mission of the copyright holder. (Last update 2016/05/18-14 :20.)

each copyright holder, and in particular use them only for noncommercial pur-

This document is provided as a means to ensure timely dissemination of scholarly are maintained by the authors or by other copyright holders, notwithstanding that ing any of these documents will adhere to the terms and constraints invoked by poses. These works may not be posted elsewhere without the explicit written per-

and technical work on a non-commercial basis. Copyright and all rights therein these works are posted here electronically. It is understood that all persons copy-

JOACHIM VON ZUR GATHEN & JURGEN GERHARD (2004). Computing special powers in finite fields. Mathematics of Computation 73(247), 1499-1523. ISSN 0025-5718.

URL http://dx.doi.org/10.1090/S0025-5718-02-01421-7. Article electronically published on September 26, 2003.

MATHEMATICS OF COMPUTATION
Volume 00, Number 0, Pages 000-000
S 0025-5718(XX)0000-0

COMPUTING SPECIAL POWERS
IN FINITE FIELDS

JOACHIM VON ZUR GATHEN AND MICHAEL NOCKER

ABSTRACT. We study exponentiation in non-prime finite fields with very spe-
cial exponents such as they occur, for example, in inversion, primitivity tests,
and polynomial factorization. Our algorithmic approach improves the corre-
sponding exponentiation problem from about quadratic to about linear time.

1. INTRODUCTION

Exponentiation in finite fields F;» has many applications, several cryptosystems
among them, e.g. Diffie & Hellman (1976) and ElGamal (1985). In those situa-
tions, one has arbitrary (or random) exponents. There is a substantial body of
literature on this topic; see the references given in von zur Gathen & No6cker (1997,
2003). The fastest algorithms in Fy» —for different basis representations of Fy» —
use O(n?loglognlogq) operations in F,; see Gao et al. (2000). In this paper we
deal with a different problem: very special exponents, e.g., repunits (¢" —1)/(g¢—1)
with all 1’s in their g-ary representation. Such exponents occur in inversion and in
primitivity tests, and we can employ our methods in polynomial factorization.

We start in 2 with a recapitulation of what we need about addition chains and a
variant which is important for our problem: g-addition chains, where multiplication
by some fixed integer g is free. We use this for exponentiation in extension fields of
Fy. Section 3 summarizes the basic algorithmic tool which is an adaption of Brauer’s
(1939) method: a g-addition chain for the repunit e = (¢" — 1)/(g — 1) with about
log n non-g-steps, which is only logarithmic in the length nlog g of generic numbers
of the same magnitude. The known efficient algorithms for general exponentiation
are reviewed in Section 4.

This approach improves the corresponding exponentiation problem from quad-
ratic to about linear time. We discuss five applications: inversion in Section 5,
primitivity testing in Section 7, and three tasks connected to polynomial factoriza-
tion in Section 8; these last two sections use an exponentiation algorithm developed
in Section 6. Experiments show that our method often yields better results than
other well-known algorithms. For example, the number of multiplications to test
an element F, for primitivity can be reduced to less than 50% on average (see
Table 2) with addition chains for special exponents.

From a high-level point of view, we have the following picture for exponentiation
in Fy». The number of operations are in the “O”-sense. Some of the algorithms
assume an optimal normal basis as data structure, where a gth power in Fy is free,

Received by the editor September 17, 2003.

©1997 American Mathematical Society

2 JOACHIM VON ZUR GATHEN AND MICHAEL NOCKER

or a sparse irreducible polynomial with a constant number of terms.

algorithm operations
in Fyn | in T,

generic exponent
repeated squaring nlogq n?logn - loglogn - log g

von zur Gathen & Nocker (2003) "

? log n logl -1
+(n/logn) - log g n’ log nloglogn - log g
Stinson (1990),

: 8/1 -1
von zur Gathen (1991) (n/logn)-logq (n"/logn) -log q
Gao et al. (2000) (n/logn) -logq n” loglogn - log q
special exponent log (nq) nlogn - loglog n - (log (nq))

An extended abstract of this paper has been published as von zur Gathen &
Nocker (1999).

2. ADDITION CHAINS

The standard reference on this topic is Knuth (1998), Section 4.6.3. An addition
chain is a sequence vy of pairs ((5(1),k(1)),...,(45(1),%k(l))) of nonnegative integers
with 0 < k(i) < j(i) < i for all 1 <4 < I. The number [of pairs is the length
L(v) of v. The semantics of «y is the set S(v) = {ao,...,a;} of integers such that
ap = 1 and a; = aj(;) + ag(), for 1 <4 < I. For our purpose we may assume
1=ap<a; <---<a;,and use this assumption tacitly throughout the paper. We
say that v computes e if e € S(v).

The main purpose in life of an addition chain is to generate an exponentiation
algorithm: if y is an addition chain computing e as above, then for 8 € Fy» we can
compute 3¢ by computing g% = %@ . g% for all 1 <14 <.

In the literature it is common to identify the semantics with the addition chain
itself. But different addition chains may have the same semantics. As remarked by
Knuth (1998), an addition chain 7 corresponds in a natural way to a directed graph
I'. The set of nodes of T is just S(v), and edges point from a;(;) and ay;) to a; for
all 1 <4 <. If j(i) = k(i) then we call step ¢ a doubling. If i — 1 = j(i) > k(4),
then step 4 is a star step. A star chain consists only of doublings and star steps.

Example 1. The graphs of two addition chains computing e = 22 are given be-
low. Both have the same semantics S = {1,2,3,5,6,11,22}. The first one is

((0’ 0)5 (]‘7 0)5 (27]‘)’ (37 0)5 (47 3)5 (5’ 5))'
First addition chain:

DD~

Second addition chain:

O D—E—~() O—O=E)

COMPUTING SPECIAL POWERS IN FINITE FIELDS 3

Both addition chains have £ = 6 steps. The first one is a star chain with 2 doublings
and 4 additions, and the second one is not a star chain and has 3 doublings and 3
additions. The edges from aj;) to a; are drawn in bold. O

For our algorithmic purposes it is useful to generalize the notion of addition
chains in the following way, see von zur Gathen (1991). Besides adding two previous
values, we also allow to multiply a previous value by a fixed number gq.

Definition 2. Let ¢ € N>». A multiple addition chain with multiplication by g,
or g-addition chain for short, is a sequence v = ((§(1),k(1)),..., (5(1), k(1)) of
pairs of integers with 0 < j(i) < i and k(i) = —q or 0 < k(i) < j(i) for all
1<i<1. Welet A(y) = #{i < l: k(i) > 0} be the number of additions and
Q(y) = #{i < l: k(i) = —q} the number of g-steps, and the number [of pairs is
the length L(y) = A(y) + Q(v) of v. We define the semantics S(v) = {aq,...,a}
by ag =1 and

o — { aji) +appy k() # —q,

' q- () if k(i) = —q,

for all 1 <i <1. Then v computes any element of S(7).

Again, we may assume that 1 = a9 < a; < --- < ;. These g-addition chains
are useful for exponentiation in finite fields when a qth power is essentially free
(see Section 4). Every g-addition chain can be rewritten as an addition chain by
expanding the g-step a; = q-a;(;) using an addition chain computing g. A 2-addition
chain is just an addition chain, 2-steps are doublings, and an addition chain is a
g-addition chain for any ¢ > 2.

Example 3. The 5-addition chain v = ((0,0), (1,1),(2,—5),(3,1)) computes 22.
O==(" ©
| 4

We can expand the 5-step (2, —5) using an addition chain § with semantics S(§) =
{1,2,4,5}; this includes two doublings and one star step. We connect § to the node
az = 4 and insert the steps 8 =4 +4,16 =8 + 8,20 = 16 + 4 in ~. O

We define
£,(e) = min{L(7): 7 is a g-addition chain computing e}

as the length of a shortest g-addition chain for e, and set £4(1) = 0. Then #5(e)
corresponds to usual addition chains and is sometimes called the additive complezity
£(e) of e.

Operations on addition chains. In order to state our constructions succinctly,
the following terminology is useful. Let ¢ € N> and +y be as in Definition 2, and
0 <t < 1. We define the truncation of v at a; as the g-addition chain v|,, =
((G(1),kQ)),...,(§(¥),k(t))) with S(y) = {ao,-.-,a:}. This is well-defined since
l=a¢p<a <---<a. Thus v = 7|, and 7|; is the empty chain with S(y|1) =
{1}. Furthermore,

YD ar = ((J(l)ak(l))a (KRR (](l)a k(l))a (lat))

4 JOACHIM VON ZUR GATHEN AND MICHAEL NOCKER

is a g-addition chain computing a;+a;. Obviously A(v®a;) = A(y)+1, Q(vdas) =

Q(7), and L(y @ az) = L(7) + L.
Let 6 = ((5'(1),k'(1)),...,(§'(t), k'(t))) be another g-addition chain with seman-

tics S(6) = {bo,...,bt}. The product chain
YO =((5(1),k(1)),.... (D), kD), I +4'(1),k"(1)),...., I +5'(t), k" (2)))
is a g-addition chain for a; - b;, where

nen | UHE (@) if0<E®G),
k) = { —q if k'(i) = —q.
We have A(y ® §) = A(vy) + A(9), Q(y ®) = Q(v) + Q(J) and the semantics are
S(y®d) =S)U{a;-b1,...,a;-b}. Thus ly(e- f) < ly(e) +£44(f) foralle, f €N,
as already remarked by Brauer (1939). Bergeron et al. (1989, 1994) use continued
fraction approximations and product chains to describe efficient addition chains.

