each copyright holder, and in particular use them only for noncommercial pur-  mission of the copyright holder. (Last update 2016/05/18-14 :20.)

This document is provided as a means to ensure timely dissemination of scholarly ~are maintained by the authors or by other copyright holders, notwithstanding that ing any of these documents will adhere to the terms and constraints invoked by  poses. These works may not be posted elsewhere without the explicit written per-

JOACHIM VON ZUR GATHEN & MICHAEL NOCKER (1997). Exponentiation in Finite Fields : Theory and Practice. In Applied Algebra, Algebraic Algorithms and

Error-Correcting Codes : AAECC-12, Toulouse, France, TEO MORA & HAROLD MATTSON, editors, number 1255 in Lecture Notes in Computer Science, 88—113.

Springer-Verlag. ISSN 0302-9743. URL http://dx.doi.org/10.1007/3-540-63163~15.

and technical work on a non-commercial basis. Copyright and all rights therein  these works are posted here electronically. It is understood that all persons copy-

Proc. 12th Symposium Applied Algebra, Algebraic Algorithms and
Error-Correcting Codes, AAECC-12
Toulouse, France, 1997

Springer lecture notes in computer science 1255, pp. 88-133

Exponentiation in finite fields:
theory and practice

Joachim von zur Gathen and Michael Nocker

Fachbereich 17 Mathematik-Informatik
Universitat-GH Paderborn
D-33095 Paderborn, Germany
{gathen,noecker }@uni-paderborn.de

1 Introduction

Several cryptographical methods use exponentiation as their basic operation:
e.g., the Diffie-Hellman method for key—exchange (Diffie & Hellman 1976), El-
Gamal’s algorithm for digital signature (ElGamal 1985) or the RSA-scheme of
Rivest et al. (1978). In some of these public key cryptosystems, one uses large
exponents in finite fields for securely encoded transmission. Therefore it is of
interest to develop fast exponentiation methods, and as we will see in the sequel,
also fast multiplication algorithms.

The goal of this article is twofold: first, to present and analyze in a unified
framework five addition chain algorithms from the literature, plus a new one.
This allows their theoretical comparison in Section 2. The second goal is to
achieve a similarly clear comparison in Section 8 of three known ways of using
addition chains for exponentiation in finite fields which are presented in Sections
6 through 8. We also compare these theoretical results to experiments; this is
reported in Chapters 4 and 9.

At the core of any exponentiation algorithm lies a method for multiplying
two elements. Qur basic result is that the best exponentiation method is one
that combines fast addition chains with fast multiplication algorithms. For these
issues, we study the polynomial and normal basis representations of Fgn over
TFy.



2 Algorithms on addition chains

2.1 Addition chains and its generalizations

Although exponentiation deals with multiplication, the problem can be easily
reduced to addition, since the exponents are additive. Therefore, we first con-
centrate on addition chains. Much of this material can be found in Knuth (1981),
4.6.3. We recall the following:

Notation 1. Given integers m € N and ¢ > 2, the q-ary representation of m is
(mx-1,...,mq), with 3 75y miqt = m, A = [log, m| + 1 and mq,...,mx_1 €
{0,...,q —1}. We write (mx_1,...,mq) = (m)y. The Hamming weight of (m),
is defined as vg(m) = #{i:0 <i < XA, m; # 0}.

Definition2. An addition chain for m € N is a sequence of pairs (ji1, k1), . ..,
(Jr, k) with 0 < ji, k; < ifor all 1 < i < L and if we define ag,...;ar, € N
by ap = 1 and a; = a;, + ag,, for 1 < i < L, then ay = m. The length of the
addition chain is the integer L. The smallest L for which there exists an addition
chain of length L for m is denoted by I(m).

It is common in the literature to only consider the semantics of an addition
chain by identifing the sequence of integers aq, ..., a;, with the addition chain.
We often concentrate on the semantics to avoid technical details when the syntax
is clear.

Fact 3. (Schonhage 1975) Let m € N and va(m) its binary Hamming weight.
Then I(m) > log, m + log, va(m) — 2.13.

By definition we have, for 1 < ¢ < L, a; = aj, + ag, for some 0 < j;, k; < .
If j; = k; < i— 1 then we call step i a doubling step. If j; # k; and j; =i— 1 or
k; =1 — 1, then step i 1s a star step.

Fact 4. (Downey et al. 1981) Let m and k be positive integers. The problem
whether there exists an addition chain for m with length L < k is NP-complete.

Therefore, it would not be a promising approach to try and calculate an
addition chain of shortest length; rather we look for one with reasonably short
length. For our algorithmic purposes it is useful to generalize the notion of ad-
dition chains in the following way (von zur Gathen 1991):

Definition5. Let ¢q,m € N. A g-addition chain for m is a sequence of pairs
(J1, k1), (o, k) with 0 < k;<iand j; = —qor 0< jy<iforall1<i<L
and, if we set ag = 1 and a; = aj, + ag, (if j; # —q) or a; = q - ax, (if j; = —q)
for all 7, then ay, = m. If j; = —q we call step i a ¢-step.

We denote the number of doublings by D, the number of g-steps by @ and
the number of remaining addition steps by A. Then we have L = D+ @Q + A for
a g-addition chain of length L. Every g-addition chain can be rewritten as an
addition chain by expanding a; = ¢ - ax, using at most |log, ¢| doublings and at
most |log, ¢| star steps. An addition chain is just a 2-addition chain.



2.2 Word chains

An alphabet A is a finite set; if ¢ = #.A, it is a g-letter alphabet. We may assume
without loss of generality that A = {0,...,q — 1}. We define w;_(4_1y = i@ for
0 <i < gq—1. Following standard terminology, as e.g. in Lothaire (19833, a word
over A is a finite sequence of elements of A, and A* is set of all words over A.
Concatenation o makes A* into a monoid. We write ¢ € A* for the empty word.
A word v € A* is a left factor of w € A* if there exists a word z € A* such
that w = v o z. This gives an order on A* which will be denoted by v < w. Let
v,v" € A* be left factors of w. Then we have either v < v’ or v/ < v.

Definition 6. A word chain for a word w € A* over a g-letter alphabet A is a
sequence of pairs (ji1,k1),...,(Jr, ko) with 1 —¢ < i, ks < iforall 1 <i< L
and, if {w1_q,...,wo} = A and w; = wj, owy, for all ¢, then wy, = w. The length
of the word chain is the integer L. The shortest length L for which there exists
a word chain for w is denoted by 14 (w).

We concentrate on the semantics when the syntax is clear. Addition chains
correspond bijectively to word chains over a one-letter alphabet, and there-
fore word chains are a generalization of addition chains. Word chains provide
a short notation for shifts and concatenations of the g-ary representations. We

can simulate a word chain wi_g4,...,wo,w1,..., wr over the g-letter alphabet
A ={0,...,¢g — 1} by g-addition chains for integers represented in g-ary no-
tation by words from A*: Set ag = wi_g41 = 1,...,a4_2 = wg = ¢ — 1. For

wj, = (a), and wy, = (b), we have w; = wj, o wy, = (a - ¢#*“* +b),. Therefore
step 7 of a word chain can be simulated by a g-addition chain using #wg, many
g-steps plus one star step.

Proposition7. A word chain over the g-letter alphabet A = {0,...,q — 1}
of length L can be simulated by a g-addition chain of length I' = A’ + Q' <
L+q—2+2%—1 using A’ < L+q—2 star steps and Q' < 3", ;; #wp, <251
q-steps. T

2.3 A survey on algorithms

We concentrate on algorithms for word chains to avoid shift operations in the
sequel. Because of the results given above we easily can transfer them to addition
chain algorithms. Most of the algorithms to create word chains for w given in
the literature can be described in two steps: in the first step a set D of words is
chosen for each of which a word chain is created. The second step uses this set
and expands the corresponding word chain to a word chain for w.

