
Approximate polynomial gcd:
small degree and small height perturbations

Joachim von zur Gathen
B-IT, Universität Bonn
53113 Bonn, Germany

Maurice Mignotte
Département de Mathématiques, Université Louis Pasteur
7 rue René Descartes, F-67084 Strasbourg cedex, France

Igor E. Shparlinski
Department of Computing, Macquarie University

NSW 2109, Australia

Abstract

We consider the following computational problem: we are given two coprime
univariate polynomials f0 and f1 over a ring R and want to find whether after
a small perturbation we can achieve a large gcd. We solve this problem for
two notions of “large” (and “small”): large degree (when R = F is an arbitrary
field, in the generic case when f0 and f1 have a so-called normal degree
sequence), and large height (when R = Z). The algorithms use polynomial
time for the degree notion, and also for the height notion when the degree is
fixed 1. Our work adds to the existing notions of “approximate gcd”.

Key words: Euclidean algorithm, gcd, approximate computation

Email addresses: gathen@bit.uni-bonn.de (Joachim von zur Gathen),
mignotte@math.u-strasbg.fr (Maurice Mignotte), igor@ics.mq.edu.au (Igor E.
Shparlinski)

1The latter condition is erroneously left out in the published version.

1

JO
A

C
H

IM
V

O
N

Z
U

R
G

A
T

H
E

N
,M

A
U

R
IC

E
M

IG
N

O
T

T
E

&
IG

O
R

E
.S

H
PA

R
L

IN
S

K
I

(2
01

0)
.

A
pp

ro
xi

m
at

e
po

ly
no

m
ia

lg
cd

:s
m

al
ld

eg
re

e
an

d
sm

al
lh

ei
gh

tp
er

tu
rb

at
io

ns
.

Jo
ur

na
lo

f
Sy

m
bo

lic
C

om
pu

ta
tio

n
U

R
L
h
t
t
p
:
/
/
d
x
.
d
o
i
.
o
r
g
/
1
0
.
1
0
1
6
/
j
.
j
s
c
.
2
0
1
0
.
0
4
.
0
0
1

.
T

he
Lo

ca
lP

D
F

is
a

co
rr

ec
te

d
ve

rs
io

n.
T

hi
sd

oc
um

en
ti

sp
ro

vi
de

d
as

a
m

ea
ns

to
en

su
re

tim
el

y
di

ss
em

in
at

io
n

of
sc

ho
la

rl
y

an
d

te
ch

ni
ca

lw
or

k
on

a
no

n-
co

m
m

er
ci

al
ba

si
s.

C
op

yr
ig

ht
an

d
al

lr
ig

ht
s

th
er

ei
n

ar
e

m
ai

nt
ai

ne
d

by
th

e
au

th
or

s
or

by
ot

he
rc

op
yr

ig
ht

ho
ld

er
s,

no
tw

ith
st

an
di

ng
th

at
th

es
e

w
or

ks
ar

e
po

st
ed

he
re

el
ec

tr
on

ic
al

ly
.I

ti
s

un
de

rs
to

od
th

at
al

lp
er

so
ns

co
py

-
in

g
an

y
of

th
es

e
do

cu
m

en
ts

w
ill

ad
he

re
to

th
e

te
rm

s
an

d
co

ns
tr

ai
nt

s
in

vo
ke

d
by

ea
ch

co
py

ri
gh

t
ho

ld
er

,a
nd

in
pa

rt
ic

ul
ar

us
e

th
em

on
ly

fo
r

no
nc

om
m

er
ci

al
pu

r-
po

se
s.

T
he

se
w

or
ks

m
ay

no
tb

e
po

st
ed

el
se

w
he

re
w

ith
ou

tt
he

ex
pl

ic
it

w
ri

tte
n

pe
r-

m
is

si
on

of
th

e
co

py
ri

gh
th

ol
de

r.
(L

as
tu

pd
at

e
20

16
/0

5/
18

-1
4

:2
0.