Example 4. The following addition chain for e = 7 has shortest length £5(7) = 4:
| () H\ :
—{ 2

We obtain an addition chain for e? = 49 of length L(y ® v) = 2¢2(7) = &:
Y

¥

(D=t () (D)) —()
| 4 | 4

This method does not necessarily compute a g-addition chain for e - f of shortest
length even if v and § are minimal. For example £2(49) = 7 < 8 = 2 - £5(7) (see
Knuth (1998), 4.6.3, Figure 14: {1,2,4,8,16,32,33,49}). ¢

We let v LI d be the concatenation of v and & with values occurring twice being

removed once and the result sequence being sorted. By v © ¢" with r € N>; we
denote the g-addition chain ((5(1), k(1)),..., (1), k1)), {(,—q),...,(+7r—=1,—q))
computing q" - a;.
Upper bounds. Let e,g € N>; with ¢ > 2 in what follows. The g-ary repre-
sentation of e is (e), = (ex—1,...,e9) with eg,...,ex_1 € {0,...,¢ — 1} uniquely
determined such that Yo, , ei¢’ = e, and length XA = X (e) = [log,e] + 1. The
g-ary Hamming weight of e is vy(e) = #{i: 0 <i < A, e; # 0} < A\ (e).

A g-addition chain -y is called a star g-addition chain if there are only g¢-steps
and star steps, so that j(i) =4 — 1 for all i < 1. We write £ (e) for the length of a
shortest star g-addition chain for e and define £;(1) = 0. Of course £,(e) < £;(e)
for all e € N>;. Knuth (1998), Section 4.6.3, page 477, reports that sometimes
inequality holds: £5(12509) < £5(12509).

Lemma 5. Let v be an addition chain with S(v) = {ag,...,a;}. Then

(1) Xi<ici k(i) > @ — 1.
(ii) > i<i<i @k(s) = @ — 1 if and only if v is a star addition chain.

COMPUTING SPECIAL POWERS IN FINITE FIELDS 5

Proof. For (i), we prove by induction that), ;. ari) > ap — 1 forall 1 <h <.
The case h = 1 is trivial, and for the induction step we have

z Qr(iy = Z Qr(i) + Qk(n)

1<i<h 1<i<h
> ap-1— 1+ agm) = ajpn) — 1+ agp)
= ap— 17

since j(h) < h—1 and ap < a1 < --- < a; by assumption. For a star addition
chain, the same induction works with “=" instead of “<” since h — 1 = j(h) for
0 < h < 1. Now assume that v is not a star addition chain. Let 1 < h <[be the
smallest index of a non-star step, so that a;(n) + agn) = an, k(h) < j(h) <h—1,
and 7|,,_, is a star addition chain. Then

Z Qr(;y = Z Qi) + Qk(n)

0<i<h 0<i<h
= ap_1—1+ Ak (h) > j(h) — 1+ Ak(h) = Qn — 1,

since ap < a1 < --- < a; by assumption. Proceeding as above, we also find strict
inequality in (i) for ~. d

In this paper, we will present various addition chains. Besides the notion of “com-
puting” given above, we also say that we “compute” these chains, which are really
algorithms to compute numbers. Thus we present algorithms that compute algo-
rithms that compute numbers; maybe “compile” would be a better word for the
former.

We consider the ¢"-ary representation of e with a parameter r € N>;. Brauer
(1939) gives the result below for ¢ = 2. A more detailed result is proven in von zur
Gathen (1991); see also von zur Gathen & Nocker (2003). We refer to the corre-
sponding addition chain as Brauer’s addition chain.

Theorem 6 (Brauer 1939). Let ¢g,e € N>» and s = Ag(e) > 0. Then there exists
a g-addition chain ~y for e with

2log, 1
AR € (1+ i R)—2

log, s . log, s — 2log,log, s log, s
= 10; o (1+0(1)) additions,
Q(v) < s many g-steps.
This yields
< L < 1 1).
i) < L) st i (1oh)

This result is obtained by choosing r near log, A\,(e) — 2log,log, A;(e) in Brauer’s
method. In practice, it is probably best to take r as the closest integer to this
value, and then modify the adjacent integers until one has a value r whose Brauer
chain is shorter than those for 7 = 1. In each case, the precomputed elements less
than ¢" that are not needed should be discarded. Brauer’s approach can be seen
as a generalization of the well-known repeated squaring algorithm. Here only non-
g-steps are used. We refer to this as the binary addition chain; it is a star addition

6 JOACHIM VON ZUR GATHEN AND MICHAEL NOCKER

chain. The length of a binary addition chain yields a well-known upper bound on
the additive complexity of e:

(7) t(e) < (e) < Aa(e) + v2(e) — 2 < 2llog, €.
A trivial lower bound is £,(e) > log, e. Schénhage (1975) proved
(8) l(e) > logy e +logy va(e) —2.13

as a lower bound on the additive complexity for any e € N>,. Downey et al. (1981)
proved that the problem of deciding for a set of positive integers £ = {e1,...,en}
and an integer L whether there exists an addition chain for £ of length at most
L is N'P-complete. Knuth (1998), page 698, remarks: “It is unknown whether or
not the problem of computing ¢2(n) is NP-complete.” In view of this, it does not
seem to be a promising approach to try and calculate an addition chain of shortest
length for £ = {e}; rather we look for one with reasonably short length.

3. g-ADDITION CHAINS FOR REPUNITS

Let g,n € N>2, and e = (¢" —1)/(g — 1). The g-ary representation of e consists
only of ones, and e is called a repunit; see Beiler (1964). We can improve the result
of Theorem 6 for repunits because of their special form. For an integer a, we let
we = (¢* —1)/(g— 1) = Y g<icq ¢'- The simple equation valid for all a,b € N>,

9) wars = Y., =D ¢+ D d=w.-q"+w
0<i<(a+b) 0<i<a 0<i<b

indicates how to compose two g-addition chains for the right hand sums with b

many g-steps and one addition to get a chain for the left hand sum. This reduces

the problem of finding a g-addition chain for e to that of obtaining an (ordinary)

addition chain for n. We get the following method for a repunit, which is in Brauer

(1939) for ¢ = 2.

Algorithm 10. g-addition chain for repunits.

Input: Integers n,q € N>, and an addition chain € = ((j(1),k(1)),..., ((1),k(1)))
for n with S(e) = {ao,...,ar}.

Output: A g-addition chain « for e = (¢" — 1)/(g — 1).

1. Set «y equal to the empty addition chain with S(vy) = {1}.
2. For 1 < i <1 do compute v « U ('Y|waj(,-) O] q“k(i)) ® wq,,;,- [We will show

that the quantities used have been computed.]
3. Return 7.

Theorem 11. Let n, q, €, v, and e be as in Algorithm 10. Then 7 computes e,
and A(y) = L(g) andn —1 < Q(y) < Z1gz’§L(5) Ak(5) -

Proof. Using induction along the algorithm, we see that +y initially computes 1 =
(g —1)/(g—1) = wg, and computes w,, for all i < L(e), by (9). In particular, the
two values wq,; and w,,,, used in step 2 are actually computed by the previous
version of 7, and correctness is clear. We have A(y) = L(g) and also Q(y) <
Doi<i< L(e) @k(s)- To show the lower bound on Q(v), we prove by induction on i

COMPUTING SPECIAL POWERS IN FINITE FIELDS 7

that Q(7Y|w;) > a; — 1. For i = 0 we have Q(y|1) =0 > 1 — 1. From the induction
hypothesis for j(i) < i, we have Q(Y|w;) > Q(Ylw;;)) + Ay = ajy — 1+ ap) =
a; — 1. In particular, Q(v) = Q(V|wy.,) = are) —1=n—1. |

Example 12. Let ¢ = 2, n = 22 and £ be the first addition chain for 22 in
Example 1. Algorithm 10 yields the following addition chain v for e = 222 — 1.
An edge from a;(;) to a; labeled with “.2™” abbreviates the intermediate doublings
QGJ(Z), ey 2m G/J(Z)

@é@&@-—?i@;%ii@ﬁ@

Here wq(;y = 2% — 1 for 0 < i < 6: 1,3,7,31,63,2047,4194303. There are exactly
A(y) = L(e) = 6 additions and Q(y) = n — 1 = 21 doublings. The new graph is
obtained by multiplying the bold edges in the top graph of Example 1 with 2% .

The number Q(y) of g-steps is not necessarily equal to 3, L(e) Qk(i)- An exam-
ple is given by the second addition chain for 22 in Example 1. Here D i<i<e Qk(s) =
23 but the addition chain « for (¢?2 — 1)/(g — 1) contains only Q(v) = 21 different
g-steps. The computation of wg = ws - ¢ + w3 can profit from the previous compu-
tation of ws = ws - g2 + wo since the element ws - g2 is already in 7. Thus only one
further g-step has to be performed for its first summand. But for a star addition
chain equality always holds by Lemma 5.

Corollary 13. Letn,q € N>2, e = (¢"—1)/(¢—1), and ¢ a star addition chain for
n. Then the q-addition chain v for e uses L(e) additions and n — 1 many g-steps.
In particular,

ly(e) < Li(e) < 45(n)+n—1.

The case ¢ = 2 was proven by Brauer (1939):
62" —1) < 52" —1) < f5(n) +n— 1.

