
Fast arithmetic for polynomials overF2 in hardware
Joachim von zur Gathen

B-IT - Universität Bonn
Email: gathen@bit.uni-bonn.de

Jamshid Shokrollahi
B-IT - Universität Bonn

Email: jamshid@bit.uni-bonn.de

Abstract— We study different possibilities of implementing
Karatsuba multipliers for polynomials over F2 on Field Pro-
grammable Gate Arrays (FPGAs).

This is a core task for implementing finite fields of character-
istic 2. Algorithmic and platform dependent optimizations yield
efficient hardware designs. The resulting structure is hybrid in
two different aspects. On the one hand, a combination of various
methods decreases the number of bit operations. On the other
hand, a mixture of sequential and combinational circuit design
techniques including pipelining is used to design a circuitwhich
can be adapted flexibly to time-area constraints. The approach—
both theory and implementation—can be viewed as a further step
towards taming the machinery of fast algorithmics for hardware
applications.

I. I NTRODUCTION

Arithmetic in finite fields is a central algorithmic task in
cryptography. There are two types of groups associated to
such fields: their multiplicative group of invertible elements,
and elliptic (or hyperelliptic) curves. These can then be used
in group-based cryptography, relying on the difficulty of
computing discrete logarithms. Here we focus on fields of
characteristic2. The most fundamental task in arithmetic is
multiplication. In our case, this amounts to multiplication of
polynomials overF2, followed by a reduction modulo the
fixed polynomial defining the field extension. This reduction
can itself be performed by using multiplication routines orby
a small hardware circuit when the polynomial is sparse. A
trinomial can be used in many cases, and it is conjectured that
otherwise a pentanomial can be found (see von zur Gathen &
Nöcker (2006)). As to the other arithmetic operations, addition
is bitwise XORing of vectors, squaring a special case of
multiplication (much simplified by using a normal basis), and
inversion more expensive and usually kept to a minimum.

Classical methods to multiply twon-bit polynomials re-
quire O(n2) bit operations. The Karatsuba algorithm re-
duces this toO(nlog

2
3), and fast Fourier transformations to

O(n log n loglog n). The Cantor multiplier with a cost of
O(n(log n)2(loglog n)3) is designed for fields of characteristic
2, but we do not study it here (see Cantor (1989) and von
zur Gathen & Gerhard (1996)). Traditional lore held that
asymptotically fast methods are not suitable for hardware.We
disprove this view in the present paper, continuing the work
by Grabbe et al. (2003).

Our methods are asymptotically good and thus efficient
for large degrees. Sophisticated implementation strategies de-
crease the crossover points between different algorithms and
make them efficient for practical applications. Much care is

required for software implementations (see von zur Gathen
& Gerhard (2003), chapter8, and Shoup’s NTL software).
The Karatsuba method has the lowest crossover point with
the classical algorithm.

The Karatsuba algorithm for multiplication of large integers
was introduced by Karatsuba & Ofman (1963). It is commonly
used recursively, but here we combine it with other algorithms
for hardware realization of cryptographic tasks.

FPGAs provide useful implementation platforms for cryp-
tographic algorithms both for prototyping where early error
finding is possible, and as systems on chips where system
parameters can easily be changed to satisfy evolving security
requirements.

Efficient software implementations of Karatsuba multipliers
using general purpose processors have been discussed thor-
oughly in the literature (see Paar (1994), Bailey & Paar (1998),
Koç and Erdem (2002), Hankerson et al. (2003), chapter
2, and von zur Gathen & Gerhard (2003), chapter 8), but
hardware implementations have attracted less attention. The
only works known to us are Jung et al. (2002), Weimerskirch
& Paar (2003), and Grabbe et al. (2003). Jung et al. (2002) and
Weimerskirch & Paar (2003) suggest to use algorithms with
O(n2) operations to multiply polynomials which contain a
prime number of bits. Their proposed number of bit operations
is by a constant factor smaller than the classical method
but asymptotically larger than that for the Karatsuba method.
Grabbe et al. (2003) propose a hybrid implementation of the
Karatsuba method which reduces the latency by pipelining and
by mixing sequential and combinational circuits.