)

1. Introduction

Symbolic (exact) computations of the gcd of two univariate polynomials
form a well-developed topic of computer algebra. These methods are not
directly applicable when the coefficients are “inexact” real numbers, maybe
coming from physical measurements, since then the gcd is almost always
1. The appropriate model here is to ask for a “large” gcd, allowing “small”
additive perturbations of the inputs. Numerical analysis provides several
ways of formalizing this precisely, and “approximate gcd” computations are
an emerging topic of computer algebra with a growing literature. We only
point out the pioneering work of Schönhage (1985), and Bini & Boito (2007);
Emiris, Galligo & Lombardi (1997); Karcanias, Fatouros, Mitrouli & Halikias
(2006); Karmarkar & Lakshman (1998); Li, Yang & Zhi (2005); Pan (2001);
Rupprecht (1999) and the references therein.

The present paper introduces two “exact” notions of approximate gcds,
where we allow “small” additive perturbations of the inputs and ask for a
“large” . In the first setting we let f0, f1 ∈ F[x] be two univariate polynomials
over a field F, both of degree at most n and with a normal degree sequence in
the Euclidean algorithm, and d and e integers. We are interested in perturba-
tions u0, u1 ∈ F[x] of degree at most e such that deg gcd(f0+u0, f1+u1) ≥ d.
We show that if e < min{2d− n, n − d}, then the problem has at most one
solution, and if one exists, we can find it in polynomial time. In the second
setting, we consider polynomials over Z and obtain an efficient algorithm for
perturbations u1 ∈ Z[x] of small height that achieve a gcd(f0, f1+u1) of large
height (without any restrictions on the degree except for deg u1 ≤ n).

The latter result is based on the work of Howgrave-Graham (2001) on an
analogous question for integers, and in fact can be viewed as an extension to
polynomials of those results.

We prove that our algorithms solve our problem under rather restrictive
assumptions. Several open questions are mentioned in Section 4. One of
them is whether either a variant or some other algorithm can tackle a larger
set of input values and provide a more practical solution. Finding multidi-
mensional analogues, that is, constructing algorithms to find “small” pertur-
bations u0, . . . , us−1 of f0, . . . , fs−1 such that gcd(f0 + u0, . . . , fs−1 + us−1) is
“large” (in both number and polynomial cases) is another interesting direction
of research.

Our approaches are quite different in spirit from the numerical ones, and
we see no meaningful way of comparing them.

2

�
��

�
�
�

�
�
� �

�
�

�
�
�

�
��

quotients qi

1

< n

0

Bézout coefficients si, tiremainders ri

n

Figure 2.1: The degrees of the quotients (left), remainders (center), and Bézout coefficients
in the EEA, starting at the top.

2. The degree measure

We write f quo g and f remg for the quotient and remainder on division
of f by nonzero g. Thus f = (f quog)·g+(f remg) and deg(f remg) < deg g.

The degree sequence of two univariate polynomials f0, f1 ∈ F[x] is the
sequence of degrees deg f0, deg f1, deg f2, . . . of the remainders f0, f1, f2, . . .
in the Euclidean algorithm. Usually, but not always, deg fi−1 = 1 + deg fi,
and we say that f0, f1 have a normal degree sequence if that is the case for
all i. We denote by M a polynomial multiplication time over F, so that two
polynomials of degree at most n can be multiplied with O(M(n)) operations
in F. We may use M(n) = n log n log log n. In particular M(n) ∈ O∼(n),
where as usual A ∈ O∼(B) means that |A| ≤ c1B(log(B + 2))c2 for some
constants c1, c2 > 0; see (von zur Gathen & Gerhard, 2003, Chapter 8).