Scholz (1937) and Brauer (1939) conjectured that £5(2" — 1) < fy(n) + n — 1.
This Scholz-Brauer conjecture is the most prominent open problem in the theory
of addition chains. Corollary 13 means that we can compute e = (¢" —1)/(g — 1)
using only O(logn) non-g-steps instead of O(n/logn) with Brauer’s addition chain
(Theorem 6). This is an exponential improvement on the number of non-g-steps.
Applied to ordinary addition chains, that is, 2-addition chains, it says that there
always exist reasonably short chains almost all of whose operations are doublings.

Corollary 14. Letn € N, ¢ = 2, and e = 2" — 1. Then Algorithm 10 computes an
addition chain for e which is at most |log,log,(e+1) | +2.13 longer than Schénhage’s
lower bound (8).

8 JOACHIM VON ZUR GATHEN AND MICHAEL NOCKER

Proof. We have v2(e) = n, and logye < n. Then £5(n) < Aa(n) + v2(n) —2 <
log, n + v2(n) — 1. Hence for the length L(vy) = £5(n) +n — 1 of the addition chain
v from Algorithm 10 this yields

L(vy) — (log, e + log, v2(e) — 2.13)

£(n)+n—1—1log, e —log, va(e) + 2.13

logon+vy(n) —1+n—1—(n—1)—log,n+2.13

va(n) +1.13 < Ay(n) + 1.13 = |log,log,(e + 1) | + 2.13. O

IA

Downey et al. (1981) show that if for computing 2" — 1, one insists on doing the
doubling steps first, so that 2,22,23,...,2""1 are computed, then one has to use
v/n further steps rather than just O(logn).

4. ADDITION CHAINS WITH WEIGHTED LENGTH

Starting in this section, we will see applications where g-steps are much cheaper
than other steps when applied to the exponentiation problem. In order to model
this, we consider as our cost measure the weighted length L., co)(7) = ca - A(y) +
cq - Q(7) of ~, for a pair (ca,cq) € N>o x N>; of nonnegative constants. The
unweighted (usual) length equals L(; ;). Let ¢ be a prime power. We can regard
Fy~ as a vector space of dimension n over Iy, and consider two types of bases, which
illustrate the use of this measure.

Let f € F,[z] be an irreducible polynomial of degree n. Then we have Fyn =2
F,[z]/(f), the a; = z mod f with 0 < i < n form a basis, and any element of
Fg» can be represented by a polynomial of degree at most n — 1. Within this poly-
nomial basis representation we use fast polynomial arithmetic. We call a function
M: Nso — Ry a multiplication time for I [z] if polynomials in Fy [z] of degree less
than n can be multiplied using at most M(n) operations in ;. Classical polynomial
multiplication yields M(n) < 2n%. We can take M(n) € O(nlogn loglogn) accord-
ing to Schonhage & Strassen (1971) and Schoénhage (1977). Counting the operations
in F,, we should thus use c4 = M(n) and cg = M(n)¢2(q) < 2M(n)log, q.

Another representation of Fy» uses a normal basis N = (ag,...,an—1) with

a; = ag’ for 1 < i < n; surveys on this topic can be found for example in Jungnickel
(1993) and Menezes et al. (1993). Then ag € Fy» is called a normal element over
Fyn. Let 3 € Fy= be given in this normal basis representation as =) ;. bio
with all bi €]Fq. Then ﬂq = (20§i<n biai)q = 20§i<n b,af = 20§i<n b,;loél' with
index arithmetic modulo n. Hence raising to the gth power is just a cyclic shift of
the coeflicients and therefore essentially free in this representation. We model this
by setting cg = 0 for a normal basis representation.

Experiments in von zur Gathen & Nocker (2003) show that multiplication for
an arbitrary normal basis representation in Fs- is significantly slower than for a
polynomial basis representation if implemented in software. But Gao et al. (2000)
provide a way to connect fast multiplication (using the polynomial basis represen-
tation in a larger ring) and free raising to the gth power in Fy» (using normal basis
representation). Their idea is based on a special normal basis for F;» generated by
Gaup periods.

COMPUTING SPECIAL POWERS IN FINITE FIELDS 9

Definition 15. Let n,k € N>, be such that r = nk + 1 is prime. Let K C Z be
the unique subgroup of Z) of order k, and let £ be a primitive rth root of unity in
Fynk. Then o =), i £ is called a Gauf} period of type (n,k) over F,.

A Gauf} period of type (n, k) generates a normal basis of Fy» over F, if and only
if gcd(e,n) = 1, where e is the index of ¢ modulo r, see Gao & Lenstra (1992),
Wassermann (1993), and Gao et al. (2000).

Fact 16 (Gao et al. 2000). Let o € Fyn be a normal GauB period of type (n, k).
Then two elements in Fy» given in the normal basis representation generated by «
can be multiplied with M(kn) + 2kn — 1 operations in F;.

We can model this situation by setting
an ca =M(kn)+2kn—1, cg=0.

If v is a g-addition chain for e < ¢", then the weighted length Lm(kn)+2kn—1,0)(7)
counts the number of operations in F, for calculating 3¢ € F;» for given 8 € .

5. INVERSION IN F»

We use addition chains for repunits and combine them with normal bases gen-
erated by Gaufl periods. With these tools we compute the inverse of an element in
Fy. in the same asymptotic time as via the Extended Euclidean Algorithm (EEA).
Our experimental running times for ¢ = 2 are, in favorable circumstances, about
72% of that of the EEA (for example, for n = 51282).

This approach via an addition chain for n can also be found in the papers of
Wang et al. (1985), Itoh & Tsujii (1988b), Asano et al. (1989), and Xu (1990). In all
papers preselected addition chains are used to compute n—1. Itoh & Tsujii (1988b)
employ the binary addition chain; a recursive version can be found in Itoh & Tsujii
(1988a). In a later paper, Asano et al. (1989) use a variant of the factor method; see
Knuth (1962, 1998) for a presentation of the factor method. Our approach allows
an arbitrary star addition chain for n as an input, giving an average speed-up of
about 1.13 for the fields Fa» displayed in Figure 1.

Inversion using Fermat. Fermat’s Little Theorem says that 3~ = 87 2 for
B € Fy.. Setting e = (¢"~' —1)/(q¢ — 1), we have

(18) "—-2 = e-(¢g—1)g+(qg—2).

We use the methods of Section 3 to obtain a g-addition chain for ¢" — 2.

Algorithm 19. g-addition chain for ¢ — 2.
Input: n,q € N>», an addition chain ¢ for n — 1, and an addition chain § for ¢ — 2.
Output: A g-addition chain ~y for ¢" — 2.

1. Set v+ d ® 1.

2. Compute a g-addition chain 7 for e = (¢"')/(q — 1) using Algorithm 10 with
input n — 1, ¢, and €. Compute v < v ©® 7.

3. Compute v+ 7v® q. Set v+ v® (g — 2).

4. Return 7.

10 JOACHIM VON ZUR GATHEN AND MICHAEL NOCKER

Lemma 20. Let € be a star addition chain. Then Algorithm 19 computes a q-
addition chain «y for ¢™ — 2 with
(i) A(y) = L(e) + L(d) + 2 additions, Q(y) = n — 1 many g-steps, and L(y) =
L)+ L) +n+1ifg>2,
(ii) A(y) = L(e) additions, Q(y) = n — 1 doublings, and L(y) = L(e) +n—1
ifq=2.

Proof. The correctness of Algorithm 19 follows directly from (18).

If ¢ > 2, then we have L(d) + 2 additions in steps 1 and 3 (since a chain for
g—2 < q has no ¢-step) and one g-step. According to Theorem 11 for a star addition
chain €, the g-addition chain 7 for e contains L(e) additions and (n — 1) — 1 many
g-steps.

For ¢ = 2, step 1 can be skipped. Step 3 contains only one doubling because
g — 2 = 0. Therefore we have L(¢) additions and n —2+ 1 =n — 1 doublings. O

If £ is not a star chain, then Q(v) < ZlgigL(a) ak(i), where S(¢) = {ao,...,ar()}-

Example 21. Let ¢ = 2 and n = 23. We can compute ="' for 8 € Fy;; using
the star addition chain £ of Example 12 for n — 1 = 22. This leads to the values
B, 83,37, B3, B63, B2047 34194303 — B2*°—1 where 21 doubling steps are not shown.
Finally we compute (34194303)2 — 8388606 — 2°°~2 — g1 Hence B! can be
computed using 6 multiplications and 22 squarings in Fy2s. O

Theorem 22. The inverse of an element of Fy» can be computed with at most
(i) €3(n —1)+ £2(g — 2) + 2 multiplications and n — 1 many gth powers in Fyn
ifqg>2,
(i) €5(n — 1) multiplications and n — 1 squarings if ¢ = 2.

If we use Brauer’s addition chain (Theorem 6), we have

Bn—-1) < Az(n—1)+b2;§’;‘7(;l_)l)(1+o(1)) and
A2(q —2)

b{g—2) < M(g—-2)+ m(l +0(1)).

Combining this with Fact 16 we get the following result.

Corollary 23. If we have a normal basis of type (n, k) for Fy» as in Fact 16, then
we may use (17) and can invert in Fy. using

() CA-()\Q(n —1) + s (14 0(1)) + Aol — 2) + 325 (1 + 0(1))) €
O(M(kn) log(ngq)) operations in F, if ¢ > 2,

(i) ca - (/\2(11 —1) + 2y (1 + 0(1))) € O(M(kn)logn) operations in Fy
if q=2.