The present work tries to decrease the resource usage of
polynomial multipliers using both known algorithmic and
platform dependent methods. Our Table II presents the best
choice of hybrid multiplication algorithms for polynomials
with at most8192 bits, as long as the choice is restricted
to six (recursive) methods, namely classical, Karatsuba, a
variant of Karatsuba for quadratic polynomials, and three other
methods proposed by Montgomery (2005). The “best” refers to
minimizing the area measure. This is an algorithmic and ma-
chine independent optimization. In an earlier implementation
(Grabbe et al. (2003)) we had designed a240-bit multiplier on
a XC2V6000-4FF1517-4 FPGA. We re-use this structure and
decrease its area and time by using the methods developed
in Section III and better usage of pipelining deployed in this
structure. Using this240-bit multiplier we cover in particular
the 233-bit polynomials proposed by NIST for elliptic curve
cryptography in the Digital Signature Standard (DSS) (2000).

JO
A

C
H

IM
V

O
N

Z
U

R
G

A
T

H
E

N
&

JA
M

S
H

ID
S

H
O

K
R

O
L

L
A

H
I

(2
00

6)
.

Fa
st

ar
ith

m
et

ic
fo

rp
ol

yn
om

ia
ls

ov
er

F
2

in
ha

rd
w

ar
e.

In
IE

E
E

In
fo

rm
at

io
n

Th
eo

ry
W

or
ks

ho
p

(2
00

6)
,

10
7–

11
1.

IE
E

E
,P

un
ta

de
lE

st
e,

U
ru

gu
ay

.
T

hi
sd

oc
um

en
ti

sp
ro

vi
de

d
as

a
m

ea
ns

to
en

su
re

tim
el

y
di

ss
em

in
at

io
n

of
sc

ho
la

rl
y

an
d

te
ch

ni
ca

lw
or

k
on

a
no

n-
co

m
m

er
ci

al
ba

si
s.

C
op

yr
ig

ht
an

d
al

lr
ig

ht
s

th
er

ei
n

ar
e

m
ai

nt
ai

ne
d

by
th

e
au

th
or

s
or

by
ot

he
rc

op
yr

ig
ht

ho
ld

er
s,

no
tw

ith
st

an
di

ng
th

at
th

es
e

w
or

ks
ar

e
po

st
ed

he
re

el
ec

tr
on

ic
al

ly
.I

ti
s

un
de

rs
to

od
th

at
al

lp
er

so
ns

co
py

-
in

g
an

y
of

th
es

e
do

cu
m

en
ts

w
ill

ad
he

re
to

th
e

te
rm

s
an

d
co

ns
tr

ai
nt

s
in

vo
ke

d
by

ea
ch

co
py

ri
gh

t
ho

ld
er

,a
nd

in
pa

rt
ic

ul
ar

us
e

th
em

on
ly

fo
r

no
nc

om
m

er
ci

al
pu

r-
po

se
s.

T
he

se
w

or
ks

m
ay

no
tb

e
po

st
ed

el
se

w
he

re
w

ith
ou

tt
he

ex
pl

ic
it

w
ri

tte
n

pe
r-

m
is

si
on

of
th

e
co

py
ri

gh
th

ol
de

r.
(L

as
tu

pd
at

e
20

16
/0

5/
18

-1
4

:2
0.

)



The structure of this paper is as follows. First the Karatsuba
method and its cost are studied in Section II. Section III is de-
voted to optimized hybrid Karatsuba implementations. Section
IV shows how a hybrid structure and pipelining together with
the reduction of number of recursion levels improves resource
usage in the circuit from Grabbe et al. (2003) and Section V
concludes the paper.

Parts of this paper have appeared in von zur Gathen &
Shokrollahi (2005). The inclusion of Montgomery multipli-
cation in Table II and the corresponding considerations are
presented here for the first time.

