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We compare the two computational models of Boolean circuits and arithmetic 
circuits in cases where they both apply, namely the computation of polynomials 
over the rational numbers or over finite fields. Over Q and finite fields, Boolean 
circuits can simulate arithmetic circuits efficiently with respect to size. Over finite 
lields of small characteristic, the two models are equally powerful when size is 
considered, but Boolean circuits are exponentially more powerful than arithmetic 
circuits with respect to depth. Most of the technical results given in this synopis are 
taken from the literature. Cl 1991 Academic Press. Inc. 

1. INTRODUCTION 

The most natural model for the computation of polynomials over a field 
is the arithmetic circuit (or computation or straight-line program), with the 
following operations: constants from the field, variables (=inputs), and the 
binary operations +, -, *, /. There are three measures associated with 
such an arithmetic circuit: its size, its depth, and the degree of the polyno- 
mial that it computes. 

When the field elements can be represented over some finite alphabet, 
then it makes sense to also consider Boolean circuits for computing such 
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polynomials. Again, we consider the measures of size and depth. The fields 
of interest are Q and the finite fields. 

The goal of this paper is to review the literature with a view to 
comparing the power of these two model of computations, in the cases 
where they are both applicable. This is an instance of structured us. general 
models (Borodin, 1982). Each model defines a class P of problems solvable 
in polynomial size, and a class NC of problems solvable simultaneously in 
poly-logarithmic depth and polynomial size. 

In Section 2, we give some definitions and consider the case of rational 
numbers. Here Boolean circuits can-under reasonable conditions- 
efficiently simulate arithmetic circuits, while no efficient simulation in the 
other direction is known. In general, we use probabilistic choice in the 
simulating Boolean circuit; when no division occurs in the arithmetic 
circuit, then randomness is not required. 

Starting in Section 3, we consider finite fields. Boolean circuits can 
simulate arithmetic ones with at most polynomial increase in size. For the 
reverse direction, no size-efficient simulation is known; we exhibit specific 
polynomials that appear hard. 

In Section 4, we consider the case of small characteristic p, i.e., the 
simulations are considered to be efficient if the size increase is polynomial 
in p (rather than log p), and the depth increase is polynomial in log p 
(rather than log log p). Then Boolean circuits (and arithmetic circuits over 
the prime field) can simulate arithmetic circuits with only polynomial 
increases in size and depth. The reverse simulation is provably impossible 
for depth; the exponentiation problem distinguishes between the two 
models. Thus for parallel computations over finite field of small charac- 
teristic, arithmetic circuits are a too restrictive model. 

In Section 5, we give an extension of the fast parallel Boolean exponen- 
tiation procedure to finite commutative algebras of small characteristic. 
Section 6 applies this to the problem of factoring polynomials over large 
finite fields of small characteristic. 

A recent development is that algebraic computation in structures of 
a different type-ertain groups and monoids-may help in classifying 
problems of small parallel complexity (see Mix Barrington and Therien, 
1988, Sect. 8). 

2. ARITHMETIC vs BOOLEAN CIRCUITS OVER 0 

As usual, FP denotes the class of Boolean functions that can be 
computed by uniform Boolean circuit families of polynomial size. For 
the complexity class NC’(P-uniform), we also restrict the depth of 
the circuits to be O(log(inputsize)‘), and finally NC(P-uniform) = 

643!91!1-IO 
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U ka,, NC?(P-uniform). (See Cook, 1985, for terminology.) We have taken 
P-uniform as the appropriate notion of uniformity, so that our classes may 
conceivably differ from the log-space uniform NCk and NC considered in 
Cook (1985); Ruzzo (1981) discusses various notions of uniformity. C 
(non-uniform) is obtained by removing the uniformity condition, for any of 
these complexity classes C. 