For small k (we choose k € {1,2} for our experiments) we get O(M(n)logn) if ¢
is much smaller than n. Gauf} periods of type (n,1) or (n,2) do not exist for all ¢
and n, but seem to exist for a reasonably dense set of values of n, e. g., for 23%
of all n < 1200 if ¢ = 2, see Mullin et al. (1989). The percentage of fields Fyn

COMPUTING SPECIAL POWERS IN FINITE FIELDS 11

for which optimal normal bases do exist for some small primes ¢ and n < 10000 is
given below.

Percentage of fields Fg» with n < 10000 for which
there exists an optimal normal basis over [,
q 2 3 5 7 1 | 13 | 17 | 19
% || 17.07* | 4.76 | 4.92 | 4.65 | 4.43 | 4.57 | 4.50 | 4.72

*For ¢ = 2, we have two different types of optimal normal bases: the first one appears in 4.70%,
the second one exists in 12.37% of the field extensions over F5.

See von zur Gathen & Pappalardi (2001) for general results concerning the density
of Gauf periods. Feisel et al. (1999) have extended the notion of Gaufl periods, and
von zur Gathen & Nocker (2003) provide fast algorithms also for this generalization.

Inversion using the Extended Euclidean Algorithm. Let Fy» be given by a
polynomial basis representation F, [z]/(f) with f irreducible and of degree n. The
canonical representative of B € Fyn is the unique polynomial g € F,[z] of degree
less than n such that (¢ mod f) = 8. The inverse of 3, if nonzero, can be computed
with the Extended Euclidean Algorithm. Lehmer (1938), Knuth (1998), Schonhage
(1971), and Strassen (1983) introduced fast versions of the Euclidean Algorithm
based on the divide-and-conquer technique; see von zur Gathen & Gerhard (1999),
Section 11, for a presentation.

Fact 24. The inverse of an element of]F;ﬁ. given in a polynomial basis representa-
tion can be calculated with O(M(n)logn) operations in F, .

Gao et al. (2000) have shown how to combine the fast Extended Euclidean Algo-
rithm with normal bases.

Fact 25 (Gao et al. 2000). The inverse of an element of . given in a normal basis
representation generated by a Gauf period of type (n,k) can be calculated with
O(M(kn) log (kn)) operations in F,.

Hence all three ways to compute the inverse of an element in Fy» use O(M(n) logn)
operations in I, provided we have a Gauf} period of type (n, k) with small k. Since
the theory cannot distinguish between their costs, we revert to experiment.

Experimental results. We have implemented all three inversion algorithms on
a LINUX-PC with two pentium II-processors, rated at 500 MHz. The software is
written in C++. The coefficient lists of both the polynomial and the normal basis
representation are represented as arrays of 32-bit unsigned integers, and 32 consec-
utive coefficients are packed into one machine word. For polynomial arithmetic we
use the C++-library BIPOLAR that is described in von zur Gathen & Gerhard (1996,
2002); see also von zur Gathen & Gerhard (1999), Section 9, and Bonorden et al.
(2001) for the factorization of a polynomial with degree more than one million.
This library offers fast polynomial arithmetic over Fy including several algorithms
for polynomial multiplication over Fy: the classical method, the algorithm of Karat-
suba in Karatsuba & Ofman (1962), and the method introduced by ?. We only
deal with field extensions of Fy of degree n for which a so-called optimal normal
basis exists, that is, a normal Gauf} period of type (n, k) with k € {1, 2}, and show
the results in Figures 1 and 2. In the first of these, we have small degrees n = 200i

12 JOACHIM VON ZUR GATHEN AND MICHAEL NOCKER

Inversion in extensions of the binary field

600 T T T - T T T T T T
normal Gauss period: binary Fermat X
normal Gauss period: Fermat O
normal Gauss period: Euclid o
polynomial basis: Euclid A
500 | R
o
X X m
8 [m]
" 400 o R
g 2
o © o
8 .
Z 300 f " x i
c X o]
= o oo
OEJ x X 8 o
200 | B
¥ Xo S XX X
é 2%0 . g o
4
X O % as?®
100 | Bo x ags gAA@A@ 4
X g 5 wo aod®
565 8 50 A@@A@AA
00y g OB noaesst®
gu80gg..5,80000°
0 ez BE K A A 1 | | | | 1 1

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
degree of field extension

FI1GURE 1. Results for small degrees.

for 1 < ¢ < 50, and in the second one, some large degrees. Each figure displays the
timings for four algorithms, averaged over 100 random inputs. In the first three,
the extension Fa» of F» is represented by a normal Gaufl period, and in the last one,
by a polynomial basis. The algorithms for inversion are Fermat’s formula for the
first two, with the binary and an optimal addition chain, respectively. The optimal
chains come from Knuth’s (1998) power tree. For the last two inversion methods,
we use Euclid’s algorithm.

With a normal Gauf} period, the multiplication cost depends (essentially linearly)
on the parameter k, as stated in Fact 16. This is clearly visible in the figures as the
two curves for one algorithm, one corresponding to £ = 1 and the other to k = 2.

In Figure 2, we have chosen pairs of values for n which are close to each other
and where there exist Gaufl periods with & = 1 for one value and with k£ = 2 for
the other value.

In a polynomial basis of Fa» , modulo a random irreducible polynomial, an inverse
is computed by the Extended Euclidean Algorithm (labelled polynomial: Euclid).
In contrast to the normal basis representation (labelled normal Gaufl periods: Eu-
clid), the problem size depends no longer on a blow-up factor k, and the times are
close to the EEA for normal Gauf} periods of type (n,1). At n = 61716, the latter
takes less than 80 % of the time of the polynomial Euclidean algorithm.

The upshot of our experiments is: for small degrees, polynomial Euclid is best,
and for large degrees, say over 16000, Fermat with Gaufl periods of type (n,1) is
fastest (if such a period exists).

COMPUTING SPECIAL POWERS IN FINITE FIELDS 13

Inversion in extensions of the binary field
9 T T - T T T T
normal Gauss period: binary Fermat ~ x
normal Gauss period: Fermat O o
s H normal Gauss period: Euclid © |
polynomial basis: Euclid A
7F © 4
6 ° R
X
%]
2
g 5 = h
(S
[0}
a X
c
w 4 x o i
E 5
© &
3 - -
X
: : :
o
2+ X é 3 4
o [m]
@ 0
X
l - 8 [a] A
8 [}
0 lam8 1 1 1 1 1 1
0 10000 20000 30000 40000 50000 60000 70000
degree of field extension

FIGURE 2. Results for large degrees.

6. ADDITION CHAINS FOR SPECIAL SETS

In this section, we describe an efficient method for exponents which divide g™ —1.
This will be applied to primitivity testing in F» in the next section.

Addition chains for (¢" — 1)/t. Let n,q,t € N>y with ¢ > 1 dividing ¢" — 1.
Then e = (¢" — 1)/t € N>; and (e), has a regular structure. To see why, we
consider the g-ary representation of 1/t = Y, _, tig® with 0 < ¢; < ¢ for all i.
Then (1/t), = (t_1,t_2,...) is unique if ¢; # ¢ — 1 for infinitely many i.

(1/t), is called periodic if there exist v, w € N>o with t_(,45) =t forall j > v,
and the minimal such w is the length of the period. The sequence t_1,...,t_,, for
minimal v, is called the preperiod of length v. Because t divides ¢" — 1, we have
ged(t, ¢) = 1. The following lemma determines the length of the period; see Gaufl
(1801), article 313, or Girstmair (1995), Satz 5.

Lemma 26. Let t,q € N>; with gecd(t,q) = 1. Then w = ord¢(q) = min{j €
Nso: ¢ = 1 mod t} is the length of the period of (1/t),, and w divides n. The
preperiod has length zero.

Let s be the period of (1/t); with length A;(s) = w = ordi(g), and 1/t =
S 50% = 5+ Tyien(1/a) = 5- (¢ /(g® — 1) — 1) = 5/(q" — 1). Therefore
s = (¢ —1)/t. Because ¢" = 1 mod ¢, w divides n and m = n/w is the number of

14 JOACHIM VON ZUR GATHEN AND MICHAEL NOCKER

repetitions of s in

@ =" =1/Dg=((¢"=D/t- D a“Na=(5" D a“Ng=(5---,9)

0<i<m 0<i<m he

We call such integers ¢¥-ary repdigits in what follows. Now we derive g-addition
chains for repdigits from g-addition chains for repunits.

Algorithm 27. g-addition chain for repdigits.

Input: n,q,w,t € N>1 with ¢ > 2, w dividing n, and ¢ dividing ¢* — 1, an addition
chain « for n/w, and a ¢g-addition chain ¢ for s = (¢ — 1)/t.

Output: A g-addition chain € for e = (¢g" — 1)/t.

1. Compute a ¢¥-addition chain 7 for e/s = (¢¥™/* =1)/(¢¥ —1) = Po<icn /w1
using Algorithm 10 with input n/w, ¢*, and 7. -

2. Transform 7 into a g-addition chain 5’ by substituting w single g-steps for each
q"-step.

3. Return e + § O 7.

Theorem 28. Letn,q,t € N>; with ¢ > 2 and t dividing ¢" — 1. Let w = ord(q),
s = (¢¥ —1)/t, let v and § be the input chains for Algorithm 27, and assume that
v is a star addition chain. Then the algorithm furnishes a q-addition chain € for
e = (¢" — 1)/t with at most L(vy) + A(d) additions and n — w + Q(d) g-steps. In
particular,

ly(e) < G5(njw) + (n —w) + £4(s).