For our first result, we consider a field F and univariate polynomials
f0, f1 ∈ F[x]. We ask for perturbations u0, u1 ∈ F[x] of small degree so that
the perturbed polynomials have a gcd of large degree. More precisely, we
also have integers e0, e1, d, and we consider the set

U = {(u0, u1) ∈ F[x]2 : deg ui ≤ ei for i = 0, 1,

deg gcd(f0 + u0, f1 + u1) = d}. (2.1)

If ei is negative, then the condition is meant to imply that ui = 0. As an
example, we can take f1, g, u0 ∈ F[x] of degrees n1, m, e0, respectively, with
e0 < n1 < m, and f0 = gf1 − u0, d = n1, and e1 = n1 − m − 1 < 0. Then
U = {(u0, 0)}, and the hypotheses in Theorem 2.3 below are satisfied.

It is well-known that the first quotients in the Extended Euclidean Algo-
rithm (EEA) depend only on the top coefficients of the two input polynomi-
als. For our question, it means that the first quotients are identical for the

3

Figure 2.2: Figure 1 with a normal degree sequence and truncated bottom part to indicate
a large gcd.

inputs and their (unknown) perturbations. Furthermore, the gcd is large if
and only if the last quotients disappear.

The algorithm below executes the EEA for (f0, f1). It produces a finite se-
ries of “lines” (rj, sj, tj) such that sjf0+tjf1 = rj , where deg rj ≤ n is strictly
decreasing with growing j (see von zur Gathen & Gerhard 2003, Section 3.2).
We have s1 = t0 = 0, and all other si and ti are nonzero. Furthermore, since
deg sj and deg tj are strictly increasing (see von zur Gathen & Gerhard 2003,
Lemma 3.10), there is at most one “line” (r, s, t) with a prescribed degree for
s (or t). We denote as lc(f) the leading coefficient of a polynomial f .

Algorithm 2.2. Approximate gcd of large degree.
Input: f0, f1 ∈ F[x] monic of degrees n0 > n1, respectively, coprime and with

a normal degree sequence. Furthermore, integers d, e0, e1 with d > 0
and

e0 < min{2d− n1, n0 − d}, e1 < min{2d− n0, n1 − d}.
Output: U as in (2.1).

1. Execute the EEA with input (f0, f1).
2. Check if the EEA computes (r, s, t) with sf0 + tf1 = r and n0 − deg t =

n1 − deg s = d. If not, return U = ∅.
3. Otherwise, if s = 0, then let u0 = −(f0 rem f1) and return U = {(u0, 0)}

if deg u0 ≤ e0, and else U = ∅. If t = 0, then return U = ∅.
4. {We now have sf0 + tf1 = r and st �= 0.} Compute

h0 = f0 quo t,

h1 = f1 quo s.

If h0 and h1 are not associates, return U = ∅.

4

5. Else, compute

h = lc(h0)
−1h0,

α = lc(t)−1,

q0 = αt,

q1 = −αs,

ui = qih− fi for i = 0, 1.

6. If deg ui ≤ ei for i = 0, 1, then return U = {(u0, u1)}, else return U = ∅.

Theorem 2.3. Let f0, f1, n = n0, n1, d, e0, e1 satisfy the input specifica-
tion of Algorithm 2.2. Then the set U contains at most one element, and
Algorithm 2.2 computes it with O(M(n) logn) operations in F.

Proof. We have noted above that there is at most one “line” (r, s, t) in
the EEA with sf0 + tf1 = r and n0 − deg t = n1 − deg s = d. If there is no
such line, then our algorithm returns U = ∅. Otherwise we take that line.

We first have to check that any (u0, u1) returned by the algorithm is
actually in the set U . This is clear in Step 3. For an output in Step 6, we
note that

gcd(f0 + u0, f1 + u1) = gcd(q0h, q1h) = h gcd(s, t) = h,

since gcd(s, t) = 1 (see von zur Gathen & Gerhard 2003, Lemma 3.8 (v)),

deg h = deg h0 = deg f0 − deg t = d,

and indeed (u0, u1) ∈ U .
To show the correctness of the algorithm it remains to show that if U �= ∅,

then the algorithm does indeed return this set U , and that U has at most
one element.