Definition8. Let w € A* and D C A*. Then v € D is called a mazimal left
factor of win D if v < w and z < v for all z € D with z < w.

A general algorithm can be described as follows:

Algorithm9 word chain. Input: w € A*. Output: A word chain W for w.



A. Determine a set A C D C A* and a word chain W' for D.
B. Compute a word chain W with prefix W' for w as follows:
1. Let = ¢ and W= W'
2. While (w # ¢) do repeat
3. Let v € D be the maximal left factor of w in D with w = v o z.
4. Append zowv to W.
5. Set w < z and z + zow.

C. Return W.

We describe five algorithms to compute word chains: Brauer (1939), Yacobi
(1991), Bocharova & Kudryashov (1995), a new one, and Brickell et al. (1993).
The well-known binary method (see e.g. Knuth 1981) is just a special case of
Brauer’s algorithm. Because of Algorithm 9 it is sufficient to describe how D
and W' are determined.

Brauer. For the algorithm of Brauer (1939) Step A is as follows.

A. Determine a set A C D C A* and a word chain W' for D according to
brauer:

1. Choose a parameter r € N.
2. SetD ={we A" #w=r}. The word chain W = (1—q,1—q),...,(1—
7,0),(1—q+1,1—¢),...,(¢" —q,0) is a word chain for D.

Brauer’s algorithm is referred to as the g-ary or ¢"-ary method. Brauer de-
scribed the algorithm for addition chains.

Lemma 10. Let A be a q-letter alphabet and r € N. Using Algorithm brauer a
word chain for w € A can be computed with at most ¢" —q+4[%] concatenations,
where w = #w.

Corollary 11. An addition chain algorithm according to brauer generates a 2" -
addition chain for m with A = vyr(m) + 27 — 3 star steps and Q) = |log,r m]
27 -steps.

Corollary 12. (Brauer 1939) Let I(m) be the shortest length of addition chains
for m, and p = log, m. Then

2 2 I
I(m) < p(1+ +—)<pu+2 14 o(1)).
R T L Tl
Corollary 13. The binary method generates addition chains for m € N of
length |log, m| + va(m) — 1.



Yacobi. The determination of D according to brauer has two properties: The
elements are determined without considering the structure of word w and all
elements have the same length. Yacobi (1991) does not impose these restrictions,
and uses the data compression algorithm of Ziv & Lempel (1978) to determine
D. The letter 0 € A plays a special role.

A. Determine a set A C D C A* and a word chain W' for D according to
yacobi:
1. Set D=A and W = . Set w' = w.
2. while (w' # £) do repeat

3. Let v € D be the marimal left factor of w' in D with w’ = vo 2.

4. if (v="0°) then set w' « 2’

5. else let x € D be the marimal left factor of 2’ in A with 2’ = ro 2.

Addvox toD and W'. Set w' + z.

For ¢ = 2, Yacobi obtains the following results on uniformly chosen random
input words w of length w.

Lemma14. Let A be the 2-letter alphabet A = {0, 1}. On the average Algorithm

yacobi computes a word chain for w € A* with 310; —(1+40(1)) concatenations,
2 .

where w = #w.

Corollary 15. (Yacobi 1991) Let u € N. Then yacobi yields an addition chains

with Dyye = |1 + logiu(l + o(1)) doublings and Agye = gIOgMz,u(l + o(1)) star

steps on the average for a randomly chosen m € N with |log, m| = p.

Bocharova. The algorithm given by Bocharova & Kudryashov (1995) repeats
Step A r times where r € N is a selectable parameter. New words are added to
D after each loop using an idea of Tunstall (1968).

A. Determine a set A C D C A* and a word chain W' for D according to
bocharova:
1. Set D = A and W' = (. Determine a parameter r € N.
2. Repeat r — 1 times
3. Let w = wvyo0---ovg withv; € D the mazimal left factor of v;o---owg
mD for1 <i<k.
4. Let v € D —{‘0‘} be a word appearing most often in vy, ..., vg. Add
vouw; to D and append it to W' for all w; € A.

Lemma1l6. Let A = {0,1} and r € N. On the average Algorithm bocharova
computes a word chain for w € A* with A = Q(m + r) concatenations,
where w = #w.

Corollary 17. Let u € N. Algorithm bocharova computes an addition chain

with Daye < |p] + m doubling steps and

A M log, logy p 1 = _H
- logyp logy p — 2logy logy i+ logy log, p

star steps on the average for a randomly chosen m € N with |log, m| = p.

(1+0(1))



2.4 A new algorithm based on data compression

Both algorithms yacobi and bocharova concatenate a word already in D with
elements of A to generate new words for P. Our new algorithm allows also to
concatenate words of D with each other to compute longer words in Step A if
useful. Just as the two last algorithms, it does not fix the length of the words in
D, and D depends on w and uses ideas similar to data compression techniques.
When our algorithm is transferred to addition chains, it tries to reduce the

number of star steps by using more doublings. The basic ideas of the algorithm
are:

— Create D by splitting the given word similarly as in yacobi but adding words
of D x D to D. This is realized by storing the concatenation of the last left
factor found with its predecessor.

— Divide Step A of Algorithm 9 into two main substeps: first create a set of
words that is possibly used in Step B (set of candidates). Then reduce this
set to such words that are really used (set of used words).

The last idea can also be used within the other algorithms invented so far. The
idea 1s especially helpful when words of a special type or with repeating sequences
of letters have been given. Practical tests of our algorithm show that splitting
Step A reduces the number of elements of D up to 50%. The corresponding word
chain W’ can be reduced by 25%.

A. Determine a set A C D C A* and a word chain W' for D according to
lookback:
Al. Find a set of candidates:
1. Set w' «— w. Set D' = A and W = 0.
2. Let y be the mazimal left factor of w' in D' with w' = yoz. Set w « z.
3. While (w' # ¢) do repeat
4. Let v be the mazimal left factor of w' in D' with w' = voz. Append
youv to W.
5. If (v="0) then set y < yowv
6. else append yov to D' and set y < v.
7. Set w' + z.
A2. Find the set of used words:
8. Set w' + w and D = A.
9. While (w' # €) do repeat
10. Let v be a mazimal left factor of w' in D' with w' = voz. Append v
to D.
11. Find a prefiz of W' (also denoted by W') which is a word chain for D.

Lemma 18. Algorithm lookback computes a word chain for w € {0, 1}* with
at most #w — 1 concatenations of words.

Corollary 19. Algorithm lookback computes a addition chain for m € N with
A < va(m) star steps and D < Lpu(p — 1) doublings where i = |logy m]|.



These upper bounds are not very good. In practice lookback seems to work
better than these bounds predict. We did not analyze the average case in detail so
far. In our experiments, on the average Algorithm lookback computed addition

chains with A ~ 1.710g" ; star steps and D = ,u-|-2.‘2]og“ u doublings when m € N

with g = [log, m| € {1024, 2048,4096,8192} was tested. 1000 numbers of each

length were tested. If the experiments can be extrapolated, then it seems that

Algorithm lookback computes on average an addition chain for m € N with

O(IOgqu.) star steps and p + O(log”2 H_) doublings, where pu = log, m.

2.5 A further algorithm

To complete our survey on addition chain algorithms, we cite the algorithm bgmw
of Brickell et al. (1993) which cannot be formulated in (A, o). We give the main
results for g-addition chains.

Lemma20. Let m € N. Then a g-addition chain for m can be computed ac-
cording to Algorithm bgmw in at most Q = r|log, m| gq-steps and A = ¢" +
[log,r m| — 2 further addition steps. We therefore get the length L of the g-
addition chain as L < A+Q =4¢"+ (r + l)Uogqr m| — 2.