Proof. Since s-e/s = e, correctness is clear. Concerning the length of €, Corollary 13
says that n has A(n) = L() additions and n/w — 1 many ¢*“-steps. Then Q(') =
w- (n/w —1). The product chain ¢ has A(e) = A(d) + A(n') additions and Q(g) =
Q(6) + Q(n') many g-steps.

The last claim follows by choosing optimal chains v and 6. O

This method is useful when ¢ is small; then also w and s are fairly small.

Example 29. Let ¢ = 2 and n = 22 again, and ¢t = 3. Then 3 divides (22? —
1) = 4194303, and e = (2?2 — 1)/3 = 1398101. We have w = ord3(2) = 2 and
m=22/2=11,s = (22 -1)/3 =1, and (s)s = (1). The 4-ary representation of e
illustrates this:
(222 = 1)/3)4 = (11111111111).
m=11

The addition chain for s has length 0. Thus we can compute an eth power of an
element in F)s, (or in any ring) with £5(11) = 5 multiplications, using the first
addition chain of Example 1 restricted to 11, plus (11 — 1) - 2 = 20 squarings. ¢

Exponent sets. Let £ C N5; be a finite set. A g-addition chain € computes & if
€ C S(e). This is a natural generalization of the previous definition for £ = {e}.
We set £,(€) = min{L(e): € computes £}, and then we have

max{{y(e): e € £} <L, (€) < Zﬁq(e).

ec&

COMPUTING SPECIAL POWERS IN FINITE FIELDS 15

We can modify the algorithm used for Theorem 6 to compute a g-addition chain
e for £&. We precompute {1,...,¢q" — 1} once, using ¢"~! — 1 many g-steps and
g" — q"~! — 1 further steps. The number of steps left for each element e € £ are
vyr(e) — 1 additions and at most 7 - (A\jr(e) — 1) < A;(e) many g-steps. Setting
d=#E&, v =max{y,(e): e € £}, and m = max & we get the following bounds on
the cost:

Ae) £ ¢ ¢ -1+d-(v—-1),
Q) < ¢ t=1+dr-(\yr(m)=1),
0,(€) < ¢ —2+d-(v+ Ag(m)—1).

Yao (1976) gives a better upper bound for ¢ = 2. Further results on this problem
are in Pippenger (1980) and Brickell et al. (1992); Gordon (1998) gives an overview.
We can adapt this result to g-addition chains.

Fact 30 (Yao 1976). Let ¢ € N>o, £ C N>, finite, m = max &, and d = #E£. Then

there exists a g-addition chain ¢ for £& with at most) %(1 +0o(1)) <
q 'q
Ag(m)

" Tog, () (14 o(1)) additions and at most \;(m) many g-steps.

A good systematic way we have for computing a set £ is to take separate Brauer
chains for each e € £, with the same value of 7, and remove doubles.

7. TESTING PRIMITIVITY IN]qun

We use the periodic form of the g-ary representation of (¢" — 1)/p to apply our
short addition chains for repdigits to the problem of testing for primitivity. In our
experiments we compare these chains with the general addition chain algorithm
of Brauer (Theorem 6). This method reduces the number of multiplications by a
factor up to 7.96 (for n = 841). Using a normal basis generated by Gauf} periods
this speeds up the running time in the same manner. On average our addition
chains contain about half as many multiplications as the general chains (Table 2).

A test for primitivity. When one wants to find a primitive element by choosing
random ones and testing them for primitivity, one expects to need about (¢" —
1)/¢(¢g™ — 1) choices, where ¢ is Euler’s totient function. If this number is fairly
large—which happens when ¢ — 1 has many different small prime factors— it may
pay to invest in designing a good addition chain for this computation. The order

Orqu" (IB) = mln{w eN:w Z]_,/Bw =]_}

of 3 € F, is a divisor of ¢" —1, and f3 is primitive if and only if ordr,. (6) = ¢" — 1.
Thus 3 is primitive if and only if (¢ ~1/P £ 1 for all primes p dividing ¢" — 1. See
von zur Gathen, Knopfmacher, Lucht & Shparlinski (2002) for the average order
in]F;(n, and Brent, Larvala & Zimmermann (2002) for computing large primitive
trinomials over [F,.

The corresponding algorithm requires the set P of all prime factors of ¢ — 1 as
input. This is the true bottleneck for any primitivity-testing algorithm known so far.
Finding P is difficult for moderate n, and practically impossible for huge n. For 2 <
q < 12, tables of factorizations of ¢" — 1 are published by the Cunningham Project
serviced by Paul Leyland (see the information on ftp://sable.ox.ac.uk/pub/
math/cunningham/); a historical overview of this project is given in Brillhart et al.

16 JOACHIM VON ZUR GATHEN AND MICHAEL NOCKER

(1988). We use these tables for our experimental results below. It is well-known
that the number w(k) of prime divisors of k is at most In k/ Inln k (and roughly this
large if % is the product of the first primes), and Inln z + By + o(1) for the k¥ < z on
average, with B; = C+3_ _ (In(1—-1/p)+1/p), where [, (1-1/p) x e “/Inz,
and Euler’s constant C = lim,, (1 + % + -4 % —1Inm) ~ 0.57722, see Hardy
& Wright (1962), § 22.10. The averages reported in Table 2 for £k = 2™ — 1 are
somewhat higher than Inln k + B;.

We connect Theorem 28 and Fact 30 to compute a g-addition chain for the set
E ={(¢" —1)/p: p € P}, where P is the set of prime divisors of ¢" — 1. The idea
is as follows: For each p € P we set w(p) = ord,(q), s(p) = (¢*® — 1)/p, and
e(p) = (¢" — 1)/p. We start in a first step by generating a ¢g-addition chain & for
the set S = {s(p): p € P} using the algorithm behind Fact 30. This § has at most

A(6) < Z A(8(p))/log, Ag(s(p)) - (1 +0(1)) additions and

peEP
Q) < Ay(m) many g-steps

where m = maxS. Furthermore we assume that for each p € P we have a star
addition chain v(p) computing n/w(p). In the second step we apply for every p € P
Algorithm 27 to the input that consists of the integers n, ¢, w(p), p and the addition
chains y(p) for n/w(p) and d(p) = 6|,y for s(p). Let the resulting g-addition chain
computing e(p) = (¢" — 1)/p be £(p). This chain has at most

Ae(p)) < L(v(p)) + A(d]s(p)) non-g-steps and
Q) < n—wp)+ Q) many g-steps

by Theorem 28. Then the g-addition chain computing £ is the concatenation ¢ =
L,er g(p) with L(e) < 2 opep L(z(p)).

Corollary 31. Let n,q € N>y, P the set of prime divisors of ¢" — 1, £ = {(¢" —
1)/p:p € P}, d = #P, and § a g-addition chain computing {(¢* — 1)/p: w =
ord,(q),p € P}. Then there exists a g-addition chain ¢ for & with

Ale) < A0+) t5(n/ordy(a)),
pEP

Q) < Q)+ 3 (n—ordy(@) = Q) +dn — 3 ordy(g).
pEP pEP

Examples are given below.

Corollary 32. Let n,q € N>, P be the set of prime divisors of ¢" — 1 as above,
d = #P, and s = max{(¢°*%(?) —1)/p: p € P}. We can test an element § € Fyn
for primitivity using at most

log,,(s)
d-{—2" .1 1 21
(foets 1+ of1) + 210g,n)

multiplications in Fy» , plus |log, s| + dn many qth powers.

COMPUTING SPECIAL POWERS IN FINITE FIELDS 17

Proof. The proof follows from Corollary 31. We set w(p) = ord,(q) for all p € P
and S = {(¢*“» —1)/p: p € P}. We have s = maxS < ¢" — 1. By Fact 30 there is

a g-addition chain § for S with Q(8) < Ay(s) and A(6) < d~ s - (14 0(1)).

Corollary 31 says that there exists a g-addition chain € computing £ = {(¢" —
D/p:p € P} with A(e) < A(d) + 2 ep & (n/w(p)) and Q(e) < Q(0) + dn —
> pep w(p). We can estimate £3(n/w(p)) < A2(n/w(p)) +v2(n/w(p)) —2 < 2logy n
with 7, since the binary addition chain is a star addition chain. Inserting this and
the estimates on A(d) and Q(0) yields

Ale) < d% (14 0(1)) + 2dlog, n,

Q) < |log,s| +1+dn— Zw(p) <log, s +dn. O
peP

Example 33. Let ¢ = 2 and n = 22. From 222 —1 = 3-23 -89 - 683 we have
P = {3,23,89,683} and #P = 4. We use w; for the order of 2 modulo p;, and
e; = (222 — 1)/p; for a given prime divisor p; of 222 — 1.

i| pi ei | (ei)2 | si wi njw
1 3 1398101 | (101010101010101010101) 1 2 11
2| 23 182361 | (101100100001011001) 89 11 2
3| 89 47127 | (1011100000010111) 23 11 2
4 | 683 6141 | (1011111111101) 6141 22 1

Hence we only have to find a 2-addition chain for § = {1,23,89,6141} and addition
chains for 11 and 2.

