(ii) krk1 � A(B + C)n�m+1.Proof. (i) Sin
e deg r < m we �ndgn�m+1m fn�i = qn�m�igm + Xa+b=n�ia6=n�m�i qagb + 0: (7.6)Hen
e jqn�mj = jgn�mm fnj � Cn�mA;and this proves the 
laim for i = 0. Now assume 0 < i � n � m. Then 7.6,B � C and the indu
tion hypothesis implyjqn�m�igmj � jgn�m+1m j � kfk1 + A(B + C)i�1Cn�m�(i�1)B�A � Cn�m+1 + A(B + C)i�1Cn�m�(i�1)B�A(B + C)i�1Cn�m�(i�1)+1 + A(B + C)i�1Cn�m�(i�1)B=A(B + C)iCn�m�(i�1):By indu
tion this proves the �rst 
laim.(ii) With Lemma 7.5(i) we getkrk1 � jgn�m+1m j � kfk+ kqk1 � kgk1� A � Cn�m+1 + A(B + C)n�mB� A(B + C)n�mC + A(B + C)n�mB= A(B + C)n�m+1: �With Lemma 7.5 we now prove the following running time of the normalredu
ed PRS algorithm.Theorem 7.7. Let kfk1, kgk1 � A, B = (n+1)nAn+m, and let (r0; : : : ; r`)be the normal redu
ed PRS for f; g. Then the max-norm of the ri is at most4B3, and the algorithm uses O(n3m log 2(nA)) word operations.Proof. Consider one step in the 
omputation of the redu
ed PRS:�iri�2 = qi�1ri�1 + �i�1ri:41



For 2 � i � ` we get with Corollary 6.8 Corollary 6.8(iii) that �ni(f; g) isthe leading 
oeÆ
ient of ri. Thus Remark 3.12 and Hadamard's inequality 7.4yield krik1 = kRni(f; g)k1 � B:Sin
e the PRS is normal, it follows that �i = �2i�1 for 3 � i � `. Hen
ek�irik1 = j�ni�1(f; g)2j � kRni(f; g)k � B3:Furthermore Lemma 7.5 impliesk�i�1rik1�B(2B)2 = 4B3kqn�m�ik1�B(2B)iBk�i � 2kBk+1 = 2B2:So the max-norm of all intermediate results is at most 4B3. The number of op-erations in R is O(nm), and the estimate follows from logB 2 O(n log 2(nA)).�Sin
e Corollary 6.19 shows that normal redu
ed PRS and normal subresultantPRS agree up to sign, the estimates in Theorem 7.7 are also true for normalsubresultant PRS. PRS time
lassi
al/Sturmian/moni
 O�(n8)O�(n6)pseudo �((1 = p2)n) Theorem 7.3primitive O�(n6)redu
ed/subresultant O�(n6) Theorem 7.7Table 2Comparison of various normal PRS. The time (= word operations) is for polynomialsof degree at most n in x and with 
oeÆ
ients of length at most n and ignoreslogarithmi
 fa
tors.We 
on
lude the theoreti
al part of our 
omparison with an overview of allworst-
ase running times for the various normal PRS in Table 2. The lengthof the 
oeÆ
ients of f and g are assumed to be at most n. The estimates thatare not proven here 
an be found in von zur Gathen & Gerhard (1999).8 ExperimentsWe have implemented six of the PRS for polynomials with integral 
oeÆ
ientsin C++, using Vi
tor Shoup's \Number Theory Library" NTL 3.5a for integer42
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Fig. 2. Computation of polynomial remainder sequen
es for polynomials of degreen� 2 with 
oeÆ
ients of bit length less than n for 2 � n � 64.and polynomial arithmeti
. Sin
e the Sturmian PRS agrees with the 
lassi
alPRS up to sign, it is not mentioned here. The 
ontents of the intermediateresults in the primitive PRS are simply 
omputed by su

essive g
d 
ompu-tations. Cooperman et al. (1999) propose a new algorithm that uses only anexpe
ted number of two g
d 
omputations, but on random inputs it is slowerthan the na��ve approa
h. All timings are the average over 10 pseudorandominputs. The software ran on a Sun Spar
 Ultra 1 
lo
ked at 167MHz.In the �rst experiment we pseudorandomly and independently 
hose threepolynomials f; g; h 2 Z[x℄ of degree (n� 2)=2 with nonnegative 
oeÆ
ients oflength less than n=2, for various values of n. Then we used the various PRSalgorithms to 
ompute the g
d of fh and gh. Thus the degree of the g
d wasat least (n� 2)=2; in fa
t, it was equal to (n � 2)=2 in all 
ases when n � 6.The running times are shown in Figures 2 and 3.As seen in Table 2 the pseudo PRS turns out to be the slowest algorithm.The reason is that for random inputs with 
oeÆ
ients of length at most nthe se
ond polynomial is almost never moni
. Theorem 7.3 shows that thenthe running time for pseudo PRS is exponential. A surprising result is thatthe primitive PRS, even implemented in a straightforward manner, turns outto be the fastest PRS. Collins and Brown & Traub invented the subresultantPRS in order to avoid the primitive PRS sin