Corollary 21. (Brickell et al. 1993) Let m,q € N, ¢ > 2, and p = log, m. There
1s a g-addition chain for m of length at most

2log, lo
lm) < p+ (14 L4 B0 0801 ) <t (1401,
log,, p1 log, i~ log, p— 2log, log, p log,

2.6 Summarizing survey

The following tables show the results given before for addition chains. m € N is
the integer for which an addition chain has to be computed. We only consider the
case ¢ = 2 to facilitate comparison of all algorithms. Hence, the corresponding
exponentiation algorithms need A multiplications and D squarings.

3 Addition chains for special values

3.1 Repeating sequences

So far we found some algorithms to compute short additon chains for arbitrary
m € N. Now we concentrate on the following

Problem22. Let ¢,7, k,m,n € N with 0 < kr <

r and (s)g = (8,—1,...,50)
with 0 < s; < g for all 0 < i < 7. Let (m), = ((s)q, e

S)q, - s)q). Find a good

k

(

g-addition chain for m.

First, we reduce Problem 22 to a simpler one in two steps:



Algorithm binary brauer bgmw

#steps L Le] + va(m) = Llvar (m) + 27 — 3 (r+ 1)L +27 2
+rl&] - (r — |log, lﬁgJJ)

#doublings D[] r[&] = (r = [log, LZ,—[”;;TJJ) %]

#further steps A|va(m) — 1 vor(m) +27 -3 [&] +2" -

Upper bounds

Parameter r [$log, u] + 1 llog, p — 2log, log, u] + 1

Luworst < 2u Spt2h(1+0(1) bt g (1 +o(1))

Duorst = lul <n <wm

Aworst =[u] -1 < oA (14 52 < A0

2Rt )
#D 1 2/ e (14 0(1))

Description: u = log, m

Table 1. Theoretical comparison between the classical addition chain algorithms.

Algorithm yacobi bocharova lookahead
#steps L lu] +25+R lw)] +2r—8—s, -2

#doublings D | |u| + S r+ (p] — 51

#further R+ S r4+85—-2

steps A

Average case

Parameter r Lmj
2 1)

Lave < Ll + 5 ey (14 0(1)) Ll + ey (14 o(1))
Dave < o] + meg (1 +0(1)) Lul + m

Aave < S g m(1+0(1)) i (14 o(1))

Upper bounds

Parameter r I. 10g2u) |

Luworst < “‘I'%%U*‘O(U) H+2%(1+0(1)) L = 1) + va(m)
Duworst < H+%(1+0(1)) H+m %H(H—U

Aworst < 3 BB (1 4 (1)) 2llo82 082k (1 4 o(1)) va(m

#D S 2 — 1

Description: S: #sequences, R: #sequences with last bit ‘1’ s;: length of first sequence,
u =log, m, A’, D': #star steps/doublings in Part A

Table 2. Theoretical comparision between addition chain algorithms based on data
compression.



1. Since 0 < s < ¢", we may concentrate on (m),- = (s,...,s) by changing
k

from the g-ary to the ¢"-ary representation of m. Hence, we concentrate on

(m)g = (s,...,s) with 0 < s <q.

k
2. We have m = ) ;1 sgi =5 - D 0<ick q'. If we find an addition chain for

0 < s < q and a g-addition chain for Zogi<k ¢ = qqk_—_ll we can easily build
a g-addition chain for m by concatenating them according to the following

remark.

Remark 23. Let a,b € N. Let 1 = ap,...,ar, = a an addition chain for a
and 1 = bg,...,br, = b be an addition chain for b. Then 1 = aq,...,ar, =

ar, -bo,ar,-b1,...,ar, by, = a-bis an addition chain for a-b of length L, + Ls.
According to this we concentrate on g-addition chains for (m), = (1,...,1).
~

k
We use word chains for simplicity in the sequel and transform the result to
g-addition chains.

Algorithm 24 only ones. Input: A= {0,...,q—1} a g-letter alphabet, ¢,k €
N and an addition chain 1 = aq,...,ar, = k for k of length L given by pairs of
integers (j;, ki) € N? for 0 < i < L.

Output: A word chain for (1,...,1) € A* over A.

1. Set wlag] = (1)4.
2. For 1 <1< L compute
w(a;] = wlaj,] owlag,]. [Comment: the following invariant holds: wla;] =

(Zo<j<al 7')q ]

3. Return (1)q = wlag], ..., wlar] = (m),.

Lemma?25. Let q € N, and A = {0,...,9 — 1} be a q-letter alphabet. Then a
word chain over A for (1,...,1) € A* with l(k) concatenations A eists.

Theorem 26. Let ¢ € N. Let an addition chain 1 = aq,...,ar = k of length L

for k be given. Then we can compute a q-addition chain for m = qq’°_—11 containing
L star steps and ZKKL ag, many q-steps.
Remark. Tf ag, ..., ar, 1s an addition chain containing only star steps or doublings

— which means that j; = ¢ — 1 for (j;, k;) for all 1 < ¢ < L — then we have
219’311 ar, = ar, — 1.

Let s, k, q, m as in Problem 22. We use Algorithm bgmw to create a g-addition
chain for s of length ., and Algorithm brauer to compute an addition chain for
k of length L,,/,. Then we have a g-addition chain for m according to Remark 23
of length Ls + L, /.. Inserting the results of Corollary 21 for s and Corollary 12
for k we get the following result as a simple consequence of Theorem 26 noting
that Algorithm brauer generates an addition chain that satisfies Remark 3.1:



Result 27. Let q,k,m,n,r € N as in Problem 22. Let o = log, s and xk = log, k.

k
Then a g-addition chain for m = qq_—11 can be computed with at most

o K

A<k+( )(1+ o(1)) star steps and

log, & log, &
Q <o+ (k—1)r g-steps.

3.2 Inversion in finite fields
From Fermat’s Little Theorem we have a?"~!' = 1 in Fyn for a prime power g,
n€Nand a € Fgn \ {0} = F;n. We therefore can calculate the inverse of o € F;n
asa~l=1.a"'=a?""1.a"! = a?" 2 But we have

" =2=q"—q+q-2= ("""~ 1g+(1-2) (1)
and (¢"~ 1 — 1)y =(¢—1,...,4— 1) is of the type we have already mentioned.
Algorithm 28 inverse. Input: a € [y, with a prime power ¢, n € N and
two addition chains: 1 = bg,...,;br, = n— 1 for n — 1 of length Ly and 1 =
ag,...,ar, = q— 2 for ¢ — 2 of length L.
Output: o™ € Fyu.
1. Calculate y = a?~2 using the addition chain for ¢ — 2.

2. Calculate z = y-a = a7 1.
n—1_4

3. Calculate # = 2z~ a1 using Algorithm 24 with input £k = n — 1, ¢ and
bo,...,br,.
4. Return z9 - y.

Theorem 29. Let o € F,q € N prime, and an addition chain for n — 1 of
length Ly and, if ¢ > 2 an addition chain for ¢ — 2 of length Ly be given. Then
we can evaluate o™ € Fyn with

1. L1 + Ly + 2 multiplications in Fgn if ¢ > 2, and

2. L1 multiplications in Fan if ¢ = 2.

Let b, + by, = b; for 0 < j; < k;j <1 according to the first addition chain. Then
we have to compute 1 + 221211 b;. qth powers in Fyn.

Corollary 30. Let a € F;,,,, q > 2 prime. Then the inverse of a in Fgn can be
computed using

1. logy(n—1)(2 + Toms logi(n—l) + 2 ) =logy(n — 1)(2+ o(1)) multipli-

cations in Fon 1f ¢ = 2, or

2' logQ(n - 1)(2 + log, logi(n—l) + \/logj(n—l)) + 10g2(q o 2)(2 + m +

ﬁ) +2 = (logy(n — 1)(q — 2))(2 + o(1)) multiplications in Fyn if
0g2\9—

qF 2.