Let F be a field, n 2 0, and x,, . . . . x, indeterminates over F. An arithmetic 
circuit a over F with n inputs xi, . . . . x, has 0-ary operations from 
Fu {x1, . . . . x~}, and binary operations from { +, -, *, /}. We denote by 
s(a) and d(a) the size and depth of a, respectively. (See Strassen, 1972, with 
slightly different terminology.) To each node of a is associated in a natural 
way a rational function from F(x,, . . . . x,). We say that a computes any of 
these functions. We assume that no division by the rational function zero 
occurs. A sequence (a,), E N is called a circuit family. A polynomial family 
(“frl)“, N consists of polynomials f, E F[x,, . . . . x,]. 

FP,, NC:, and NC, consist of those polynomial families that can be 
computed by (P-uniform) arithmetic circuit families of polynomial size, 
and simultaneously O(log’ n) and (log n) O(I) depth, respectively, for input 
size n. (Note that, in general, an arithmetic circuit computes a rational 
function; we only consider polynomials here.) If we drop the uniformity 
condition, we obtain FP, (non-uniform), etc. Eberly (1989), and 
von zur Gathen (1986) discuss uniformity for arithmetic circuits. It is 
usually-at least over infinite fields-reasonable to restrict the degrees of 
the polynomials: 

D,= {polynomial families (fn),, N : deg(f,) = no”)}. 

Then FP,n D, (non-uniform) consists of the p-computable families of 
Valiant (1982). This class does not change if we disallow divisions 
(Strassen, 1973). While it is conjectured that NC2 #P (see Cook, 1985), we 
have the surpirising result that 

FP, (non-uniform) n D,= NC: (non-uniform) n DI; 

for all F (Valiant et al., 1983; Miller et al., 1988; see Borodin et al., 1982, for 
finite fields). 

Elements of Q or finite fields can be represented over a finite alphabet, 
and we can consider both arithmetic and Boolean circuits for the computa- 
tion of polynomials. The goal of this paper is to compare the power of the 
two models. More precisely, for a polynomial f E F[x, , . . . . x,] we consider 
an arithmetic circuit a computing f, and a Boolean circuit fi which, on 
input of a representation (e.g., in binary) of inputs a,, . . . . a,, E F, computes 
a representation off (a,, . . . . a,). If F is infinite (and n > l), a will work for 
infinitely many inputs, but fi only for a finite set of inputs. For a finite field 
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F we consider a binary description of the field size q to be part of the input, 
so that polynomial in the input size means (n log q)‘(l), and poly-logarithmic 
means (log n + log log q) ‘(‘). We are mainly interested in exponential gaps, 
and identify size and depth functions that are polynomially related. In 
particular, it will turn out that for a finite field F of small characteristic, the 
problem of computing large powers (with an exponent of polynomial 
binary length) is in NC, but not in NC F; i.e., it can be efficiently computed 
by Boolean circuits, but not by arithmetic circuits over F. 

We consider F= Q in this section. Everything carries over to the case of 
algebraic number fields. 

In one direction, arithmetic circuits of polynomial size can compute out- 
puts of exponential binary length, so that, trivially, FP, is not a subset of 
(non-uniform) FP. However, if one allows size polynomial in both input 
and output size (which may be more than polynomial in the input size for 
this question) and also allows random choice in the Boolean circuit, then 
probabilistic Boolean circuits can simulate arithmetic circuits over Q in 
polynomial size (von zur Gathen, 1985, Corollary 6.9). If we do not insist 
on uniformity, then we can use deterministic Boolean circuits for this 
simulation (Adleman, 1978). To compute the value modulo an integer of 
an arithmetic circuit without division at integer inputs, randomness is not 
required (von zur Gathen, 1985); Jung (1985) gives a very efficient simula- 
tion with a depth increase from d to O(d log* n), where n is the number of 
inputs, and log* is the iterated logarithm. If tests for zero and division with 
remainder of integers are allowed, then one can factor integers by arithmetic 
circuits over Q of linear size (Shamir, 1979); many people hope that one 
cannot do this with (probabilistic) Boolean circuits of polynomial size. 