So we now suppose that U �= ∅, let (u0, u1) ∈ U , and h = gcd(f0+u0, f1+
u1), so that deg h = d. One first checks that the algorithm deals correctly
with the two special cases d = n0 and d = n1. In the other cases, there exist
uniquely determined q0, q1 ∈ F[x] such that

fi = qih− ui for i = 0, 1, (2.4)

5

since deg ui < 2d−n1−i < d = deg h. Eliminating h from these two equations,
we find

q1f0 − q0f1 = q0u1 − q1u0, (2.5)

and call this polynomial g = q0u1−q1u0. We have deg q0 = n0−d < n0. Now
g is nonzero, because otherwise f0 would divide q0, a polynomial of smaller
degree than f0, which would imply that q0 = 0, a contradiction.

We have

deg q0 + deg g ≤ n0 − d+max{(n0 − d) + e1, (n1 − d) + e0} < n0,

since ei < 2d− n1−i for i = 0, 1.
Thus (2.5) satisfies the degree inequalities of the EEA, and by the well-

known uniqueness property of polynomial continued fractions (see, for exam-
ple, von zur Gathen & Gerhard 2003, Lemma 5.15), there exist a remainder
r and corresponding Bézout coefficients s, t in the EEA for f0 and f1, and
nonzero α ∈ F[x] such that

sf0 + tf1 = r and (g, q1,−q0) = α(r, s, t).

Furthermore, since the Euclidean degree sequence is normal, α is a con-
stant. We have n0 − deg q0 = n0 − deg t = d, similarly n1 − deg q1 = d, and
deg ui ≤ ei < ni−d = deg qi, so that ui equals the remainder of fi on division
by qi, for i = 0, 1. It follows from (2.4) that (u0, u1) is indeed returned by
the algorithm.

In particular, since at most one (u0, u1) is returned by the algorithm and
it equals each element of U (if U �= ∅), U contains at most one element.

The cost for computing a single line in the Extended Euclidean Scheme
is O(M(n) logn); see von zur Gathen & Gerhard 2003, Algorithm 11.4. All
other operations are not more expensive. �

In particular the cost of Algorithm 2.2 is in O∼(n).
Figure 2.3 shows at the bottom the triangle of values in the e0-d-plane

satisfying the restriction required for e0, with large n0 = n1 + 1. There are
trivial solutions ui = −fi rem h for i = 0, 1 when e0, e1 ≥ d− 1, for any h of
degree d; these form the area above the diagonal. We ran experiments with
“random” polynomials, with and without a planted perturbed gcd. Values
in the bottom triangle were, of course, correctly dealt with. We also ran
the algorithm without any of the bounds d, e0, e1. Then it would typically
compute (u0, u1) ∈ U with e0 = n0 − d and 1 ≤ d ≤ n1, which is the dotted
line in Figure 2.3. Planted gcds with d < n0/2 were usually not detected.

6

d
n0

e0

Figure 2.3: The three areas – bottom triangle, triangle above the diagonal, dotted line –
are explained in the text.

3. The height measure

We now look at the same problem in a different setting which we consider
only for polynomials over Z (although it can be extended to polynomials
over other suitable fields and rings). Namely, we consider the case where the
height H(f) = max{|cj| : 0 ≤ j ≤ n} of a polynomial

f =

n∑
j=0

cjx
j ∈ Z[x]

is the measure of interest.
We first need to know that a large polynomial takes a small value only

very rarely. It might come as a surprise that, according to the following
precise version, the bound for points with small values is the same as the one
for roots.

Lemma 3.1. Let f ∈ Z[x] be nonzero of degree n, let A ≥ 2 be an integer,
and

A =
{
a ∈ Z : − A ≤ a ≤ A, |f(a)| ≤ 2−n−1(n− 1)!A−nH(f)

}
.

Then #A ≤ n.