The computation needs n — 1 further qth powers.

Remark. When using the binary method to generate an addition chain for n—1
we get Theorem 2 in Itoh & Tsujii (1988) as a special case of our result.



3.3 Comparison with inversion by Euclid

Another method to compute the inverse in Fgn =, [2]/(f), where f € Fy[z] is
irreducible of degree n, is via the Extended Euclidean Algorithm.

Definition31. Let R be aring. A function M: N — R is called a multiplication
time for R[z] if polynomialsin R[z] of degree less than n can be multiplied using
O(M(n)) operations in R. It is assumed that M(n) > n and M(2n) > 2M(n).

We can choose M(n) = nlognloglogn according to Schonhage & Strassen
(1971). The fast Euclidean Algorithm due to Lehmer (1938), Knuth (1981),
Schonhage (1971), Strassen (1983) yields the following.

Theorem 32. 1. The ged of two univariate polynomials over a finite field Fyn
can be computed in O(M(n)logn) operations in F,.

2. For given a € Fy the inverse = Fon can be calculated with O(M(n) log n)
operations in [F,.

The method based on Fermat needs O(M(n))log(n)(1 + o(1)) operations in
[, if raising to the gth power is for free. This assumption can be made using
a normal basis representation of Fy» (see Section 7). Euclid’s algorithm uses
O(M(n)log(n)) operations in [, as well and works on a power basis representa-
tion of Fyn. (We deal with the topic of representation of finite fields in Section

5.)

4 Practical results for addition chain heuristics

4.1 Numerical results in the literature

Several authors give numerical results for some of the addition chain algorithms.
They concentrate on average and worst case for inputs of length A = 160 bits
and A = 512 bits. A survey is given in Table 3.

4.2 Owur experiment

We concentrate on addition chains for ¢ = 2, and vary the number of bits
between A = 160, 512, and 1024. We also distinguish between different Hamming

weights vy & %, vy & %, and vs & % All of these 9 combinations are tested

for 1000 randomly chosen input values. The parameters are chosen based on
the theoretical results and optimized by practical trials. We use for brauer

r = %logz A+ 1, for bgmw r = logy A — 2log, log, A + 3, and for bocharova
r= m +4. The results are presented in Table 4, 5 and 6 giving the average,

the minimal, and the maximal values for each test series.



input |algorithm |reference param.| #steps |#mnon-doub.| storage

A r |aver max| aver max|aver max
160|binary Brickell et al. (1993) *| 237 318

bgmw Brickell et al. (1993) log, 12 50.25 54| 45 45

Tog, 19 4300 45| 76 76

de Rooij (1995) ? 50 45 47

brauer de Rooij (1995) 71197 9 9
512|binary Brickell et al. (1993) *| 765 1022

bgmw Brickell et al. (1993) log, 26 127.81 132| 109 109

log., 45 111.91 114| 188 188

de Rooij (1995) ? 128 109 111

brauer de Rooij (1995) 71 611 17 17

Bocharova et al. (1995) ? 111 62 62

bocharova|Bocharova et al. (1995) ? 102 16 16

Description: ‘?” no parameter is specified., ‘*’ no parameter used

Table 3. Some numerical results on addition chain algorithms in the literature

v, |algorithm #steps #doublings #non-doubs storage
min aver max |min aver max |min aver max|min aver max
% binary 183 198 216 159 24 39 57 1
brauer 187 196 206 156 31 40 50 15
bgmw 187 196 206 156 31 40 50 40
yacobi 190 202 215|169 173 179| 19 28 39| 15 20 26
bocharova| 176 187 96| 159 160 163 26 34 11
lookback | 196 220 262|171 193 236| 17 26 35| 34 58 95
% binary 221 238 261 159 62 79 102 1
brauer 201 206 209 156 45 50 53 15
bgmw 201 206 209 156 45 50 53 40
yacobi 213 224 233|176 180 185| 35 43 51| 23 27 32
bocharova| 194 200 206|160 161 163| 34 39 44 11
lookback |209 236 258|176 198 218| 31 37 44| 46 68 90
% binary 262 278 299 159 103 119 140
brauer 206 208 209 156 50 52 53 15
bgmw 206 208 209 156 50 52 53 40
yacobi 219 231 241|177 182 186 40 49 55| 23 27 31
bocharoval| 192 201 209|159 160 163| 33 40 46 11
lookback |221 245 266|186 207 230| 30 37 45| 51 78 102

Table 4. Number of steps for A = 160 bit




v |algorithm #steps #doublings #non-doubs storage
min aver max |min aver max|min aver max|min aver max
% binary 603 638 673 511 92 127 162 1
brauer 600 614 628 507 93 107 121 31
bgmw 602 616 629 510 92 106 119 103
yacobi 607 630 652|543 551 559| 61 78 94| 45 54 64
bocharova| 570 588 601|511 515 519| 58 72 85 19
lookback |642 689 741|568 617 671 59 72 85|110 157 225
% binary 726 766 804 511 215 255 293 1
brauer 629 635 639 507 122 128 132 31
bgnw 630 637 641 510 120 127 131 103
yacobi 668 684 706|560 567 575|104 116 132| 68 72 78
bocharova| 613 621 631|515 516 518 96 104 1114 19
lookback |691 730 773|596 630 673| 91 99 109|150 184 227
% binary 863 894 925 511 352 383 414 1
brauer 636 638 639 507 129 131 132 31
bgnw 639 640 641 510 129 130 131 103
yacobi 678 696 712|564 571 577|113 125 136| 63 70 76
bocharova| 608 621 632|512 516 519| 94 105 114 19
lookback | 710 752 804|616 656 703| 84 95 108|169 211 264
Table 5. Number of steps for A = 512 bit
v, |algorithm F#steps #doublings #non-doubs storage
min aver max| min aver max|min aver max |min aver max
% binary 1221 1279 1324 1023 198 256 301 1
brauer 1202 1219 1236 1018 184 201 218 63
bgnw 1200 1220 1236 1020 180 200 216 171
yacobi 1208 1239 1264|1085 1096 1107|121 143 162| 85 99 110
bocharova|1136 1163 1178|1026 1031 1034|110 132 146 27
lookback [1291 1354 1434|1165 1221 1300|113 132 147|222 283 372
% binary 1481 1534 1585 1023 458 511 562 1
brauer 1240 1247 1250 1018 222 229 232 63
bgnw 1240 1248 1251 1020 220 228 231 171
yacobi 1314 1334 1356|1115 1125 1134|195 209 224|123 130 140
bocharova|1211 1221 1233|1031 1032 1033|178 188 200 27
lookback [1374 1424 1492|1193 1245 1315|169 179 192|281 332 402
% binary 1750 1790 1837 1023 727 767 814 1
brauer 1248 1249 1250 1018 230 231 232 63
bgmnw 1249 1250 1251 1020 229 230 231 171
yacobi 1328 1351 1376|1120 1130 1140|207 221 237|117 124 132
bocharova|1202 1218 1230|1027 1031 1034|172 186 196 27
lookback [1397 1466 1526|1233 1297 1365|155 168 184|311 382 452

Table 6. Number of steps for A = 1024 bit




4.3 Results

We can divide the algorithms in two groups: the first one computes D only
depending on A: binary, brauer, and bgmw. The other three algorithms pay also
attention to the binary form of the input: yacobi, bocharova, and lookback.

binary has only one advantage: it needs least storage. The number of dou-
blings is roughly the same as for brauer and bgmw, but the number of non-
doublings is higher, depending on vy. Therefore, binary should only be used if
v < %. brauer and bgmw show no real difference in the number of doublings
and non—doublings. brauer uses 2 to 3 times less storage, but bgmw stores only
powers of ¢ = 2; hence, no storage is needed if the cost of computing doublings
are negligible.