(i) A 2-addition chain « for S can be generated with Brauer addition chains
(Theorem 6) for each element of S, using r = 4, and then merging them.
The choice for the parameter r is usually determined by the largest element

of S.
precomputed | common | other
values values values
1,2,3,5,8,11, | 22,23
1,2,3,5,8,11, | 22 44 ,88,89
1,2,3,5,8,11, | 22,23,31 | 46,92,184,368, 736,767, 1534,
3068, 6136,6141

This 2-addition chain + contains A(y) = 9 additions, Q(y) = 12 doublings
(written in italics) and a total length of L(v) = 21.
For various values of r, we find the following cost

rl1 2 3 4 5
Al11 9 10 9 9
Q|14 12 14 12 12

(ii) An addition chain d; for 11 of length 5 is given by the left graph, and the
addition chain ds for 2 has length 1 (right graph):

18 JOACHIM VON ZUR GATHEN AND MICHAEL NOCKER
addition chain §; for 11 and d, for 2

| }
O=O—~D—O—0—® O—O

(iii) In the final step we combine the chains. We only write -2/ to mark that j
many doublings are left out, and W;(j) = ((2%)7 — 1)/(2% — 1) for short.

7| 2w addition chain for e;

14 1-Wi(1),1-2215=1-W1(2),5-2%%,8=1-W;(4),

85 - 224 21845 = 1-Wy(8), 21845 - 22°%,349525 = 1 - W;(10),
349525 - 22°1 1398101 = Wy (11)

2 | 2048 89 - Wy(1),89 - 2111 182361 = 89 - W, (2)

3| 2048 23-W3(1),28 - 2111 47127 = 23 - W5(2)

4| 4194304 | 6141 - Wy(1)

Thus, we can test an element in FJ5, for primitivity using 54+2-1+149 =17
multiplications and 10-2+1-11+1-114 0 + 12 = 54 squarings in Fy22.

If we compute separate addition chains for {(222—1)/p: p € P} = {e1,e2,€3,€4}
directly (Theorem 6) and merge them, we get the following chain 5 (doublings are
printed in italics again).

precomputed | common other

elements elements elements

1,2,4,5 10,20, 40,44,88 | 176,352,356, 712, 1424, 2848, 2849, 5698,
11396, 22792,22795, 45590, 91180, 182360,
182361

1,2, 4 8,11,22, 44,88 | 92,184,368,736,1472,2944,5888,5890,
11780, 23560, 47120,47127

1,2,4,5 10,20, 40 42,84, 168,336,341, 682, 1364, 2728, 2730,
5460, 10920, 21840,21845, 43690, 87380,
174760,174762, 849524, 699048, 1398096 ,
1398101

1,2,3,4,7 8,11,22,44,88 | 95,190,380, 760,767,1534, 3068, 6136,6141

The resulting addition chain contains A(n) = 20 additions and Q(n) = 50 doublings.
Here our special addition chain reduces the number of (expensive) non-doublings
by 20%. On the other hand, the number of (cheap) doublings is expanded by 8%.
We note that our chain in (iii) is not a hand-crafted optimization, but obtained by
the concatenation of systematic procedures. ¢

Experiments. We report on our computation of the cost for various primitivity
tests in Fy» for some values of n with 2 < n < 948. For 848 of these values the
set P, of all prime factors of 2" — 1 is known, for 99 values the factorization is
not complete. These factorizations can be found in the Cunningham tables. We
counted the number of squarings (Q) and of multiplications (A) in Fan. Table 1
gives the results for 725 < n < 750; these are reasonably representative. The num-
ber of prime factors is d = #P,. We proceeded as illustrated in Example 33 and

COMPUTING SPECIAL POWERS IN FINITE FIELDS 19

n| d general addition chains with Algorithm 27 U
binary Brauer binary Brauer
A Q| 4 Q A Q| A Q
725 | 10 || 2424 6493 | 865 6521 920 6497 | 350 6528 || 2.5
726 | 19 || 5947 12980 | 1724 12978 || 2173 12989 | 665 12995 || 2.6
727 | — — — — — — — | — — || —
728 | 28 || 8911 18799 | 2515 18788 || 2146 19189 | 676 19186 || 3.7
729 | 14 || 4170 9422 | 1280 9431 || 1843 9428 | 585 9447 || 2.2
730 | 15 || 4572 10154 | 1370 10180 || 1916 10161 | 597 10185 || 2.3
731 6| 1197 3639 | 463 3676 441 3643 | 206 3684 || 2.3
732 | 20 || 6596 13816 | 1820 13799 || 2936 13834 | 859 13850 || 2.1
733 | 2 367 731 165 783 367 731 | 165 783 || 1.0
734 | 12 || 4039 8031 | 1159 8050 || 2944 8037 | 857 8058 || 1.4
735 | 20 || 56302 13886 | 1757 13891 || 2461 13903 | 817 13912 || 2.2
736 | 19 || 6651 13160 | 1747 13174 || 2021 13172 | 593 13191 || 2.9
737 9| 2391 5859 | 821 5887 || 1559 5863 | 524 5895 || 1.6
738 | 19 || 6052 13204 | 1740 13213 || 2369 13219 | 711 13235 || 2.4
739 | 2 343 737 | 166 789 343 737 | 166 789 || 1.0
740 | 24 || 7912 16901 | 2291 16899 (| 3302 16915 | 996 16917 || 2.3
741 | 14 || 3604 9562 | 1197 9580 || 1468 9585 | 497 9614 || 2.4
742 | 17 || 5303 11799 | 1613 11808 || 2440 11810 | 749 11819 || 2.2
743 | 6| 1805 3700 | 588 3737 || 1805 3700 | 588 3737 || 1.0
744 | 25 || 8646 17727 | 2317 17724 || 2980 17764 | 868 17758 || 2.7
745 | 4 688 2227 | 302 2272 239 2230 | 89 2236 || 3.4
746 | 6 || 1881 3711 | 539 3751 || 13256 3717 | 391 3761 || 1.4
747 | 8 2013 5196 | 682 5237 839 5202 | 292 5249 || 2.3
748 | 22 || 7346 15596 | 2063 15608 || 3132 15616 | 928 15633 || 2.2
749 | 6 || 1303 3727 | 507 3769 || 1204 3737 | 408 3782 || 1.2
750 | 22 || 6910 15643 | 2066 15646 || 2035 15660 | 646 15666 || 3.2
TABLE 1. The number of multiplications (A) and squarings (Q)
for primitivity testing in Fo» using different addition chains in the
range between 725 and 750. Here d = w(2™ — 1) is the number
of different prime divisors of 2" — 1, and w is the quotient of the
number of multiplications in columns 5 and 9. The factorization
of 2727 — 1 is not complete yet; thus no computation is done.

compared our approach with general addition chains that ignore the special struc-
ture of the exponents. Namely, we first created both binary and Brauer addition
chains (Theorem 6) for each (2" —1)/p for p € P, and merged them (see columns 3
to 6 of Table 1, labelled general addition chains).

For the second set of results we applied our approach as described by Algo-
rithm 27. We separated each exponent e = (2" — 1)/p into a regular part e/s and
a repeated part s as described in Algorithm 27. We applied Algorithm 10 to the
regular part e/s to profit from the regular structure of the exponents. As illus-
trated in Example 33, we additionally have to create an addition chain for the set
S = {(2o7%(@) — 1)/p: p € P}. For each element of S we computed the binary
addition chain and Brauer’s addition chain, see Theorem 6. For both algorithms
we merged the single chains to create a chain for S. The labels binary and Brauer
in columns 7-10 of Table 1 indicate which addition chain has been used to generate

20 JOACHIM VON ZUR GATHEN AND MICHAEL NOCKER

S. If 2" — 1 is a Mersenne prime, no computation is necessary because every ele-
ment of F, except 1 is primitive. If the factorization for the integer 2™ — 1 is not
known—this is the case for n = 727 which is marked by “-” in the corresponding
row in 1—then no computation is done either. In the last column, v is the quotient
of the number of multiplications for Brauer’s addition chain without and with Al-
gorithm 27 (columns 5 and 9 in Table 1). Thus u = 865/350 ~ 2.5 in the first row.
In a representation of Fy» where squarings are essentially for free, u represents the
improvement of special over general addition chains.

The average timings in Table 2 give a statistical précis of our experiments. We
have divided the values of n into groups of about 50 each. The values given are the
arithmetic mean over all factored values of the interval (column 1).

n d general addition chains with Algorithm 27 U
binary Brauer binary Brauer
A Q A Q A Q| A Q
2- 50| 3.5 36.7 74.1 22.4 72.9 23.1 77.8| 164 77.8||1.4
51-100| 5.9 1694 361.4| 82.2 359.8 92.0 367.5| 51.5 367.9(|1.6
101-150| 7.1| 342.4 743.3| 147.8 742.6| 169.9 750.1| 82.8 751.9||1.8
151-200| 8.4| 584.0 1269.3| 240.7 1266.8| 298.2 1277.0|132.6 1278.4|/1.8
201-250(9.2|| 830.4 1820.3| 310.8 1822.6| 420.9 1828.7|175.4 1833.8]|1.8
251-300| 9.7(/1076.2 2363.4| 382.7 2367.6|| 503.2 2371.6|199.7 2379.9||1.9
301-350(10.5({1393.2 3054.4| 486.4 3057.7| 670.4 3063.1|252.7 3070.0(|1.9
351-400(11.1){1709.3 3738.7| 584.3 3741.0| 808.7 3747.7(295.2 3753.4(|2.0
401-450|11.2 (| 1958.9 4307.5| 666.5 4310.3| 906.2 4317.7|326.1 4324.3|2.0
451-500|12.4|12442.6 5353.9| 826.3 5354.5(|1132.1 5362.7(399.9 5367.7|2.1
501-550(11.9((2593.6 5704.3| 869.9 5705.3(1187.5 5714.0(414.5 5719.2|(2.1
551-600(12.5([2979.3 6550.3| 958.5 6555.3|[1281.2 6560.0|441.2 6564.6|2.2
601-650 [12.8 | 3342.7 7355.7[1008.3 7374.1|/1476.2 7365.3|477.9 7384.8|2.1
651-700(13.1||3673.5 8087.0(1101.8 8107.4|[1579.1 8096.2|504.2 8122.2|/2.2
701-750)13.3|/3988.0 8824.3|1191.5 8844.3|(1709.5 8841.5|541.1 8864.7|/2.2
751-800(13.8 [|[4537.1 9932.2(1330.6 9952.9|(1931.4 9932.2|592.1 9956.7||2.2
801-850(13.8|/4775.4 10522.41403.2 10544.7|(2037.7 10522.4|624.0 10547.6|2.2
851-900 (14.3|[5312.9 11686.3|1553.8 11708.8 ||2198.7 11686.3 |668.8 11711.9(|2.3
901-948 (14.5|[5702.9 12526.0|1663.6 12545.2 ||2467.7 12526.0|741.9 12550.3 (| 2.2
2-948111.0 || 2495.3 5483.9| 780.2 5492.3|1098.8 5490.9(365.0 5502.5|2.1
TABLE 2. Averaged number of multiplications (4) and squarings
(Q) for primitivity testing in Fa» using different addition chains,
as in Table 1. The last row shows the total average for all values.