II. T HE KARATSUBA ALGORITHM

The three coefficients of the product(a1x+a0)(b1x+b0) =
a1b1x

2 + (a1b0 + a0b1)x + a0b0 are “classically” computed
with 4 multiplications and1 addition from the four input
coefficientsa1, a0, b1, and b0. The following formula uses
only 3 multiplications and4 additions:

(a1x + a0)(b1x + b0) = a1b1x
2+

((a1 + a0)(b1 + b0)− a1b1 − a0b0)x + a0b0. (1)

We call this the2-segment Karatsuba method orK2. Setting
m = dn/2e, two n-bit polynomials (thus of degrees less than
n) can be rewritten and multiplied using the formula:

(f1x
m + f0)(g1x

m + g0) = h2x
2m + h1x

m + h0,

wheref0, f1, g0, and g1 are m-bit polynomials respectively.
The polynomialsh0, h1, and h2 are computed by applying
the Karatsuba algorithm to the polynomialsf0, f1, g0, and
g1 as single coefficients and adding coefficients of common
powers ofx together. This method can be applied recursively.
The circuit to perform a single stage is shown in Figure 1.

f1 f0
g1 g0

× + + ×

×

+
−

+
−

overlap circuit

h2 h1 h0

Fig. 1. One level of the Karatsuba multiplication

The “overlap circuit” adds common powers ofx in the three
generated products. For example ifn = 8, then the input
polynomials have degree at most7, each of the polynomials
f0, f1, g0, and g1 is 4 bits long and thus of degree at most
3, and their products will be of degree at most6. The effect
of the overlap module in this case is represented in Figure 2,
where coefficients to be added together are shown in the same
columns.

Figures 1 and 2 show that we need three multiplication calls
at sizem = dn/2e and some adders:2 for input, 2 for output,

f1g1

f0g1 + f1g0

f0g0

x14x13x12x11x10x9 x8

x10x9 x8 x7 x6 x5 x4

x6 x5 x4 x3 x2 x1 x0

Fig. 2. The overlap circuit for the8-bit Karatsuba multiplier

and 2 for the overlap module of lengthsm, 2m − 1, and
m− 1 respectively. Below we consider various algorithmsA
of a similar structure. We denote the size reduction factor,
the number of multiplications, input adders, output adders,
and the total number of bit operations to multiply twon-
bit polynomials inA by bA, mulA, iaA, oaA, and MA(n),
respectively. Then

MA(n) = mulA M(m) + iaA m + oaA (2m− 1)+
2(bA − 1)(m− 1),

(2)

wherem = dn/bAe andM(m) is the cost of the multiplication
call for m-bit polynomials. ForA = K2, this becomes:

MK2
(n) = 3 M(m) + 8m− 4, m = dn/2e.

Our interest is not the usual recursive deployment of
this kind of algorithms, but rather the efficient interaction
of various methods. We include in our study the classical
multiplication Cb on b-bit polynomials and algorithms for3,
5, 6, and7-segment polynomials which we callK3 (3-segment
Karatsuba, see Blahut (1985), Section 3.4, page 85),M5, M6,
and M7 (see Montgomery (2005)). The parameters of these
algorithms are given in Table I.

TABLE I

THE PARAMETERS OF SOME MULTIPLICATION METHODS

Algorithm A bA mulA iaA oaA

K2 2 3 2 2
K3 3 6 6 6
M5 5 13 22 30
M6 6 17 61 40
M7 7 22 21 55

Cb, b ≥ 2 b b2 0 (b − 1)2

III. H YBRID DESIGN

For fast multiplication software, a judicious mixture of table
look-up and classical, Karatsuba and even faster (FFT) algo-
rithms must be used (see von zur Gathen & Gerhard (2003),
chapter8, and Hankerson et al. (2003), chapter2). Suitable
techniques for hardware implementations are not thoroughly
studied in the literature. In contrast to software implementa-
tions where the word-length of the processor, the datapath,and
the set of commands are fixed, hardware designers have more
flexibility. In software solutions speed and memory usage are
the measures of comparison whereas hardware implementa-
tions are generally designed to minimize the area and time,
simultaneously or with some weight-factors. In this section
we determine the least-cost combination of any basic routines
for bit sizes up to8192. Here, cost corresponds to the total
number of operations in software, and the area in hardware.
Using pipelining and the structure of Grabbe et al. (2003)



this can also result in multipliers which have small time-area
parameters.