The second group is inhomogenous. bocharova generates the shortest ad-
dition chains of all given algorithms on average and needs least storage (not
counting binary). The number of non-doublings is very low without increasing
the number of doublings very much in comparison to the first group. The in-
crease of the number of doublings causes the large number of steps for yacobi
and lookback. For exponentiation in finite fields of characteristic 2, the num-
ber of non-doublings is the crucial parameter (Section 9); lookback wins with
respect to this. The storage requirement can be reduced to = % if doublings
can be computed with very low cost. The number of steps for all algorithms
of the second group scatters in a wide range. But this is clear because these
algorithms are based on data compression techniques. They should be preferred
if the number of non—doublings is most important.

4.4 Theory vs. practice

Comparing practical and theoretical results we recall that the theoretical bounds
are asymptotical. But the practical experiments use relatively short inputs with
A < 1024 bit. This may explain one of the two discrepancies between theory and
practice: yacobi needs fewer non—doubling steps than predicted compared to
bgmw. The assumptions used for the theoretical analysis of the average case for
yacobi may not be entirely correct in this practical situation. The other surprise
is that brauer and bgmw show no discrepancy in practice. This points out that
the worst case estimates given in the literature for brauer are not sharp enough.
Altogether the experiments confirm the theoretical results for the five known
algorithms. The new algorithm lookback looks promising for exponentiation in
Fan ; see the following sections.

5 Finite fields

The second point to deal with when discussing exponentiation in the finite field
Fgn, is to speed up the time needed for a single multiplication or raising to a
determined power, respectively. We will continue the separation between multi-
plication and raising to the gth power when discussing how to speed up basic
arithmetic operations in Fgn.



5.1 Normal bases

We recall some definitions and facts about finite fields that are needed in the
sequel. Further details can be found in Lidl & Niederreiter (1983).

Let |E be the splitting field of 2" — 1 over I, and ged(r, ¢) = 1. Then the roots
¢, .-, ¢ of " —1 are called the rth roots of unity over IF,. The set of all rth roots
of unity over IF, is a cyclic subgroup of the splitting field of 2™ — 1 over I, with
respect to multiplication. Let ¢ be an rth root of unity over IF,. If ¢ generates a
multiplicative subgroup of order = in the splitting field of 2" — 1 € T, [2] then ¢
is called primitive. The polynomial

o.(x)= [ (x=¢") €T
1<i<r
ged(i,r)=1
is the rth cyclotomic polynomial over F,.

Definition33. A normal basis N' = (aq,...,an—1) of Fyn over [Fy is a basis
n—1

with ag, 01 = af, ... ;an_1 = al . In this case, ag € Fyn is called a normal

basis generator or a normal element over [Fy.

5.2 The representation of finite fields

A crucial point is the representation of the elements of a finite field Fyn .

We can regard F,» as a vector space of dimension n over IF,. Thus [F;» can be
identified with Iy . If g, ..., a1 € Fgn form a basis of [fgn over IFg, a € Fgn can
be uniquely written as a = ZO(i(n a;o; with ag, ..., ap_1 € Fy. We concentrate
on two different ways to represent the elements of IFy» in the sequel.

1. Let f be an irreducible polynomial in F,[z] of degree n. Because [Fy» is
the splitting field of f over F,, we have Fyn = F [2]/(f) and any a € Fga
can be represented by a polynomial of degree at most n — 1 over [F,. So
arithmetic here means polynomial arithmetic in F,[z] modulo f. We call
this a polynomial representation of Fgn. If o = 2 mod f in Fy[z]/(f), then
B=(1l,a,...,a™ 1) is a basis for Fg» over F,.

2. A normal basis of [Fg» over IF gives a normal basis representation of Fgn .

3. Let ¢ € F¢gn be primitive. Then we can represent a € [Fg» \ {0} by log. o € N,
with 0 < log. o < ¢ —2. This can be used to implement arithmetic efficiently
in small finite fields, with the help of exp— and log—tables stored in main
memory. This is the primitive element representation of Fy» . It is useful only

for small fields.

6 Polynomial representation

6.1 Modular composition

Definition 34. Let R be a ring. A real number w € Ry is called a feasible
matriz multiplication exponent if matrices in R**" can be multiplied using O(n®)
operations in R.



Theorem 35. (Strassen 1969) Two square matrices A, B € F**™ with m = 2¢
and t € N can be multiplied with O(m®) operations in F,, where w = log, 7 ~
2.80735492.

Strassen’s result for w has been improved since. The current world record is
w < 2.376 (Coppersmith & Winograd 1990).

A basic tool in the algorithm of Shoup (1994) is the calculation of modular
compositions as introduced in the iterated Frobenius algorithm of von zur Gathen
& Shoup (1992). Let f,g,h € F,[z] with deg f = n and degg,degh < n. The
modular composition of g and h is given by g(h) mod f.

Fact 36. Let f, g, h € Fy[x] and r € N with h = z? rem f. Then g¢ = g(h) mod
I

Hence we can use modular composition to raise to the ¢"th power in F, [z]/(f)
for any r € N.

Theorem 37. (Brent & Kung 1978) We can compute g(h) rem f using
O(nl/QM(n) + n(‘“+1)/2) operations in TFy.

Remark. Modular composition can be done with

1. O(n®/?) operations using classical arithmetic, i.e. M(n) = O(n?) and w = 3.

2. O(n'/?(n'°823 4 nloe27/2)) = O(n!/?+1°823) = O(n?8%) operations using the
algorithms of Karatsuba & Ofman and Strassen, i.e. M(n) = O(n!°823) and
w =log, 7.

3. O(n® ?lognloglogn + n“+1/2) = O(n'%%8) operations with w < 2.376 us-
ing the results of Schonhage & Strassen (1971), Schénhage (1977) and Can-
tor & Kaltofen (1991) for M(n) and Coppersmith & Winograd (1990) for w,
i.e. M(n) = O(nlognloglogn) and w < 2.376.

6.2 A more detailed model for counting operations
We can estimate the cost for one multiplication of two polynomials modulo a
fixed polynomial f of degree n by 3M(n) + n ignoring the precomputation of the

inverse of the reverse of f modulo z”. A cyclic shift of coefficients 1s assumed to
be free.

Corollary 38. Modular composition can be done using at most

9v/aM () + 4n%/? 4+ [/ 10(/m ©)

operations in Wy. If classical matriz multiplication is used, we have w = 3 and

Vi 10(n?2) = 2n2(1 +o(1),



6.3 Shoup’s algorithm

Algorithm 39 exponentiation with composition. Input: f,b € F,[x] with
degb < deg f =n, e € N with 0 < e < ¢” and a parameter r € N.
Output: y = b®rem f.
1. Let (e)g~ = (ex—1,...,€q) be the ¢"-ary representation of e with 0 < e; < ¢"
for all 0 <4 < X where A = [log,- e] + 1.
2. (Pre)Compute and store all values b rem f for 0 < i < A.
. Compute h = z? rem f.
4. Let y = b%*-1rem f. For ¢ = A — 2 downto 0 do
5. Compute y = y(h) rem f by modular composition according to Brent &
Kung (1978).

6. Compute y = yb® rem f using precomputed values.

w

7. Return y.

Theorem 40. (Shoup 1994) Let b € Fgn and 0 < e < ¢q". Then b® can be eval-

uated with O(M(n)logn ++/n “tllogn) operations in Fy. Using fast polynomial

arithmetic we have O(n*loglogn) operations in F, and storage for O(m)

elements of Fyn .