These averages show a somewhat superlinear increase with the field degree n,
but the close-up look of Table 1 reveals a rather large variation, correlated with the
number d of prime factors of 2™ — 1. Figure 3 describes the gain factor (called u
in Table 1) of our method over general chains in dependence on d. We observe a
tendency towards higher improvement rates as d increases. The average gain in our
method is large when there are many prime factors p of 2" — 1 with small ord,(2);
this usually corresponds to small p and to large d = w(2" —1).

8. POLYNOMIAL FACTORIZATION

In many algorithms for factoring a polynomial f € F,[z], exponentiation mod-
ulo f accounts for the bulk of the computing time. We now apply our addition

COMPUTING SPECIAL POWERS IN FINITE FIELDS 21

Primitivity testing using general vs. special addition chains

8 T T T T T T T T T T
average (max,min) +o—
7 - -
6 - -
5 5 1
1S
9]
§ °
o
-y . b

O

0 5 10 15 20 25 30 35 40 45 50
number of prime divisors

F1GURE 3. The gain u in our method in dependence on the number
of prime divisors of 2" — 1, for n < 948. The graphic shows the
minimal, average, and maximal improvement.

chain technology to three particular subproblems: equal-degree factorization, trace
computation, and irreducibility testing. There does not seem to be any fancy data
structure like normal bases available, and so we will only gain a constant factor in
the cost. See von zur Gathen & Panario (2001) for a survey, and Chapter 14 of
von zur Gathen & Gerhard (1999) for the algorithms.

In equal-degree factorization, we know that f is a product of distinct irreducible
factors of degree d. In the algorithm of Cantor & Zassenhaus (1981) for odd g, the
most costly part is computing a (¢% — 1) /2th power of a polynomial modulo f. The
binary addition chain takes at most 2dlog, ¢ multiplications modulo f. Brauer’s
method turns the factor 2 into 1 + o(1), and Algorithm 27 yields the same cost,
possibly with a simpler algorithm.

Corollary 34. With Algorithm 27, we can compute a q-addition chain ~y for (¢% —
1)/(¢g — 1) with

A(y) < ¢%(d) additions and
Q(y) < d-1 many g-steps
or a (classical) addition chain of total length at most dlog, q - (1 + o(1)).

Proof. With input n =d, q, w=1,t=q—1, we have s = 1 in Theorem 28, and a
g-addition chain v for (¢¢ —1)/(¢ — 1) with A(y) < £5(d) <log,d- (1 + o(1)) and

22 JOACHIM VON ZUR GATHEN AND MICHAEL NOCKER

Q(v) < d—-1. To turn this into a (classical) addition chain, we expand each g¢-step
in v into log, ¢ - (1 + o(1)) additions. O

A faster algorithm was introduced in von zur Gathen & Shoup (1992), reducing
the time from O~(n?logq) to O~ (n? + nloggq) operations in F,, where we use
d < n, and the “soft Oh” O™ hides factors logn. It is based on the polynomial
representation of the Frobenius. We write £ = z mod f € R = F,[z]/(f), and for
any a = > ;i @i € R with all a; € Fy, welet & = >, @iz’ € Fy[z] be the
canonical representative of a. The crucial property is that for any positive integer
m
(35) ag’") = Z a; & = (Z a; &) =a?".

0<i<m 0<i<n
We have the following adaptation of Algorithm 19 from von zur Gathen & Shoup
(1992) for computing trace maps.

Algorithm 36. Trace map via addition chain.

Input: f,a,b,m and v, where f € F,[z] has degree n, a and b are elements of R
with b = £ for some power t of ¢, and v = ((5(1),k(1)),...,(5(1), k(1)) is
an addition chain of length [for the positive integer m.

Output: The elements a!” and 3, ., ., a’ in R.

1. Compute 79 +— a(b), po <— b.
2. Fori=1,...,ldo 34

3. i i) Ty (i),

4o i gy (15i))-

5. Return y; and 7.

Theorem 37. Algorithm 36 works correctly as specified, and uses O(InM(n)) op-
erations in [Fy.

Proof. Let S(v) = {co,--.,c} be the semantics of v, with ¢; < ¢;41 for all i, as
usual. We prove by induction on i that

Ti = Z a, pi=¢"
1<u<c;
for 0 <4 < 1. Since ¢ = m, correctness then follows. Applying (35) with ¢™ = t,
we have 19 = at, and the claim follows for 4 = 0. For ¢ > 1, we have
. °50)
o= T + e (i) = T + (M)t
ENAO) (i)t
T+ Y, a) T =ne+ Y et

1<uL k) 1<u< ek

Z at” + Z at’ = Z at”,

1<u<e;e) €5(iy <USCj(ay e 1<u<e;

since ¢; = ¢j(;) + Cr(;)- Similarly,

214 Ch(i) \ 530 COREIC i
pi = e () = ()t = (€T =0T =g

COMPUTING SPECIAL POWERS IN FINITE FIELDS 23

The cost of the algorithm is [additions and 2] modular compositions. The cost of
the latter is discussed in Fact 5.1 of von zur Gathen & Shoup (1992); this gives our
estimate. O

Even better bounds are given in the cited paper, based on fast matrix multipli-
cation. Of course, our algorithm gives no asymptotic improvement, but at best the
factor of at most 2 corresponding to the length ratio between the binary addition
chain (which, when used for v, essentially gives the older algorithm) and shorter
chains. Also, the presentation of our algorithm is somewhat simpler.

A further application of our methodology is to Rabin’s (1980) irreducibility test.

The bottleneck there is to compute 29" modulo f for t = 1 and each prime divisor
t of n. We can now take an addition chain « for this set of exponents (Section 6)
and run Algorithm 36 using ~ as part of the input.

9. CONCLUSION

We have presented addition chains for e € N>; that benefit from a given regu-
larity of the g-ary representation of e. A basic tool is the generalization of addition
chains to g-addition chains. For several applications of addition chains we have to
take into account the properties of different representations of finite fields, which
lead to different cost measures for g-steps and additions in our g-addition chains.
We have applied these ideas for addition chains to five computational problems in
finite fields: inversion, primitivity testing, and three tasks connected to polynomial
factorization.

REFERENCES

Y. Asano, T. IToH & S. Tsuii (1989). Generalised fast algorithm for computing multi-
plicative inverses in GF(2™). Electronics Letters 25(10), 664-665.

ALBERT H. BEILER (1964). Recreations in the Theory of Numbers: The Queen of Mathe-
matics Entertains. Dover Publications, Inc., New York.

F. BERGERON, J. BERSTEL & S. BRLEK (1994). Efficient computation of addition chains.
Journal de Theorie des Nombres de Bordeaur 6, 21-38.

F. BERGERON, J. BERSTEL, S. BRLEK & C. DuBOC (1989). Addition Chains Using
Continued Fractions. Journal of Algorithms 10, 403-412.

OLAF BONORDEN, JOACHIM VON ZUR GATHEN, JURGEN GERHARD, OLAF MULLER
& MICHAEL NOCKER (2001). Factoring a binary polynomial of degree over one mil-
lion. ACM SIGSAM Bulletin 35(1), 16-18. URL http://www-math.upb.de/ aggathen/
Publications/bongatO1.pdf.

A. BRAUER (1939). On addition chains. Bulletin of the American Mathematical Society
45, 736-739.

RICHARD P. BRENT, SAMULI LARVALA & PAUL ZIMMERMANN (2002). A fast algorithm
for testing reducibility of trinomials mod 2 and some new primitive trinomials of degree
3021377. Mathematics of Computation To appear.

ERNEST F. BRICKELL, DANIEL M. GORDON, KEVIN S. MCCURLEY & DAvVID B. WILSON
(1992). Fast Exponentiation with Precomputation. In Advances in Cryptology: Proceed-
ings of EUROCRYPT 1992, Balatonfiired, Hungary, R. RUEPPEL, editor, number 658 in
Lecture Notes in Computer Science, 200-207. Springer-Verlag, Berlin. ISSN 0302-9743.
JOHN BRILLHART, D. H. LEHMER, J. L. SELFRIDGE, BRYANT TUCKERMAN & S. S.
WAGSTAFF, JR. (1988). Factorizations of b™ =1, b = 2,3,5,6,7,10,11,12 up to high
powers. Number 22 in Contemporary Mathematics. American Mathematical Society, Prov-
idence RI, 2nd edition.