For the other direction, the answer is not clear. On the one hand, it 
seems hopeless to give a general simulation of Boolean circuits (computing 
a polynomial) by arithmetic circuits with at most polynomial increase in 
size, although no specific apparently hard example is known. On the other 
hand, no superpolynomial lower bounds for arithmetic circuits computing 
polynomials of polynomial degree are known. Some polynomials are con- 
jectured to be hard for both models: the Boolean version of the permanent 
is #P-complete (Valiant, 1979a), and the arithmetic version is p-complete 
(Valiant, 1979b). 

We note that Boolean circuits can solve problems that arithmetic circuits 
are not adapted to. For example, in Boolean size m”(“, one can decide on 
input of two integers a, b with binary length at most m and b #O whether 
r = a/b E Z or not. Given such an r E Q, it seems that one cannot decide this 
by arithmetic Boolean circuits (allowing tests “a = O?“) over Q of size m”(“, 
but only in size 2o(m) b ( y generating all pairs (a, 6)) (see von zur Gathen, 
1986, for a description of these circuits (which are called arithmetic 
networks there)). 
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3. FINITE FIELDS OF LARGE CHARACTERISTIC 

Consider a finite field F= [F,, where p is a (large) prime. Let t = [log pl. 
An element a of F can be represented by the unique binary representation 
(b o,...,b,_,)E(O,1}‘ofb=Co.i,,bi2iwithO~b<panda=(bmodp)~ 
F= Z/(p). (We distinguish between the objects b E Z and b mod p E [F,, of 
different type.) 

Consider the function Bi: F + { 0, 1 }, with B,(a) = b, for 0 < i < t. One 
direction of the question of relative strength of arithmetic and Boolean 
circuits can be posed as follows: can the functions Bi be computed 
efficiently by arithmetic circuits over F? A positive answer would imply 
that arbitrary Boolean circuits can be simulated efficiently. As any 
function from F to (0, 1 } ( considering (0, 1 } c F), every Bj can be 
expressed as a polynomial of degree at most p - 1 over F; e.g., Be(a) = 
~o~i~pl,(1-[Ca-(2i+1)modp]P-1) for any UEF. Thus, O(p) is an 
upper bound on the sequential arithmetic complexity of each Bi, but no 
upper bound polynomial in the input size log p is known. 

For the other direction of comparison, we note the following well-known 
fact. 

PROPOSITION 3.1. Let p be a prime, F= IF,, and a an arithmetic circuit 
over F of size s and depth d. 

(i) a can be simulated by a Boolean circuit of size O(s log p log’ log p) 
and depth O(d log p log* log p). 

(ii) Zf a has no divisions, then a can be simulated by a Boolean circuit 
of size s(log p)O”’ and depth O(d log log p). 

Proof (ii) follows from the fact that one addition or multiplication of 
integers modulo p can be performed on (P-uniform) Boolean circuits 
of size (log p)O(l) and depth O(loglogp) (Beame et al., 1986). For (i), 
we note that with the Extended Euclidean Scheme, one can compute 
one inverse modulo p in size O(log p log’log p) (see Aho et al., 1974, 
Sect. 8.11). 

Since in our arithmetic complexity classes, the field is considered con- 
stant, we trivially have FP,G FP and NCk,s NCk for all k. However, tak- 
ing field size into consideration, only (ii) gives a satisfactory simulation, 
while the depth of (i) may be very large. (As mentioned in the previous 
sentence, our complexity classes like NCk, do not capture this fact. 
Von zur Gathen, 1986, introduces c-universal circuits to remedy this 
situation, but we will not use this notion.) Let 6 be the degree of the 
polynomial computed by an arithmetic circuit a. Typically, we think of a 
single input size parameter N such that log p, s, and 6 are polynomial in 
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N, and d is polynomial in log N. Then the depth in (i) may increase to 
polynomial in N. Fixing N = SC? log p, there are two possibilities for 
avoiding this: 

(i) One can eliminate the divisions by a parallel version of Strassen’s 
(1973) method. This involves possibly extending the ground field, then 
making random choices from the larger field; see Borodin et al. (1982) and 
von zur Gathen (1985) for details. The individual steps in Strassen’s 
method are trivial to parallelize. The results are “random polynomial-time 
uniform” Boolean circuits of size so(‘) and depth do(‘). By the paralleliza- 
tion method of Valiant et al. (1983), we can achieve depth O((log N)*) 
without any assumptions about the depth of the input circuit, but then lose 
even this weak uniformity property. 