Corollary 41. Algorithm exponentiation with composition computes b® €
Fyn for b € Fyn and e € N with e < ¢" using at most

| 2N 3 | M(n)(1 + o(1
(9(1logs ) g Tiogy g %" g, g ogy n)M(n)(1 + o(1))
, I+ 4nz + 1
] 2N ] 1401
+ (3(log, q) o, o, 7 ogy n)n(1 4+ o(1))

operations in IF,.

6.4 Number of operations

We summarize the results of this section in the following theorem:

Theorem42. et q,n € N. Then the following holds in the polynomial repre-
sentation for Fyn :

1. Addition of two elements can be done with n additions in IF,.

2. Multiplication of two elements can be done with O(nlog(n)loglog(n)) oper-
ations in [fy.

3. Ezponentiation of an element can be done with O(n?loglogn) operations in
IF, using storage for O(n/(logn)?) elements of Fyn.



7 Normal bases

We examine a representation by a normal basis N' = (ag,...,a,_1) of Fyn
over [F,, as in Definition 33. By the Normal Basis Theorem, F,» has always
a normal basis over F,. We know that the Frobenius automorphism o:F,» —
Fyn:a +— af is a linear operator on [Fy», as a [F,-vector space. Therefore we have
for an arbitrary 8 = ) ¢, biai € Fgn with (B)x = (bo,...,bn-1) that §7 =
o(B) = 0(Xogicn bici) = Yogicn bio(@i) = Jogicnbiitr. Thus (B7)n =
(bn=1,bo,...,bn_2) is just a cyclic shift of the coordinates of 3. It is therefore
customary to neglect the cost of raising to the gth power (cf. Agnew et al
1988, Stinson 1990, von zur Gathen 1991, Jungnickel 1993) because no arithmetic
operation in [F, has to be done. However, our notion of g-addition chains is
designed to also keep track of these operations.

Unfortunately, multiplication is more difficult and expensive. To illustrate

this (see Mullin et al. 1989, Menezes et al. 1993, Chapter 5) let (6)n = (8 -
Y)w € Fgn. Then, expressing the di’s in terms of b;’s and c¢;’s, we have § =

Zogk<n dray = (Zogi<n biai)(Zogjm cjoy) = Zogi,j<n bicjajoj. We define

the multiplication tensor to consist of the n matrices Tj, = (t(-k))ogi,jol c FZX”

ij
with aja; = Zo<k<nt5~;‘7)ak. Then we get

Z bicj-tz(-f) =dpy =0 Tk -'yT for all 0 < k < n. (2)
0<i,j<n

In a normal basis A/, we can find a single matrix Ty = (tij)o<i,j<n € }ng”, SO

that tz(-f) = tz(-}i;%) =t;_jr—; forall 0 <14, j, k < n. We call Ty the multiplication
table of the normal basis A. Equation (2) leads directly to a multiplication
algorithm in IFg». The number of multiplications in IF, depends on the number

of non-zero entries in Tjs, which is called the density cyr of N in the sequel.

Lemma 43. Multiplying two elements of Fyn given in a normal basis represen-
tation can be done with 2ncy multiplications in F, and storage for cyr elements

of IFy.

Theorem 44. (Mullin et al. 1989) If N is a normal basis for Fyn, then cy >
2n — 1.

Mullin et al. (1989) call optimal a normal basis A with minimal density
ey = 2n — 1, and show how to construct optimal normal bases over Fy for
certain Fon.

To construct a normal basis N for Fgn over F, with low density cyr, we
introduce Gauf} periods.

Definition45. Let n, k € N such that r = nk + 1 is prime. Let K < Z) be the
unique subgroup of ZX of order k, and let ¢ be a primitive rth root of unity in
Fgnk. Then a =37 - (% is called a Gauf period of type (n, k) over .



Theorem46. In the above notation, the Gauf period a = ), (* generates a
normal basis N = (o, a4,. .., aqn_l) of Fgn over Fy if and only if gcd(e, n) = 1,
where e is the index of g mod r in Z).

A proof can be found in Gao et al. (1995); see also Gao & Lenstra (1992),
and Wassermann (1993). Gao & Lenstra (1992) showed the following; see also
Menezes et al. (1993).

Theorem 47. (Optimal normal basis theorem) Any optimal normal basis of Fyn
over Fy is generated by a Gauf period of type (n, k), where r = kn + 1 is prime
and

1. q is a prime power, k =1, and 7.7, = (q), or
2. q=2, k=2, and either (2) = Z3, ., or 2n+1 = 3 mod 4 and (2) = {a €
Zigng1: 3% € Zopyr : 2 = a mod 2n + 1},

Therefore, there are finite fields for which no optimal normal basis exists.
We concentrate on normal bases generated by Gauss periods because of the
following:

Fact 48. Let N be a normal basis constructed according to Theorem 46. Then
eny < (n— 1)k + n.

For a proof, see Geiselmann (1994) or Menezes et al. (1993).

Hence, we have a new parameter k in the estimation of the density car. To
construct ‘good’ normal bases we therefore have to examine if there exists a
small k for given ¢, n € N. This leads to the following definition (von zur Gathen

& Schlink 1996):

, infk : (n,k) GauB period of type (n, k) over T
Ko(n) =

oo : if no such Gauf} periods exist.

4, if any exist,

Fact 49. (Wassermann 1993, Satz 3.3.4) Let ¢ = p*, p a prime, t € N with the
notations above. Then kgy(n) < oo if and only if the following conditions hold

1. ged(n,t) =1 and
2. either 2p fn and p = 1 mod 4, or 4p [n.

Theorem 50. Let q,n, k € N satisfy the conditions of Theorem /6. Then using
the normal basis representation for Fyn the following hold:

1. The addition of two elements in Fyn can be done with n additions in If,.

2. The multiplication of two elements in Fyn can be done with O(n%k) opera-
tions in [Fy.

3. The exponentiation of an element in F;n can be done with 2ncN$(l +

o(1)) < 2log, q n’k (T+0(1)) operations in Fy. O(Z=—) elements of Fgn and

log, n logn
ey elements of Fy have to be stored.
Corollary 51. Ezponentiation of an element in F;n can be done with

2log, q"—tg"’%’ﬁ(l + o(1)) operations in T, .



8

Using fast multiplication within normal basis

representation

Gao et al. (1995) provide a way to connect fast multiplication (using polynomial
basis representation) and free raising to the gth power in Fy» (using normal basis

representation). Théy have the following results.

Theorem 52. Let q,n, k € N satisfy the conditions of Theorem 46. Then the
following holds for the normal basis representation of elements of [Fgn :

1.

Addition of two elements can be done with n additions in T, .

2. Multiplication of two elements can be done with O(nklog(nk)loglog(nk))

operations in [Fy.
nk 1
logn
ations in F,. The algorithm needs to store O(%) elements of Fyn .

og(nk)loglog(nk)) oper-

Ezponentiation of an element uses at most O(

Before we introduce the results of our implementations we give a theoretical

comparison of the three exponentiation algorithms for F,» we have analyzed.
We restrict to the case ¢ = 2 and £ < 2, i.e. the following Table 7 is only valid
for field extensions over IF5 for which a optimal normal basis exists.

We use the following short names:

— onb: Algorithm bgmw in connection with normal basis representation for [Fo»

using the multiplication table for multiplication.

— shoup: Abbreviation for Algorithm 39 exponentiation with composition

in the polynomial representation of Fon.

— ggp: Algorithm bgmw in connection with fast polynomial multiplication and

normal basis representation for Fan.

Algorithm onb g8p shoup
total operations ()(%) O(n?loglog n) O(n®loglogn)

block operations
em - M(n)(140(1))] em =0 om < kP2 |em =92 +27n%10g2n

=" Tlogyn Togy n
+ +3log, n
cs - n(140(1)) 05:6% 05:2k$ 05:2n10g2n+3$
(w=3) +4n3 log, n + log, 1
storage 0(%, 0(%, O(m)

Table 7. Theoretical comparison between three exponentiation algorithms over Fan
with a GauB period of type (n,k).