We present a general methodology for this purpose. We
start with a toolboxT of basic algorithms, namelyT =
{classical, K2, K3, M5, M6, M7}. EachA ∈ T is defined for
bA-bit polynomials. We denote byT ∗ the set of all iterated
(or hybrid algorithms) compositions fromT ; this includesT
and the identity. Figure 3 shows the hierarchy of a hybrid
algorithm for 12-bit polynomials using our toolboxT . At
the top level, K2 is used, meaning that the12-bit input
polynomials are divided into two6-bit polynomials each and
K2 is used to multiply the input polynomials as if each6-bit
polynomial were a single coefficient.K2C3 performs the three
6-bit multiplications. One of these6-bit multipliers is circled
in Figure 3 and unravels as follows:

(a5x
5 + · · ·+ a0) · (b5x

5 + · · ·+ b0) =

((a5x
2 + a4x + a3)x

3 + (a2x
2 + a1x + a0))

· ((b5x
2 + b4x + b3)x

3 + (b2x
2 + b1x + b0)) =

(A1x
3 + A0) · (B1x

3 + B0) = A1B1x
6+

((A1 + A0)(B1 + B0)−A1B1 −A0B0)x
3 + A0B0

Each ofA1B1, (A1 + A0)(B1 + B0), and A0B0 denotes a
multiplication of3-bit polynomials and will be done classically
using the formula

(a2x
2 + a1x + a0)(b2x

2 + b1x + b0) = a2b2x
4+

(a2b1 + a1b2)x
3 + (a2b0 + a1b1 + a0b2)x

2+

(a1b0 + a0b1)x + a0b0.

Thick lines under eachC3 indicate the nine1-bit multipli-
cations to performC3. We designate this algorithm, for12-
bit polynomials, withK2K2C3 = K2

2C3 where the left hand
algorithm, in this caseK2, is the topmost algorithm.

K2

K2 K2 K2

C3 C3 C3 C3 C3 C3 C3 C3 C3

Fig. 3. The multiplication hierarchy forK2K2C3

As in (2), the cost of a hybrid algorithmA2A1 ∈ T
∗ with

A1, A2 ∈ T
∗ satisfies

MA2A1
(n) ≤mulA2

MA1
(m) + iaA2

m+

oaA2
(2m− 1) + 2(bA2

− 1)(m− 1), (3)

whereMA(1) = 1 for anyA ∈ T ∗ andm = dn/(bA2
bA1

)e =
ddn/bA2

e/bA1
e. EachA ∈ T ∗ has a well-defined input length

bA, given in Table I for basic tools and by multiplication for
composite methods. We extend the notion by applyingA also
to fewer thanbA bits, by padding with leading zeros, so that
MA(m) = MA(bA) for 1 ≤ m ≤ bA. For some purposes,
one might consider the savings due to such a-priori-zero

coefficients. Our goal, however, is a pipelined structure where
such a consideration cannot be incorporated. The minimum
hybrid cost overT is

M(n) = min
A∈T ∗,bA≥n

MA(n).

We first show that the infinitely many classical algorithms
in T do not contribute to optimal methods beyond size12.

Lemma 1:ForA ∈ T ∗ and integersm ≥ 1 andb, c ≥ 2 we
have the following.

(i) MCbCc
(bc) = MCbc

(bc).
(ii ) MCbA(bAbm) ≥ MACb

(bAbm).
(iii ) For anyn, there is an optimal hybrid algorithm all of

whose components are non-classical, except possibly the
right most one.

(iv) If n ≥ 13, thenCn is not optimal.
We now present a dynamic programming algorithm which

computes an optimal hybrid algorithm fromT ∗ for n-bit
multiplication, forn = 1, 2, . . ..