7

Proof. Clearly we can assume that A ≥ n/2 since otherwise there is
nothing to prove. Let −A ≤ a0 < . . . < an ≤ A be n + 1 arbitrary distinct
integers. If we define fi = f(ai) for i = 0, . . . , n, then Lagrange interpolation
says that

f =

n∑
i=0

fiLi, (3.2)

where
Li = gi(x)/gi(ai),

gi =

n∏
j=1
j �=i

(x− aj),

for 0 ≤ i ≤ n. Since A ≥ n/2, the height of any gi can be estimated as

H(gi) ≤ max
0≤k≤n

(
n

k

)
An−k = max{nAn−1, An} ≤ 2An.

With n0 = �n/2� we have for all i ≤ n

|gi(ai)| ≥ n0!(n− n0)! =

(
n

n0

)−1

n! ≥ 2−nn! .

We now see from (3.2)

H(f) ≤ (n + 1) max
0≤i≤n

|fi| H(gi)

|gi(ai)|
≤ 1

n!
2n+1(n+ 1)An max

0≤i≤n
|fi| ≤ 1

(n− 1)!
2n+1An max

0≤i≤n
|fi|,

which concludes the proof. �

We need the following statement which has essentially been shown by
Howgrave-Graham (2001). For the sake of completeness we present a succinct
proof. The gcd of two integers, at least one of which is nonzero, is taken to
be positive.

8

Lemma 3.3. Let F0 and F1 be integers, with F0 �= 0. Then the set of all
integers V with |V | < |F1| and

gcd(F0, F1 + V) ≥ 2
√
|F0V |

can be computed in time polynomial in log (|F0F1|+ 1).

Proof. We may assume that F1 �= 0. For an integer V in the set we write

Δ = gcd(F0, F1 + V), G0 =
F0

Δ
, G1 =

F1 + V

Δ
.

Then |F1 + V | < 2|F1|, and
∣∣∣∣F0

F1

− G0

G1

∣∣∣∣ = |F0G1 − F1G0|
Δ|F1G1| =

|F0V |
Δ|F1G1|

≤ Δ2

4Δ|F1G1| ≤
Δ

2 · |(F1 + V)G1| =
1

2G2
1

.

Thus G0/G1 is one of the convergents in the continued fraction expansion of
F0/F1, and can be found in polynomial time. Furthermore, Δ = F0/G0 can
take only polynomially many values. For each of them, we verify whether
V = G1Δ− F1 satisfies the condition of the lemma. �

The gcd of polynomials f0 and f1 in Z[x] is monic if one of f0 or f1 is.
We now consider for given f0, f1 ∈ Z[x] and integers D,E the set

V = {v ∈ Z[x] : deg v ≤ n, H(v) ≤ E, H(gcd(f0, f1 + v)) ≥ D}. (3.4)

The idea for a solution is the following probabilistic approach. Given ε >
0, we choose n+1 random integers a in {−A, . . . , A} for A = �4ε−1n(n+1)	.
Suppose we have v as in (3.4), and let h = gcd(f0, f1+ v). Then h(a) divides
gcd(f0(a), f1(a)+ v(a)) for all a. In an appropriate sense, f0, f1, v, and a are
small, so that also all values f0(a), f1(a), v(a) are small. By Lemma 3.1, with
probability at least 1 − ε all h(a) are large. The conditions for Howgrave-
Graham’s integer result are satisfied, and his method finds efficiently the set
of all v(a). Trying all interpolation polynomials v solves our task.

9

Algorithm 3.5. Approximate gcd of large height.
Input: f0, f1 ∈ F[x] of degrees n ≥ n1 ≥ 1, respectively, with f0 monic and

gcd(f0, f1) = 1. Furthermore, we are given a positive ε < 1 and
positive integers D and E.

Output: V as in (3.4) or “failure”.

1. Initialize V = ∅. Put A = �4ε−1n(n+ 1)	 and choose n + 1 distinct
integers a0, . . . , an uniformly at random in the interval {−A, . . . , A}.

2. Evaluate fi(aj) and check whether

|fi(aj)| > 2−n−1(n− 1)!A−nH(fi)

for each j = 0, . . . , n and i = 0, 1. Return “failure” if the check fails.
3. For each j = 0, . . . , n, compute continued fraction expansions of the

fractions f0(aj)/f1(aj) and find the set of all integers Vj with

|Vj| < |f1(aj)| and gcd (f0(aj), f1(aj) + Vj) ≥ D2−nA−n2

.