24 JOACHIM VON ZUR GATHEN AND MICHAEL NOCKER

Davib G. CANTOR & HANS ZASSENHAUS (1981). A New Algorithm for Factoring Poly-
nomials Over Finite Fields. Mathematics of Computation 36(154), 587-592.

WHITFIELD DIFFIE & MARTIN E. HELLMAN (1976). New directions in cryptography. IEEE
Transactions on Information Theory IT-22(6), 644-654.

PETER DOWNEY, BENTON LEONG & Ravi SETHI (1981). Computing Sequences with
Addition Chains. STAM Journal on Computing 10(3), 638—646.

T. ELGAMAL (1985). A Public Key Cryptosystem and a Signature Scheme Based on
Discrete Logarithms. IEEE Transactions on Information Theory IT-31(4), 469-472.
SANDRA FEISEL, JOACHIM VON ZUR GATHEN & M. AMIN SHOKROLLAHI (1999). Normal
bases via general Gauf} periods. Mathematics of Computation 68(225), 271-290. URL
http://www.ams.org/journal-getitem?pii=50025-5718-99-00988-6.

S. GAO & H. W. LENSTRA, JR. (1992). Optimal normal bases. Designs, Codes, and
Cryptography 2, 315-323.

SHUHONG GAO, JOACHIM VON ZUR GATHEN, DANIEL PANARIO & VICTOR SHOUP (2000).
Algorithms for Exponentiation in Finite Fields. Journal of Symbolic Computation 29(6),
879-889. URL http://www.idealibrary.com/links/doi/10.1006/jsco.1999.0309.
JOACHIM VON ZUR GATHEN (1991). Efficient and optimal exponentiation in finite fields.
computational complexity 1, 360-394.

JOACHIM VON ZUR GATHEN & JURGEN GERHARD (1996). Arithmetic and factorization of
polynomials over Zs. Technical Report tr-rsfb-96-018, University of Paderborn, Germany.
43 pages.

JOACHIM VON ZUR GATHEN & JURGEN GERHARD (1999). Modern Computer Algebra.
Cambridge University Press, Cambridge, UK, 1st edition. ISBN 0-521-64176-4. URL
http://www-math.upb.de/"aggathen/mca/. Second edition 2003.

JOACHIM VON ZUR GATHEN & JURGEN GERHARD (2002). Polynomial factorization over
Fy. Mathematics of Computation 71(240), 1677-1698.

JOACHIM VON ZUR GATHEN, ARNOLD KNOPFMACHER, LUTZ LUCHT & IGOR SHPARLINSKI
(2002). Average order in cyclic groups. Submitted. Appeared as ?.

JOACHIM VON ZUR GATHEN & MICHAEL NOCKER (1997). Exponentiation in Finite Fields:
Theory and Practice. In Applied Algebra, Algebraic Algorithms and Error-Correcting
Codes: AAECC-12, Toulouse, France, TEO MORA & HAROLD MATTSON, editors, number
1255 in Lecture Notes in Computer Science, 88-113. Springer-Verlag. ISSN 0302-9743.
JOACHIM VON ZUR GATHEN & MICHAEL NOCKER (1999). Computing Special Powers in
Finite Fields: Extended Abstract. In Proceedings of the 1999 International Symposium
on Symbolic and Algebraic Computation ISSAC ’99, Vancouver, Canada, SAM DOOLEY,
editor, 83-90. ACM Press. URL http://doi.acm.org/10.1145/309831.309869.
JOACHIM VON ZUR GATHEN & MICHAEL NOCKER (2003). Exponentiation using addition
chains for finite fields. Journal of Cryptology To appear.

JOACHIM VON ZUR GATHEN & DANIEL PANARIO (2001). Factoring Polynomials Over
Finite Fields: A Survey. Journal of Symbolic Computation 31(1-2), 3-17. URL http:
//www.idealibrary.com/links/doi/10.1006/jsco.1999.1002.

JOACHIM VON ZUR GATHEN & FRANCESCO PAPPALARDI (2001). Density Estimates Related
to Gaufl periods. Progress in Computer Science and Applied Logic 20, 33-41.

JOACHIM VON ZUR GATHEN & VICTOR SHOUP (1992). Computing Frobenius maps and
factoring polynomials. computational complezity 2, 187-224.

CARL FRIEDRICH GAuss (1801). Disquisitiones Arithmeticae. Gerh. Fleischer Iun.,
Leipzig. English translation by ARTHUR A. CLARKE, Springer-Verlag, New York, 1986.
KURT GIRSTMAIR (1995). Periodische Dezimalbriiche - was nicht jeder dariiber weif}. In
Jahrbuch Uberblicke Mathematik 1995, A. BEUTELSPACHER, editor, 163-179. Vieweg.
DANIEL M. GORDON (1998). A Survey of Fast Exponentiation Methods. Journal of
Algorithms 27, 129-146.

G. H. HArDY & E. M. WRIGHT (1962). An introduction to the theory of numbers.
Clarendon Press, Oxford. 1st edition 1938.

COMPUTING SPECIAL POWERS IN FINITE FIELDS 25

T. IToH & S. TsuJi (1988a). Effictive recursive algorithm for computing multiplicative
inverses in GF(2™). Electronics Letters 24(6), 334-335.

T. IToH & S. TsuJi (1988b). A Fast Algorithm for Computing Multiplicative Inverses
in GF(2™) Using Normal Bases. Information and Computation 78, 171-177.

D. JUNGNICKEL (1993). Finite Fields: Structure and Arithmetics. BI Wissenschaftsverlag,
Mannheim.

A. KARATSUBA & YU. OFMAN (1962). Y MHOXeHMe MHOTO3HAUHBIX YMCEJ Ha aB-
Tomarax. orkmaner Axamemuii Hayk CCCP 145, 293-294. A. KARATSUBA and
Yu. OFMAN, Multiplication of multidigit numbers on automata, Soviet Physics-Doklady
7 (1963), 595-596.

DonALD E. KNUTH (1962). Evaluation of Polynomials By Computer. Communications
of the ACM 5(1), 595-599.

DoNALD E. KNUTH (1998). The Art of Computer Programming, vol. 2, Seminumerical
Algorithms. Addison-Wesley, Reading MA, 3rd edition. First edition 1969.

D. H. LEHMER (1938). Euclid’s algorithm for large numbers. The American Mathematical
Monthly 45, 227-233.

ALFRED J. MENEZES, IAN F. BLAKE, XUHONG GAO, RoNALD C. MULLIN, SCOTT A.
VANSTONE & TOMIK YAGHOOBIAN (1993). Applications of finite fields. Kluwer Academic
Publishers, Norwell MA.

R. C. MULLIN, I. M. ONYSZCHUK, S. A. VANSTONE & R. M. WILsON (1989). Optimal
normal bases in GF(p™). Discrete Applied Mathematics 22, 149-161.

NICHOLAS PIPPENGER (1980). On the evaluation of powers and monomials. SIAM Journal
on Computing 9(2), 230-250.

MICHAEL O. RABIN (1980). Probabilistic algorithms in finite fields. SIAM Journal on
Computing 9(2), 273-280.

A. ScuoLz (1937). Aufgabe 253. Jahresberichte der DMV 47, 41-42.

A. SCHONHAGE (1971). Schnelle Berechnung von Kettenbruchentwicklungen. Acta Infor-
matica 1, 139-144.

A. SCHONHAGE (1975). A lower bound for the length of addition chains. Theoretical
Computer Science 1, 1-12.

A. SCHONHAGE (1977). Schnelle Multiplikation von Polynomen iiber Korpern der Charak-
teristik 2. Acta Informatica 7, 395-398.

A. SCHONHAGE & V. STRASSEN (1971). Schnelle Multiplikation grofler Zahlen. Computing
7, 281-292.

D. R. STINSON (1990). Some Observations on Parallel Algorithms for Fast Exponentiation
in GF(2™). SIAM Journal on Computing 19(4), 711-717.

V. STRASSEN (1983). The computational complexity of continued fractions. STAM Journal
on Computing 12(1), 1-27.

CHARLES C. WaNG, T. K. TRUONG, HOWARD M. SHAO, LESSLIE J. DEUTSCH, JiM K.
OMURA & IVRING S. REED (1985). VLSI Architectures for Computing Multiplications
and Inverses in GF(2™). IEEE Transactions on Computers C-34, 709-717.

ALFRED WASSERMANN (1993). Zur Arithmetik in endlichen Kérpern. Bayreuther Math.
Schriften 44, 147-251.

DAZHUAN XU (1990). A fast algorithm for multiplicative inverses based on the normal
basis representation. Journal of Nanjing Aeronautical Institute (English edition) 7(1),
121-124.

ANDREW CHI-CHIH YAO (1976). On the Evaluation of Powers. SIAM Journal on Com-
puting 5(1), 100-103.

26 JOACHIM VON ZUR GATHEN AND MICHAEL NOCKER

JOACHIM VON ZUR GATHEN, FAKULTAT FUR ELEKTROTECHNIK, INFORMATIK, MATHEMATIK,
UNIVERSITAT PADERBORN, D-33095 PADERBORN, GERMANY,
E-mail address: gathenQupb.de

MICHAEL NOCKER, BUCKEBURGER STR. 12, D-59174 KAMEN, GERMANY
E-mail address: noeckerQupb.de