e it seemed too expensive. Our43
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Fig. 3. Computation of polynomial remainder sequen
es for polynomials of degreen � 2 with 
oeÆ
ients of bit length less than n for 64 � n � 192. Time is nowmeasured in minutes.tests show that this was unne
essary in 
ase of large g
d's.Polynomial remainder sequen
es of random polynomials tend to be normal.Sin
e Corollary 6.19 shows that redu
ed and subresultant PRS agree up tosigns in the normal 
ase, their running times also di�er by little.We are also interested in 
omparing the redu
ed and subresultant PRS, so we
onstru
t PRS whi
h are not normal. To this end, we pseudorandomly andindependently 
hoose six polynomials f; f1; g; g1; h; h1 for various n as follows:F = ( f � h � xn=6 + f1 ) h1G = ( g � h � xn=6 + g1 ) h1degree bound: n n12 n4 n6 n2
oeÆ
ient length: n n8 3n8 n2 n2So F and G have degrees less than n � 2 with 
oeÆ
ient length less than n,and every polynomial remainder sequen
e of F and G has a degree jump of n6at degree n � n12 . Then we used the various PRS algorithms to 
ompute theg
d of F and G. The running times are illustrated in Figures 4 and 5.44
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Fig. 4. Computation of non-normal polynomial remainder sequen
es for polynomialsof degree n� 2 with 
oeÆ
ient length less than n and a degree jump of n6 at degreen� n12 , for 2 � n � 64.As in the �rst test series the pseudo PRS turns out to be the slowest, and theprimitive PRS is the fastest. Here the moni
 PRS is faster than the redu
edPRS. Sin
e the PRS is non-normal, the 
oeÆ
ients be
ome quite large, as seenin Theorem 6.18.We already �nd running times for redu
ed and primitive PRS in Collins (1967),p. 140. He used a IBM 7094 
omputer to 
al
ulate the g
d of two polynomialsof degrees 5k with random integer 
oeÆ
ients of two de
imal digits for variousk. His results are in Table 3. He found the redu
ed PRS to be faster than theprimitive PRS. This di�eren
e is presumably due to the fa
t that two pseu-dorandom polynomials are usually 
oprime. Thus the PRS is longer and the
oeÆ
ient growth in
uen
es the running times more than in our tests, wherea half degree g
d was built in. Collins writes: \For a nonnormal p.r.s. [� � � ℄we have no theory to indi
ate that the redu
ed p.r.s. algorithm would stillbe more eÆ
ient than the primitive p.r.s. algorithm". He also reports thatfor larger g
d's, the primitive PRS \may even be sligthtly faster in extreme
ases" than the redu
ed one, but that this does not seem to 
ompensate forits relative ineÆ
ien
y in the other 
ases.In order to illustrate the dependen
y of the running times and the degree of theg
d's, we implemented one more test. We pseudorandomly and independently
hose two polynomials f and g of degrees 63 � k with bit length less than45
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Fig. 5. Computation of non-normal polynomial remainder sequen
es for polynomialsof degree n� 2 with 
oeÆ
ient length less than n and a degree jump of n6 at degreen� n12 , for 64 � n � 192. Time is now measured in minutes.Degree primitive redu
ed5 0:009 0:004310 0:064 0:02315 0:22 0:07720 0:51 0:2125 1:06 0:4330 1:79 0:7835 3:25 1:48Table 3Running times from Collins (1967), p. 140, in minutes.64� k, and a polynomial h of degree k and with bit length less than k. Thenwe used the various PRS to 
ompute the g
d of fh and gh. So the runningtimes of the PRS only depended on the size of the g
d. The result is in Figure 6.For small g
d's the redu
ed PRS is faster than the primitive PRS, but this
hanges for growing g
d's. Thus the 
hoi
e of the optimal PRS is output-driven: it depends on the degree of the g
d. In pra
ti
e, one has to make thisde
ision beforehand, however. For \random" inputs, the expe
ted deg g
d issmall, and one will favor the redu
ed PRS. If one has reason to expe
t deg g
dto be large, one will 
hoose the primitive PRS; this may be the 
ase, e.g., inre
ursive (primitive) PRS 
omputations for multivariate polynomials.