(ii) We might allow a “redundant representation” of a E F by the 
binary representations of a,, a, E N with 0 <a,, a, < p, a, #0 and 
a = (al/al mod p). This leads to Boolean circuits of size O(sN*) and depth 
O(d log* N), using trivial arithmetic. 

The upshot is that we have both size- and depth-efficient simulations of 
arithmetic circuits without divisions by Boolean circuits; with divisions, the 
situation is less satisfactory. If p is small, say p < N (or p = NO(l)), then we 
have good simulations also in the presence of divisions. 

Both sequential and parallel simulations of Boolean circuits by 
arithmetic circuits are wide open. 

4. FINITE FIELDS OF SMALL CHARACTERISTIC 

The most interesting case for our comparative study is given by finite 
fields of small characteristic p, i.e., where in our simulations the size is 
allowed to increase by a factor p’(l), and the depth by (log p)‘(l). Here the 
exponentiation problem discriminates between arithmetic and Boolean 
circuits for parallel computation. Instead of Boolean circuits, we consider 
arithmetic circuits over the prime field F= [F,; those can now be efficiently 
simulated by Proposition 3.1. 

In Section 2, we defined the notion of an arithmetic circuit computing a 
rational function f: An arithmetic circuit has several outputs in general; for 
simplicity, we restrict ourselves to arithmetic circuits with one output in the 
sequel. Over finite fields, it is usually more relevant to consider the 
associated pointwise mapping. If a is an arithmetic circuit over F with 
inputs x1, . . . . x,, then its domain of definition def(a) s F” consists of those 
values a E F” for which no division by zero occurs in a. Recall that no divi- 
sion by the rational function zero is allowed, so that def(a) is a proper 
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algebraic subset of F”, if F is infinite. IX value-computes a function f: F” + F 
if tl ourputs f(a) for all a~def(cc). (No condition is imposed for the 
a#def(a); thus if F is finite and def(a) = $3, then a value-computes any 
function. See von zur Gathen, 1987, for a discussion.) If a computesf, then 
a also value-computesf; over finite fields, the reverse implication may fail 
to hold. In the sequel, log always stands for log, unless otherwise specified. 

FACT 4.1. Let p be a prime, n>l, q=p”, F=IF,,cK=[F,, O<e<q, 
and nk: K+ K wiih n>(a) = a’ for a E K. Then 

(i) There exist P-uniform arithmetic circuits over F of depth 
O(log(np)) and size (n log p)o(l) computing 7t>. 

(ii) For any arithmetic circuit over K value-computing n> with depth d 
we have (assuming e < q/2) 

d 3 min { log e, log( q/2 - e + 1 ), log q - log log q - 1 }. 

Proof: (i) is in von zur Gathen (1990), building upon the pioneering 
NC:-result (for small ‘p) by Fich and Tompa (1988), who obtained log- 
space uniform depth O(log n log(np)). ( ii is in von zur Gathen (1987). ) 1 

COROLLARY 4.2. Ifp < n and p”-’ < e < p”- I, then n> can be computed 
by arithmetic circuits over F of size no(‘) and depth O(log n). Any arithmetic 
circuit over K value-computing n> has depth Q(n). 

The assumption e < p” is not a severe restriction, since aPn = a for ail 
a E K. For e > p”, one can compute e’ < p” such that e E e’ mod(p” - 1) by 
P-uniform Boolean circuits of size (log e)O(‘) and depth O(log loge) 
(Beame et al., 1986). Then n>= 7~2. 