Algorithm 1 Finding optimal algorithms inT ∗

Input: The toolbox T = {classical, K2, K3, M5, M6, M7}
and an integerN .

Output: Table T with N rows containing the optimal algo-
rithms for 1 ≤ n ≤ N and their costs.

1: Enter the classical algorithm and cost1 for n = 1 into T
2: for n = 2, . . . , N do
3: bestalgorithm← unknown,mincost← +infinity
4: for A = K2, . . . , M7 do
5: ComputeMA(n) according to (2)
6: if MA(n) < mincost then
7: bestalgorithm← A, mincost← MA(n)
8: end if
9: end for

10: if n < 13 then
11: MCn

← 2n2 − 2n + 1
12: if MCn

(n) < mincost then
13: bestalgorithm← Cn, mincost← MCn

(n)
14: end if
15: end if
16: Enterbestalgorithm andmincost for n into T
17: end for

Theorem 2:Algorithm 1 works correctly as specified. The
operations (arithmetic, table look-up) have integers with
O(log N) bits as input, and their total number isO(N).

The optimal recursive method for each polynomial length up
to 8192 is shown in Table II. The column “length” of this table
represents the length (or the range of lengths) of polynomials
for which the method specified in the column “method” must
be used. As an example, for194-bit polynomials the method
M7 is used at the top level. This requires22 multiplications
of polynomials with d194/7e = 28 bits, which are done
by means ofK2 on top of 14-bit polynomials. These14-
bit multiplications are executed again usingK2 and finally
polynomials of length7 are multiplied classically. Thus the



Polynomial length

N
um

be
r

of
bi

t
op

e
ra

tio
ns
×

1
0
−

3

classical
Karatsuba
hybrid

32 64 96 128

5

10

Fig. 4. The number of bit operations of the classical, recursive Karatsuba,
and the hybrid methods to multiply polynomials of degree smaller than128

TABLE II

OPTIMAL MULTIPLICATIONS FOR POLYNOMIAL LENGTHS UP TO8192

length method length method length method
1 − 5 C1 − C5 301 − 320 K2 1603 − 1610 M5

6 K2 321 − 343 M7 1611 − 1728 M6
7 C7 344 − 360 M5 1729 − 1792 M7
8 K2 361 − 384 K2 1793 − 1800 M5
9 K3 385 − 392 M7 1801 − 1920 M6
10 K2 393 − 400 M5 1921 − 1960 M7
11 C11 401 − 420 M7 1961 − 2048 K2

12 − 14 K2 421 − 432 K2 2049 − 2058 M7
15 K3 433 − 448 M7 2059 − 2100 M5

16 − 20 K2 449 − 450 M5 2101 − 2240 M7
21 M7 451 − 454 K2 2241 − 2304 M6

22 − 24 K2 455 M5 2305 − 2352 M7
25 M5 456 K2 2353 − 2400 M6

26 − 27 K3 457 − 460 M5 2401 − 2560 K2
28 − 40 K2 461 − 512 K2 2561 − 2744 M7
41 − 42 M7 513 − 525 M5 2745 − 2800 M5
43 − 45 K3 526 − 560 M7 2801 − 2880 M6
46 − 48 K2 561 − 576 K2 2881 − 3072 K2