4. For each possible choice (V0, . . . , Vn) compute the unique interpolation
polynomial v ∈ Q[x] of degree at most n with v(aj) = Vj for all j. If v
satisfies the conditions in (3.4), then add v to V.

5. Return V.

Theorem 3.6. Let f0, f1, ε, D, E be inputs to Algorithm 3.5 with

E < H(f1)2
−n−2(n− 1)!(4ε−1n(n+ 1) + 1)−2n,

D ≥ 1

(n− 1)!
2n+3(4ε−1n(n + 1) + 1)2n(H(f0)E)1/2.

Then Algorithm 3.5 returns “failure” in step 2 with probability at most ε,
and otherwise computes V. It uses time polynomial in (log(DH(f1)ε

−1))n.

Proof. Let v ∈ V as in (3.4), h = gcd(f0, f1 + v), d = deg h, and Hi =
H(fi) for i = 0, 1. We want to show that with probability at least 1− ε, the
polynomial v is found in Step 4.

We have A = �4ε−1n(n + 1)	 > n and hence (d− 1)!A−d ≥ (n− 1)!A−n.
For a0, . . . , an chosen in Step 1, by Lemma 3.1 we see that with probability
at least (

1− 4n

2A+ 1

)n+1

>

(
1− ε

2(n + 1)

)n+1

> 1− ε,

10

we have simultaneously

|h(aj)| ≥ 2−d−1(d− 1)!A−dH(h) ≥ 2−n−1(n− 1)!A−nD

and
|fi(aj)| > 2−n−1(n− 1)!A−nHi

for each j = 0, . . . , n and i = 0, 1, since each aj has to avoid the at most
d + 2n ≤ 3n “small” values of h, f0 and f1, and also the values a0, . . . , aj−1.
We also have

|f1(aj)| > 2−n−1(n− 1)!A−nH1 > 2AnE ≥ |v(aj)|

for each j, so that f1(aj) + v(aj) �= 0. Now h is monic, so that the quotients
f0/h and (f1 + v)/h are integer polynomials. For any a ∈ Z it follows that
h(a) divides gcd(f0(a), f1(a)). Thus we find

gcd (f0(aj), f1(aj) + v(aj)) ≥ |h(aj)| ≥ 2−n−1(n− 1)!A−nD.

On the other hand,

|fi(aj)| ≤ 2AnHi and |v(aj)| ≤ 2AnE

for each j = 0, . . . , n and i = 0, 1. Thus

2(|f0(aj)v(aj)|)1/2 ≤ (16H0EA2n)1/2 ≤ 2−n−1(n− 1)!A−nD.

These inequalities show that Lemma 3.3 applies and Step 3 does indeed
find the value Vj = v(aj). Thus Algorithm 3.5 works correctly. For any j, the
set of all Vj in Step 3 can be computed in time polynomial in n log(H0H1ε

−1),
by Lemma 3.3. Finally, the number of possibilities for the vector (V0, . . . , Vn)
is polynomial in (logDH1ε

−1)n. �

We remark that for any v ∈ Z[x] it is easy to check whether v ∈ V; thus
Algorithm 3.5 is of Las Vegas type in this sense.

4. Future directions

Several natural questions are left open.

11

Question 4.1. Chart (some of) the white territory in Figure 2.3.

There is a clear disparity between Theorem 2.3 where both inputs are
perturbed and Theorem 3.6 where only one input is perturbed. In order to
eliminate this distinction one has to study the underlying integer analog.

Question 4.2. Find an algorithm for the integer approximate gcd problem
for perturbations of both inputs and apply it to the polynomial problem with
respect to height.

Question 4.3. Relax our constraints on solvability and/or obtain impossi-
bility results.

Question 4.4. Study variants of the approximate gcd problem for multi-
variate polynomials.