We can phrase this result so that the arithmetic and Boolean depth com- 
plexity of polynomials over one fixed (infinite) field differ exponentially. Let 
p be a prime number, K an algebraic closure of IF,, m E kJ, and 
2”- ’ < e < 2”. Then we have Boolean circuits of depth O(log m) that com- 
pute X> on inputs with binary length at most m, i.e., from subfields [F,. c K 
with log(p”) < m. Any arithmetic circuit over K value-computing n: (for 
inputs from these subfields) has depth Q(m). 

In order to apply the lower bound to situations other than exponentia- 
tion, we note the following fact. 

LEMMA 4.3. Let K= [F,, f E K[x] of degree e < aq, and a an arithmetic 
circuit of depth d over K value-computing the function K -+ K given by f: Then 

d>min{loge,log(aq-e+l),logq-logq-2) 

If q/2 > e 2 ,/$ and q 2 1898, then d 2 (log q)/2. 
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Proof. Let S = def(a). We use von zur Gathen (1987, Lemma 2.3). If 
#S 2 aq, then d is greater or equal to the minimum of the first two terms 
in the claim, and otherwise d is at least as large as the third term. For large 
enough q (in fact, for q > 1898), a straightforward calculation shows that 
all three terms are at least (log q)/2. 1 

When K is a finite field of small characteristic, a natural reperesentation 
of a field element as a vector over the prime field can be computed by an 
arithmetic circuit over K of polynomial size (Lempel et al., 1982). 
Corollary 4.5 below shows that it cannot be computed in sublinear depth. 
We first state a more general result for any F-linear mapping 4: K -+ F, with 
r$(ua + vb) = u$(a) + u&b) for U, u E F and a, b E K. 

THEOREM 4.4. Let p be a prime number, n > 11, and $: K --) F be any 
nonzero F-linear mapping from K = [F,, onto F = IF,. Then any arithmetic cir- 
cuit over K that value-computes I# has depth at least (n log p)/2. 

Prooj Any nonzero linear transformation 4 from K onto F can be 
expressed as d(a) = T(u,a), where T(b) = Coa i<n br’ is the trace function 
from K onto F, and U, E: K\ (0) depends only on 4 (Lid1 and Niederreiter, 
1983, Theorem 2.24). Hence, the degree of 4 as a polynomial over K is 

+’ < ap”, and the 
insure p” 3 1898). 

claim now follows from Lemma 4.3 (using n > 11 to 
1 

Now we consider a generator c( E K of K= [F,. as F-algebra, say 
tl = x mod f if K = F[x]/(f) and f E F[x] is irreducible of degree n. An 
element a of K has a unique representation as a vector over F = [F,, 

a= C di(a)cri, 
OCi<fl 

with $i(a) E F. Each 4,. is nonzero and F-linear, since ua + bu = C(udi(a) + 
vdi(b))cci. Thus we have the following. 

COROLLARY 4.5. Let n 2 11, 0 <i< n, and di: K + F as above. Any 
arithmetic circuit over K that value-computes 4i has depth at least (n log p)/2. 

These results become slightly stronger when we only consider division- 
free arithmetic circuits. Then in Lemma 4.3 we have 

d> min{log e, log(q - e + l)}, 

and depth at least (n - 1) log p in Theorem 4.4 and Corollary 4.5. 
Our framework is the two models of computation for polynomial func- 

tions over K: arithmetic circuits over K and arithmetic circuits over F (or, 
equivalently, Boolean circuits if p is small). In the first model, the input is 
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some u E K, and in the second model, the inputs are the coordinates 
di(u) E F of U. As any function from K to Kz F, #i can be expressed as a 
polynomial in K[x]. Corollary 4.5 says that even these input functions for 
arithmetic circuits over F cannot be calculated in less than linear depth by 
arithmetic circuits over K. 