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Fig. 6. Computation of polynomial remainder sequen
es for polynomials of degree63 with 
oeÆ
ients of bit length less than 64 and g
d of degree k with 
oeÆ
ientsof bit length less than k for 0 � k � 63.

47



Referen
es�Etienne B�ezout (1764). Re
her
hes sur le degr�e des �equations r�esultantes del'�evanouissement des in
onnues. Histoire de l'a
ad�emie royale des s
ien
es 288{338.Summary 88{91.Otto Biermann (1891). �Uber die Resultante ganzer Fun
tionen. Monatsheftefuer Mathematik und Physik 143{146. II. Jahrgang.W. S. Brown (1971). On Eu
lid's Algorithm and the Computation of PolynomialGreatest Common Divisors. Journal of the ACM 18(4), 478{504.W. S. Brown (1978). The Subresultant PRS Algorithm. ACM Transa
tions onMathemati
al Software 4(3), 237{249.W. S. Brown & J. F. Traub (1971). On Eu
lid's Algorithm and the Theory ofSubresultants. Journal of the ACM 18(4), 505{514.G. E. Collins (1966). Polynomial remainder sequen
es and determinants. TheAmeri
an Mathemati
al Monthly 73, 708{712.G. E. Collins (1973). Computer algebra of polynomials and rational fun
tions.The Ameri
an Mathemati
al Monthly 80, 725{755.George E. Collins (1967). Subresultants and Redu
ed Polynomial RemainderSequen
es. Journal of the ACM 14(1), 128{142.George E. Collins (1971). The Cal
ulation of Multivariate Polynomial Resul-tants. Journal of the ACM 18(4), 515{532.Gene Cooperman, Sandra Feisel, Joa
him von zur Gathen & GeorgeHavas (1999). GCD of Many Integers. In COCOON '99, T. Asano et al., editor,number 1627 in Le
ture Notes in Computer S
ien
e, 310{317. Springer-Verlag.Leonhard Euler (1748). D�emonstration sur le nombre des points o�u deux lignesdes ordres quel
onques peuvent se 
ouper. M�emoires de l'A
ad�emie des S
ien
es deBerlin 4, 1750, 234{248. Enestr�om 148. Opera Omnia, ser. 1, vol. 26, Orell F�ussli,Z�uri
h, 1953, 46{59.Joa
him von zur Gathen (1984). Parallel algorithms for algebrai
 problems.SIAM Journal on Computing 13(4), 802{824.Joa
him von zur Gathen & J�urgen Gerhard (1999). Modern ComputerAlgebra. Cambridge University Press.Joa
him von zur Gathen & Thomas L�u
king (2000). Subresultants revisited.In Pro
eedings of LATIN 2000, Punta del Este, Uruguay, Gast�on H. Gonnet,Daniel Panrio & Alfredo Viola, editors, number 1776 in Le
ture Notes inComputer S
ien
e, 318{342. Springer-Verlag.K. O. Geddes, S. R. Czapor & G. Labahn (1992). Algorithms for ComputerAlgebra. Kluwer A
ademi
 Publishers.Paul Gordan (1885). Vorlesungen �uber Invariantentheorie. Erster Band: Deter-minanten. B. G. Teubner, Leipzig. Herausgegeben von Georg Kers
hensteiner.Walter Habi
ht (1948). Eine Verallgemeinerung des Sturms
henWurzelz�ahlverfahrens. Commentarii Mathemati
i Helveti
i 21, 99{116.M.W. Haskell (1892). Note on resultants. Bulletin of the New York Mathemati
alSo
iety 1, 223{224.Thomas W. Hungerford (1990). Abstra