49 M7 577 − 588 M7 3073 − 3136 M7
50 M5 589 − 600 M5 3137 − 3200 M5

51 − 64 K2 601 − 640 K2 3201 − 3456 M6
65 − 70 M7 641 − 686 M7 3457 − 3584 M7
71 − 80 K2 687 − 720 M5 3585 − 3840 M6
81 − 84 M7 721 − 768 K2 3841 − 3920 M7
85 − 96 K2 769 − 784 M7 3921 − 4096 K2
97 − 98 M7 785 − 800 M5 4097 − 4116 M7
99 − 100 M5 801 − 840 M7 4117 − 4200 M5
101 − 105 M7 841 − 864 M6 4201 − 4320 M6
106 − 108 K2 865 − 896 M7 4321 − 4480 M7
109 − 112 M7 897 − 900 M5 4481 − 4608 M6
113 − 128 K2 901 − 912 M6 4609 − 4704 M7
129 − 140 M7 913 − 920 M5 4705 − 4800 M6
141 − 144 K2 921 − 936 M6 4801 − 5120 K2
145 − 147 M7 937 − 940 M5 5121 − 5184 M6
148 − 150 M5 941 − 960 M6 5185 − 5488 M7
151 − 160 K2 961 − 980 M7 5489 − 5600 M5
161 − 168 M7 981 − 1024 K2 5601 − 5880 M6
169 − 175 M5 1025 − 1029 M7 5881 − 5888 K2
176 − 192 K2 1030 − 1050 M5 5889 − 5952 M6
193 − 196 M7 1051 − 1120 M7 5953 − 6016 K2
197 − 200 M5 1121 − 1152 M6 6017 − 6144 M6
201 − 210 M7 1153 − 1176 M7 6145 − 6272 M7
211 − 216 K2 1177 − 1200 M5 6273 − 6400 M5
217 − 224 M7 1201 − 1280 K2 6401 − 6912 M6

225 M5 1281 − 1372 M7 6913 − 7168 M7
226 − 256 K2 1373 − 1440 M5 7169 − 7680 M6
257 − 280 M7 1441 − 1536 K2 7681 − 7840 M7
281 − 288 K2 1537 − 1568 M7 7841 − 8064 M6
289 − 294 M7 1569 − 1600 M5 8065 − 8192 K2
295 − 300 M5 1601 − 1602 M6

optimal algorithm isA = M7K
2
2C7, of total costMA(194) =

22 ·MK2

2
C7

(28) + 3937 = 26575 bit operations.
Figure 4 shows the recursive cost of the Karatsuba method,

as used in Weimerskirch & Paar (2003), of our hybrid method,
and the classical method.

Lemma 1 implies that the classical methods need only be
considered forn ≤ 12. We can pruneT further and now
illustrate this forK3. One first checks thatMAK3B(3bAbB) <
MK3AB(3bAbB) for A ∈ {K2, M5, M6, M7}, B ∈ T ∗, and
bB ≥ 2. Therefore forK3 to be the top-level tool in an optimal
algorithm overT the next algorithm to it must be eitherK3

or Cb for someb. Since the classical method is not optimal
for n ≥ 13 and Table II does not listK3 in the interval46 to
3 · 45 = 135, K3 is not the top-level tool forn ≥ 135.

Table III gives the asymptotic behavior of the costs of the
algorithms in the toolboxT when used recursively. It is ex-
pected that for very large polynomials only the asymptotically
fastest method, namelyM6, should be used. But due to the tiny
differences in the cost exponents this seems to happen only
for very large polynomial lengths, beyond the sizes which are
shown in Table II.

TABLE III

ASYMPTOTICAL COSTO(nk) OF ALGORITHMS IN THE TOOLBOXT

algorithm k

Cb, b ≥ 2 logb b2 = 2

K2 log
2
3 ≈ 1.5850

K3 log
3
6 ≈ 1.6309

M5 log
5
13 ≈ 1.5937

M6 log
6
17 ≈ 1.5812

M7 log
7
22 ≈ 1.5885

IV. H ARDWARE STRUCTURE

The delay of a fully parallel combinational Karatsuba mul-
tiplier is 4dlog2 ne, which is almost4 times that of a classical
multiplier, namelydlog2 ne+1. It is the main disadvantage of
the Karatsuba method for hardware implementations. Grabbe
et al. (2003) suggested as solution a pipelined Karatsuba
multiplier for 240-bit polynomials, shown in Figure 5.

240-bit multiplier

120-bit multiplier

40-bit
multiplier

40-bit adder
· · ·

79-bit adder
· · ·

Overlap module

120-bit adder
· · ·

239-bit adder
· · ·

Overlap module

Fig. 5. The240-bit multiplier by Grabbe et al. (2003)

The innermost part of the design is a combinational
pipelined40-bit classical multiplier equipped with40-bit and
79-bit adders. The multiplier, these adders, and the overlap
module, together with a control circuit, constitute a120-bit
multiplier. The algorithm is based on a modification of a
Karatsuba formula for3-segment polynomials. Another suit-
able control circuit performs the2-segment Karatsuba method
for 240 bits by means of a120-bit recursion,239-bit adders,
and an overlap circuit.