5. Acknowledgements

We thank the referees for their useful comments. The first author’s work
was supported by the B-IT Foundation and the Land Nordrhein-Westfalen,
and the third author’s by ARC grant DP0556431. Thanks go to Daniel
Loebenberger for help with the figures and to Mark Giesbrecht for useful
discussions. An Extended Abstract of this paper appeared as von zur Gathen
& Shparlinski (2008).

References

Dario A. Bini & Paola Boito (2007). Structured Matrix-Based
Methods for Polynomial ε-gcd: Analysis and Comparisons. Proceed-
ings of the 2007 International Symposium on Symbolic and Algebraic
Computation ISSAC2007, Waterloo, Ontario, Canada 9–16. URL
http://dx.doi.org/10.1145/1277548.1277551.

Ioannis Z. Emiris, André Galligo & Henri Lombardi (1997).
Certified approximate univariate GCDs. Journal of Pure and
Applied Algebra 117&118, 229–251. ISSN 0022-4049. URL
http://dx.doi.org/10.1016/S0022-4049(97)00013-3.

12

Joachim von zur Gathen & Jürgen Gerhard (2003). Mod-
ern Computer Algebra. Cambridge University Press, Cam-
bridge, UK, 2nd edition. ISBN 0-521-82646-2, 800 pages. URL
http://cosec.bit.uni-bonn.de/science/mca.html. First edition
1999.

Joachim von zur Gathen & Igor E. Shparlinski (2008). Approximate
Polynomial gcd: Small Degree and Small Height Perturbations. In Pro-
ceedings of LATIN 2008, Búzios, Rio de Janeiro, Brazil, Eduardo Sany

Laber, Claudson Bornstein, Loana Tito Nogueira & Luer-

bio Faria, editors, number 4957 in Lecture Notes in Computer Sci-
ence, 276–283. Springer-Verlag, Berlin, Heidelberg. ISSN 0302-9743. URL
http://dx.doi.org/10.1007/978-3-540-78773-0.

Nick Howgrave-Graham (2001). Approximate integer common divi-
sors. In Cryptography and Lattices: International Conference, CaLC
2001, Providence, RI, USA, March 29-30, 2001, J. H. Silverman, ed-
itor, number 2146 in Lecture Notes in Computer Science, 51–66. Springer-
Verlag, Berlin, Heidelberg. ISBN 3-540-42488-1. ISSN 0302-9743. URL
http://www.springerlink.com/content/ak783wexe7ghp5db/.

N. Karcanias, S. Fatouros, M. Mitrouli & G. H. Halikias (2006).
Approximate greatest common divisor of many polynomials, gener-
alised resultants, and strength of approximation. Computers & Math-
ematics with Applications 51, 1817–1830. ISSN 0898-1221. URL
http://dx.doi.org/10.1016/j.camwa.2006.01.010.

N. K. Karmarkar & Y. N. Lakshman (1998). On approximate GCDs of
univariate polynomials. Journal of Symbolic Computation 26(6), 653–666.
ISSN 0747-7171. URL http://dx.doi.org/10.1006/jsco.1998.0232.

Bingyu Li, Zhengfeng Yang & Lihong Zhi (2005). Fast Low Rank
Approximation of a Sylvester Matrix by Structured Total Least Norm.
Journal of Japan Society for Symbolic and Algebraic Computation 11(3,4),
165–174. URL http://www.mmrc.iss.ac.cn/ lzhi/paper.html.

Victor Y. Pan (2001). Computation of Approximate Polynomial GCDs
and an Extension. Information and Computation 167, 71–85.

13

David Rupprecht (1999). An algorithm for computing cer-
tified approximate GCD of n univariate polynomials. Jour-
nal of Pure and Applied Algebra 139(1-3), 255–284. URL
http://dx.doi.org/10.1016/S0022-4049(99)00014-6.

Arnold Schönhage (1985). Quasi-GCD Computations. Journal of Com-
plexity 1, 118–137.

14