t Algebra: An Introdu
tion. SaundersCollege Publishing, Philadelphia PA.C. G. J. Ja
obi (1836). De eliminatione variabilis e duabus aequationibus alge-48



brai
is. Journal f�ur die Reine und Angewandte Mathematik 15, 101{124.Donald E. Knuth (1981). The Art of Computer Programming, vol.2, Seminu-meri
al Algorithms. Addison-Wesley, Reading MA, 2nd edition.Donald E. Knuth (1993). Johann Faulhaber and sums of powers. Mathemati
sof Computation 61(203), 277{294.L. Krone
ker (1873). Die vers
hiedenen Sturms
hen Reihen und ihre gegen-seitigen Beziehungen. Monatsberi
hte der K�onigli
h Preussis
hen Akademie derWissens
haften, Berlin 117{154.L. Krone
ker (1881). Zur Theorie der Elimination einer Variabeln aus zweialgebrais
hen Glei
hungen. Monatsberi
hte der K�onigli
h Preussis
hen Akademieder Wissens
haften, Berlin 535{600. Werke, Zweiter Band, ed. K. Hensel, Leipzig,1897, 113{192. Reprint by Chelsea Publishing Co., New York, 1968.Thomas Li
kteig & Marie-Fran
�oise Roy (1997). Cau
hy Index Computa-tion. Cal
olo 33, 331{357.R. Loos (1982). Generalized Polynomial Remainder Sequen
es. Computing 4,115{137.Thomas L�u
king (2000). Subresultants. Diplomarbeit.Thom Mulders (1997). A note on subresultants and the Lazard/Rioboo/Tragerformula in rational fun
tion integration. Journal of Symboli
 Computation 24(1),45{50.Isaa
 Newton (1707). Arithmeti
a Universalis, sive de 
ompositione et resolutionearithmeti
a liber. J. Senex, London. English translation as Universal Arithmeti
k:or, A Treatise on Arithmeti
al 
omposition and Resolution, translated by the lateMr. Raphson and revised and 
orre
ted by Mr. Cunn, London, 1728. Reprinted in:Derek T. Whiteside, The mathemati
al works of Isaa
 Newton, Johnson ReprintCo, New York, 1967, p. 4 �.Daniel Reis
hert (1997). Asymptoti
ally Fast Computation of Subresultants. InPro
eedings of the 1997 International Symposium on Symboli
 and Algebrai
 Com-putation ISSAC '97, Maui HI, Wolfgang W. K�u
hlin, editor, 233{240. ACMPress.V. Strassen (1983). The 
omputational 
omplexity of 
ontinued fra
tions. SIAMJournal on Computing 12(1), 1{27.C. Sturm (1835). M�emoire sur la r�esolution des �equations num�eriques. M�emoirespr�esent�es par divers savants �a l'A
ad�emie des S
ien
es de l'Institut de Fran
e 6,273{318.J. J. Sylvester (1840). A method of determining by mere inspe
tion the deriva-tives from two equations of any degree. Philosophi
al Magazine 16, 132{135. Math-emati
al Papers 1, Chelsea Publishing Co., New York, 1973, 54{57.Alexei Yu. Uteshev & Timofei M. Cherkasov (1998). The Sear
h for theMaximum of a Polynomial. Journal of Symboli
 Computation 25, 587{618.Franz Winkler (1996). Polynomial Algorithms in Computer Algebra. Texts andMonographs in Symboli
 Computation. Springer-Verlag.Ri
hard Zippel (1993). E�e
tive polynomial 
omputation. Kluwer A
ademi
Publishers.
49