9 Practical comparison of exponentiation algorithms

We implemented the three algorithms onb, ggp and shoup on a Sun Sparc Ultra
1 computer, rated at 143 MHz. The software is written in C++. The coefficient
lists of both the polynomial and the normal basis representation are represented
as arrays of 32-bit unsigned integers, and 32 consecutive coefficients are packed
into one machine word. For polynomial arithmetic we used the software library
written in C++ by Jirgen Gerhard that is described in von zur Gathen & Ger-
hard (1996), Section 10. This library offers fast polynomial arithmetic over Ty
including several algorithms for polynomial multiplication over F5: the classical
method, Karatsuba & Ofman’s algorithm and the method introduced by Cantor
(1989). We use the library’s implementation of modular composition according
to Brent & Kung (1978), based on classical matrix multiplication.

We only consider field extensions over Fa of degree n for which an optimal
normal basis exists, i.e., the normal basis corresponds to a Gauf} period of type
(n,k) with k € {1,2}. We use two different series of values for n: We choose
n € N,n~ 2007, 1 <1 <50as test series 1 to examine in detail practical aspects
of the three exponentiation algorithms. In cryptography values for n between 512
and 1024 have been used for cryptosystems (cf. the remarks in Brickell et al. 1993
and Odlyzko 1985). Test series 2 consists of n € N, n~ 2¢,10 < i < 16 and some
intermediate values. Using this input we want to give an idea of the asymptotic
behaviour of the three exponentiation algorithms. The exponents are randomly
chosen and uniformly distributed in {1,...,2" — 1}.

The results of our practical comparison for Fy»,n < 10000 are clear with
respect to normal basis representation (cf. Figure 2): using a multiplication ma-
trix — even with low density — for multiplication is too slow. Software based
implementation of the Massey—Omura multiplier is only useful for small field

. . . 3
extensions of [Fy. This corresponds to our theoretical results: onb uses O(lo’;n)
2.6
7

operations in [Fy (Theorem 50), but ggp and shoup both use about O({—) oper-
ations because polynomial multiplication for degrees n < 10000 is impﬁemented
with Karatsuba & Ofman’s algorithm, so that M(n) = O(n'°823). Tn theory

2.6

both algorithms need about O({—.) operations. But a closer look at the hidden

log

constants shows that in ggp for k = 2 we have ey < k'°823 2~ = 3" and
oga n oga n

for shoup we have ey = 9$ (Corollary 41). In the experiments, the quotient
grew from about 2 to almost 5 (cf. Tables 8 and 9).

The advantage of shoup is that it can be used for all n € N even when no
Gauf} period of type (n, k) with small k exists.

10 Conclusion

Finally we want to outline the main properties for a fast software exponentiation
algorithm in Fa» for large n € N:

1. The algorithm should use fast polynomial multiplication. Neither multipli-
cation by multiplication tensors nor classical polynomial arithmetic is fast



03 H T T T T T T T T T
multiplication (ggp,k=1) ©
X multiplication (ggp,k=2) +
: squaring (ggp) ©
i multiplication (onb) -x
025 F ! E
02 E
1%}
=]
c
S
] i
7] 0.15 B
£ X
) H
£ :
+
0.1 | + B
Lt
L7
+ o+
+
0.05 | . N . ©° <]
+ + o oo @
X Lt o o 00
+ + S 4
; Lt o © o
0 kmas Lo+ & hoo & = & & & fo
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
degree of field extension

Fig. 1. The time for squaring and the dependence of the multiplication time in ggp on
k compared to multiplication time in onb.

enough.

2. The algorithm should be based upon an addition chain for the exponent e
with a small number of non—-doubling steps.

3. The algorithm should offer a cheap way to compute a2” € Fyn for m € N
and a € Fan. Both Shoup’s and Gao et al.’s algorithm achieve this.

References

G. B. AGNEW, R. C. MULLIN, AND S. A. VANSTONE, Fast exponentiation in GF(2").
In Advances in Cryptology—EUROCRYPT ’88, ed. C. G. GUNTHER, vol. 330 of Lec-
ture Notes in Computer Science, 251-255. Springer, Berlin, 1988.

[. BocHAROVA AND B. KUDRYASHOV, Fast exponentiation in cryptography. In Pro-
ceedings Applied algebra, algebraic algorithms and error correcting codes: 11th Inter-
national Symposium AAECC, ed. G. COHEN, Lecture notes in computer science 948,
Berlin, 1995, Springer, 146-157.

A. BRAUER, On addition chains. Bull. Amer. Math. Soc. 45 (1939), 736-739.

R. P. BRENT AND H. T'. KUNG, Fast algorithms for manipulating formal power series.
J. Assoc. Comput. Mach. 25 (1978), 581-595.

E. BrickeLL, D. GorboN, K. McCURLEY, AND D. WILSON, Fast exponentiation
with precomputation. In Advances in cryptology: Proceedings EUROCRYP'T' 92, ed.
R. RUEPPEL, Lecture notes in computer science 658, Berlin, 1993, Springer, 200-207.
D. G. CANTOR, On arithmetical algorithms over finite fields. Journal of Combinatorial
Theory, Series A 50 (1989), 285-300.



T T T T T
onb <—
700 ggp +
shoup -8--
600 - 4
o
500 4
Yl
» ’E
B ju
3 400 B
$ o
c E’
v o
£ 300} o i
o
a
E‘IE‘KB
200 + o . 7
.E‘ +
[S1cs +
BE +F
100 o e i
a8 ++ 4+t
fats Lo+ +
o ga8e® 4+ T +r + o+t + t
0 mmmmmm.mmm@»mEEEEJr**JrT o . . .
0 2000 4000 6000 8000 10000
degree of field extension

Fig. 2. Comparison of the three exponentiation algorithms for n < 10000

D. G. CANTOR AND K. KALTOFEN, On fast multiplication of polynomials over arbi-
trary algebras. Acta. Inform. 28 (1991), 693-701.

D. COPPERSMITH AND S. WINOGRAD, Matrix multiplication via arithmetic progres-
sions. J. Symb. Comp. 9 (1990), 251-280.

W. D1rriE AND M. E. HELLMAN, New directions in cryptography. IEEE Trans. Inform.
Theory 22 (1976), 644-654.

P. DownNEY, B. LEONG, AND R. SETHI, Computing sequences with addition chains.
SIAM J. Comput. 10(3) (1981), 638-646.

T. ELGAMAL, A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Transactions on information theory IT-31(4) (1985), 469-472.

S. GAao AND H. W. LENSTRA, JR., Optimal normal bases. Designs, Codes, and Cryp-
tography 2 (1992), 315-323.

S. GAo, J. vON ZUR (GGATHEN, AND D. PANARIO, Gauss periods and fast exponentia-
tion in finite fields. In Proc. Latin ’95, Valparaiso, Chile, Springer Lecture Notes in
Computer Science 911, 1995, 311-322.

J. VON ZUR GATHEN, Efficient and optimal exponentiation in finite fields. Comput
complexity 1 (1991), 360-394.

J. vON ZUR GATHEN AND J. GERHARD, Arithmetic and factorization of polynomials
over Fy. In Proc. ISSAC °96, Ziirich, Switzerland. ACM press, 1996, 1-9.