The results of this and the previous section can be interpreted in two 
ways. In defense of arithmetic circuits one may say that only polynomials 
of small (e.g., polynomial) degree should be considered. Otherwise, the 
conclusion is that arithmetic circuits are a very weak model of parallel 
computation over large finite fields of small characteristic; lower bounds in 
this model for a problem may not reflect its true complexity. While the 
restriction to polynomials of small degree may be reasonable over infinite 
fields, over finite fields very natural problems, whose formulation does not 
involve large powers, require the computation of such powers. Apart from 
Theorem 4.3 and Corollary 4.4, we now mention two important decision 
problems. In our restricted model of arithmetic circuits, let us say that to 
decide whether a property holds or does not hold, one has to value-compute 
the field constants 1 or 0, respectively. The algebraic computation trees of 
Strassen (1983) and the arithmetic Boolean circuits of von zur Gathen 
(1986) (also called arithmetic networks), are better suited to deal with this 
type of decision problem; however, we have stated the lower bounds only 
for arithmetic circuits. (In fact, they are also valid for arithmetic Boolean 
circuits (von zur Gathen, unpublished).) 

PROPOSITION 4.6. Let F= IF,, with q > 1898 odd, and a an arithmetic 
circuit over F. 

(i) Zf a decides whether the input u E F is a square, then 
d> (log q)/2 - 2. 

(ii) Zf a decides whether a quadratic input polynomial from F[x] is 
irreducible, then d > (log q)/2 - 3. 

Proof: (i) For any nonzero u E F we have ucq - ‘v* = f 1, and u is a 
square if and only if ucq - ’ )I* = 1. B y assumption, on input some u E def(a), 
a computes v = 1 E F if u is a square, and v = 0 otherwise. We now obtain 
a circuit of depth d + 2 which value-computes ucq- ‘)I* = 2v - 1 (for u # 0). 
The claim follows from Lemma 4.3. 

(ii) On input ui, u0 E F, a decides whether f = x2 + u, x + zq, E F[x] is 
irreducible or not. With U, = 0, f is irreducible if and only if -u,, is a 
square. The claim follows by (i). 1 

If q = p”, then both problems of this proposition can be solved by 
arithmetic circuits over IF, of depth O(log(np)) and size (n log p)O”‘. 
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5. POWERS IN COMMUTATIVE ALGEBRAS 
OF SMALL CHARACTERISTIC 

Fich and Tompa (1988) present an arithmetic circuit over [F, for 
exponentiation in IF,, of log-space uniform depth O(log n log(np)); based on 
their approach, this was improved by von zur Gathen (1990) to depth 
O(log(np)), but only P-uniformly (Fact 4.1) (see also Litow and Davida, 
1988). We now describe a more general setting in which the Fich and 
Tompa method still works, while the other approach seems to break down. 
Let p be a power of a prime, F= [F,, n E N, and R a commutative n-dimen- 
sional algebra over F. (See Herstein, 1968 for a general background on 
algebras.) We assume that ul, . . . . U,E R form an F-basis (u,, . . . . u,) of R, 
that an element a E R is represented by its coordinates a,, . . . . a, E F such 
that u=ClciGn a,ui, and that the coordinates of the product ub of a, b E R 
can be computed by an arithmetic circuit over F with 2n inputs, n outputs, 
size s, and depth d,. If we are given the structure constants viik E F such 
that 

u~M~=,~~~~v~~u~ for l<i, j<n, 
. . 

then we can choose sR = O(n3) and dR = O(log n). However, we do not 
insist on having these structure constants and only assume some circuit 
with costs s R, d,. We consider the problem of computing large powers 
in R. 

EXAMPLE 5.1. Let y be an indeterminate over F, g E F[ y] of degree n 
(not necessarily irreducible) and R = F[ y]/( g). We can choose sR = d’(l) 
and d, = O(log n) (Eberly, 1989). This includes, of course, the case R = [F,.. 

EXAMPLE 5.2. With n, y, g, R as above, let TE N, z an indeterminate 
over R, h E: R[z] of degree r (not necessarily irreducible), and 
T= R[z]/(h). We can choose sT= (rn)‘(‘) and d,= O(log(rn)). 