JOACHIM VON ZUR GATHEN AND SANDRA SCHLINK, Normal bases via general Gauss pe-
riods. Reihe Informatik tr-ri-96-177, Universitat-Gesamthochschule Paderborn, 1996.
J. voN ZUR GATHEN AND V. SHOUP, Computing Frobenius maps and factoring poly-
nomials. Computational complexity 2 (1992), 187-224.



onb| ggp shoup| onb| ggp|shoup
t/sec t/sec t/sec n t/sec t/sec t/sec

k k
209|2 2.44| 0.09 0.04]|[5199(2|[20449.90| 43.70| 93.80
3982 14.30| 0.26] 0.19]||5399|2||21961.90| 46.92|101.82
606|2 43.47| 0.60| 0.46|||5598|2(|24424.30| 50.62{110.02
8032 92.86| 1.00| 0.82||5812|1(|27082.60| 27.56|119.65
1018|1|] 203.79| 0.90| 1.32||6005|2||30688.90( 57.39|128.65
1199|2|| 307.07| 2.18| 2.65]|(|6202|1 31.13|138.82
1401|2|| 500.96| 3.08| 3.67|(|6396|1 33.18(145.90
1601|2|| 720.60| 3.95| 4.89](|6614|2 69.76(156.61
1791|2|| 1049.14| 4.75| 6.21]|(|6802|1 44.12{167.96
1996|1|| 1251.76| 3.19| 7.66|||7005|2 77.96(178.61
2212|1}| 1738.70( 4.04| 10.46|||7205|2 82.39(191.55
2406|2|| 2256.20( 8.81| 12.88]||7410|1 43.63|205.82
2613|2|| 2921.65(10.45| 15.35|||7602|1 45.60(215.70
2802|1]| 3332.23| 6.28| 18.28]||7803|2 94.78(227.76
3005|2| 4138.09|13.41| 23.28|(|8003|2 97.88(240.81
3202(1|| 5037.51| 8.28| 27.74(||8218(1 52.80|282.19
3401(2|| 6088.73|17.23| 32.04(||8411(2 117.90(307.10
3603(2|| 7314.72|19.18| 36.14(||8601(2 127.33(333.69
3802|1|| 8296.18|11.54| 43.38|||8802(1 65.49(354.22
4002(1|| 9513.86|12.39| 47.13(||9006(2 145.43(376.45
4211(2{|11348.90|27.27| 55.49(|(9202(1 72.45|397.68
44012{|13025.20|31.61| 61.87(|(9396(1 76.56(426.80
4602(1{|15209.50|18.78| 74.03|||9603 (2 169.51|460.41
4806(2(|16138.80|37.40| 77.60(||9802(1 83.83(476.15
1 2

5002|1({17545.40{20.93| 84.78|/|9998 183.65|562.80

Table 8. Running times for test series 1

W. GEISELMANN, Algebraische Algorithmenentwicklung am Beispiel der Arithmetik in
endlichen Kérpern. Dissertation, Universitit Karlsruhe, Aachen, 1994.

T. Itorn AND S. Tsuii, A fast algorithm for computing multiplicative inverses in
GF(2™) using normal bases. Information and Computation 78 (1988), 171-177.

D. JunGNICKEL, Finite Fields: Structure and Arithmetics. Bl Wissenschaftsverlag,
Mannheim, 1993.

A. KARATSUBA AND Y. OFMAN, YMHOKEHME MHOI'O3HAYHBLIX UYMCEJ Ha aB-
TomaTtax. Dokl Akad. Nauk USSR 145 (1962), 293—294. Multiplication of multidigit
numbers on automata, Soviet Physics—Doklady 7 (1963), 595-596.

D. E. KNUTH, The Art of Computer Programming, Vol.2, Seminumerical Algorithms.
Addison-Wesley, Reading MA, 2 edition, 1981.

D. H. LeHMER, Euclid’s algorithm for large numbers. American Mathematical
Monthly 45 (1938), 227-233.

R. LipL. AND H. NIEDERREITER, Finite Fields. Encyclopedia of Mathematics and its
Applications 20. Addison-Wesley, Reading MA, 1983.

M. LOTHAIRE, Combinatorics on Words. Addison-Wesley Reading, MA, 1983.



onb ggp| shoup

n|k t/sec| t/sec t/sec
1034|2|| 205.36 1.63 1.67
21412 1595.74 7.28 9.47
4098(1{/10401.90 14.5 51.98
8325(2(|78019.00| 127.76| 302.86
166792 565.89| 1759.61
239032 1064.7| 4489.31
320752 1856.83| 7545.09
433712 3593.04(15530.10
512512 4990.81(22039.70
617092 6973.74(34297.50

Table 9. Running times for test series 2

ALFRED J. MENEZES, [AN F. BLAKE, XUHONG GAO, RONALD C. MULLIN, SCOTT A.
VANSTONE, AND TOMIK YAGHOOBIAN, Applications of finite fields. Kluwer Academic
Publishers, Norwell MA, 1993.

R. C. MuruiN, I. M. ONYSZCHUK, S. A. VANSTONE, AND R. M. WiLsoN, Optimal
normal bases in GF(p™). Discrete Applied Math. 22 (1989), 149-161.

A. ODLYZKO, Discrete logarithms and their cryptographic significance. In Advances in
Cryptology, Proceedings of Eurocrypt 1984. Springer-Verlag, 1985, 224-314.

R. L. RIvesT, A. SHAMIR, AND L. M. ADLEMAN, A method for obtaining digital sig-
natures and public-key cryptosystems. Comm. ACM 21 (1978), 120-126.

P. pe Roows, Efficient exponentiation using precomputation and vector addition
chains. In Advances in cryptology: Proceedings EUROCRYP'T ’94, ed. A. DESANTIS,
Lecture notes in computer science 950, Berlin, 1995, Springer, 389-399.

A. SCHONHAGE, Schnelle Berechnung von Kettenbruchentwicklungen. Acta Informat-
ica 1 (1971), 139-144.

A. SCHONHAGE, A lower bound for the length of addition chains. Theor. Computer
Science 1 (1975), 1-12.

A. SCHONHAGE, Schnelle Multiplikation von Polynomen iiber Korpern der Charakter-
istik 2. Acta Inf. 7 (1977), 395-398.

A. SCHONHAGE AND V. STRASSEN, Schnelle Multiplikation groer Zahlen. Computing
7 (1971), 281-292.

V. SHOUP, Exponentiation in GF(2") using fewer polynomial multiplications. Pre-
print, 1994.

D. R. STINSON, Some observations on parallel algorithms for fast exponentiation in
GF(2"). SIAM J. Comput. 19 (1990), 711-717.

V. STRASSEN, Gaussian elimination is not optimal. Numer. Mathematik 13 (1969),
354-356.

V. STRASSEN, The computational complexity of continued fractions. SIAM J. Comput.
12 (1983), 1-27.

B. P. TUNSTALL, Synthesis of noiseless compression codes. Ph.D. dissertation, Georgia
Inst. Technol., 1968.



40000 T T T T T T
onb —<—
nJap o
35000 |- snoup g
/D
30000 |- g
25000 4
1] K
8
S
]
@ 20000 | 4
£
[}
E g
15000 | 4
10000 -
. -t
5000 - e P :
- e
Er //ﬂ,_//—k‘/'/
0 P L e M + | ! 1 1
0 10000 20000 30000 40000 50000 60000 70000
degree of field extension

Fig. 3. Comparison of the three exponentiation algorithms for n =~ 2i, 10 < <16 and
k as in Table 9.

A. WASSERMANN, Zur Arithmetik in endlichen Korpern. Bayreuther Math. Schriften
44 (1993), 147-251.

Y. YAcoBI, Exponentiating faster with addition chains. In Advances in cryptology:
Proceedings EUROCRYPT 90, ed. 1. DAMGARD, Lecture notes in computer science
473, Berlin, 1991, Springer, 222-229.

J. Z1v AND A. LEMPEL, Compression of individual sequences via variable-rate coding.
IEEE 'Irans. Inform. Theory IT-24(5) (1978), 530-536.

This article was processed using the I#TEX macro package with LLNCS style