To talk about asymptotic complexity, we think of our algebra R as being 
part of some infinite family; for fixed R, sR and dR are 0( 1). E.g., in Exam- 
ple 5.1, “multiplication in R” is the problem of computing the coefficients 
Cg,...,C,-IEFOf 

given the input a,, . . . . a,-, , bo, . . . . b,_ 1, go, . . . . g,. 
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In order to compute the eth power of a = xi aiui E R for any e E N, we 
consider the Frobenius mapping 

#:R+R, 

aHaP. 

This is an F-linear mapping. We consider e as fixed, or the p-ary represen- 
tation (e,, . . . . e,) of e, with t = [log, el, e = CoGjc:, ejpj and 0 < ej < p for 
all j, as hard-wired into the following circuit over F. 

ALGORITHM. Power in a Commutative Algebra. 
Znput.Coordinatesa,,...,a,~Fofa=C,.~..a,u,~R. 
Output. Coordinates of see R. 

1. For all i, 1 < i< n, compute the coordinates of of. This gives the 
n x n-matrix representing f$. 

2. For all j, 0 <j< t, compute #j, ad = $‘(a,, . . . . a,)‘, and a@ = 
(ad)‘l. 

3. Return ae = n, 6 j< I a+. 

THEOREM 5.3. The above algorithm computes the coordinates of ae. It 
can be implemented on a log-space uniform arithmetic circuit over F of size 
O(s,(nlogp+loge)+n310ge) anddepth O(d,logp+(d,+logn)logloge). 

Proof: Since I$ is the matrix of the F-linear map a H ap, 4’ is the matrix 
of the map a H ad, i.e., @(al, . . . . a,)’ are indeed the coordinates of ad. This 
proves correctness of the algorithm. 

Step 1 can be implemented in size O(ns, log p) and depth O(d, log p). 
For step 2, size O(tn3 + tsR log p) and depth O(log t log n + dR log p) are 
sufficient, and for step 3, size O(ts,) and depth O(d, log t). Note that 
t log p = O(log e). 1 

In the special case of a simply generated algebra R = IF,[x]/(h), 
von zur Gathen (1990) applies the results of Eberly (1989) to obtain the 
following. 

Fact 5.4. Let e, m, n E N, K= lFp”, h E K[z] of degree m, and R = 
K[z]/(h). Then ?I;: R + R can be computed by a P-uniform arithmetic 
circuit over F = [F, of size (mn) O(i). log p and depth O(log(mnp)), and on 
Boolean circuits of depth O(log(mnp)) and size (mn log p)O”‘. 

The method of Fich and Tompa (1988) yields depth O(log(mn) . 
log(mnp)) in this case. It seems unlikely that one could similarly obtain 
optimal depth for the general case of Theorem 5.3. 
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6. FACTORING POLYNOMIALS 

We consider the problem of factoring a polynomial f~ K[x] of degree m, 
where K = 5,. is a finite field. A careful analysis of the probabilistic method 
in von zur Gathen (1984) shows that the algorithm (involving tests 
“a # O?” and branching) can be implemented over F= [F, in depth 
O(log’(mn) + log(mnp)) and size log p(mn)““‘, where f is assumed to be 
squarefree. A deterministic version of the algorithm works in depth 
O(log’(mn) log(mp)) and size p(mn)O(“, using the parallel rank algorithm 
of Mulmuley (1987). If f is not squarefree, then its squarefree decomposi- 
tion has to be computed first. The algorithm presented in von zur Gathen 
(1984) for squarefree decomposition requires the computation of large 
powers in K and has depth O(log’(mn) + TK), where T, is the depth 
required to compute ap, ap2, . . . , ap”-’ for a E K, For a few years, this seemed 
to be a bottleneck for parallel factorization. However, by Fact 5.4, 
T,= O(log(mnp)). Hence, the whole factoring algorithm for an arbitrary 
polynomial can be done probabilistically in depth O(log’(mn) + log(mnp)) 
over F. The deterministic version has depth O(log2(mn) log(mp)). If p is 
small, this is poly-logarithmic depth. 
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