We improve this multiplier with respect to both area and
time. The multiplier of Grabbe et al. (2003) can be seen as
implementing the factorization240 = 2·3·40. Table III implies
that it is usually best to apply the3-segment Karatsuba for
small inputs. Translating this into hardware reality, the new
design is based on the factorization240 = 2 · 2 · 2 · 30.

The new30-bit multiplier follows the recipe of Table II.
It is a combinational circuit without feedback and the design
goal is to minimize its area. In general,k pipeline stages can



input1 input2

mux1 mux2

mux3 mux4

mux5 mux6

30 bit

multiplier

decoder

acc0 acc1 · · · acc14

overlap circuit

co
n
tr

o
l

m
o
d
u
le

output

a(x) b(x)

Fig. 6. The structure of the Karatsuba multiplier with few recursions

performn parallel multiplications inn + k − 1 instead ofnk
clock cycles without pipelining.

In the recursive Karatsuba multiplier of Grabbe et al. (2003),
the core of the system, namely the combinational multiplier,
is idle for about half of the time. To improve the resource
usage, we reduce the communication overhead by decreasing
the levels of recursion. In this new240-bit multiplier, an 8-
segment Karatsuba is applied at once to30-bit polynomials.
We computed symbolically the formulas describing three
recursive levels of Karatsuba, and implemented these formulas
directly.

The new circuit is shown in Figure 6. The multiplexersmux1
to mux6are adders at the same time. Their inputs are30-bit
sections of the two original240-bit polynomials which are
added according to the Karatsuba rules. Now their27 output
pairs are pipelined as inputs into the30-bit multiplier. The27
corresponding59-bit polynomials are subsequently combined
according to the overlap rules to yield the final result. The
synchronization is set so that the30-bit multipliers require
1 and 4 clock cycles for the classical and hybrid Karatsuba
implementations, respectively.

The time and space consumptions after place and route
are shown in Table IV and compared with the results of
Grabbe et al. (2003) and the classical method. The second
column shows the number of clock cycles for a multiplication.
The third column represents the area in terms of number of
slices. This measure contains both logic elements, or LUTs,
and flip-flops used for pipelining. The fourth column is the
multiplication time as returned by the hardware synthesis tool.
Finally the last column shows the product of area and time in
order to compare the AT measures of our designs.

V. CONCLUSION

In this paper we have shown how combining algorithmic
techniques with platform dependent strategies can be used to
develop designs which are highly optimized for FPGAs. These
modules have been considered as appropriate implementation

TABLE IV

TIME AND AREA OF DIFFERENT240-BIT MULTIPLIERS

multiplier clock slices time AT
type cycles Slices× µs
classical 56 1582 0.523µs 827
the circuit of Fig. 5 54 1660 0.655µs 1087
hybrid (Fig. 6) 30 1480 0.378µs 559

targets for cryptographic purposes both as prototyping plat-
forms and as system on chips.

The benefits of hybrid implementations are well known for
software implementations, where the crossover points between
subquadratic and classical methods depend on the available
memory and processor word size. There seems to be no pre-
vious systematic investigation on how to apply these methods
efficiently for hardware implementations. We have shown that
a hybrid implementation mixing classical and asymptotically
fast recursive methods can result in significant area savings.

REFERENCES

[1] D. V. Bailey and C. Paar, “Optimal extension fields for fast arithmetic
in public-key algorithms,” inAdvances in Cryptology: Proceedings
of CRYPTO ’98,Santa Barbara CA, ser. Lecture Notes in Computer
Science, H. Krawczyk, Ed., no. 1462. Springer-Verlag, 1998, pp. 472–
485.

[2] R. E. Blahut, Fast Algorithms for Digital Signal Processing. Read-
ing MA: Addison-Wesley, 1985.

[3] D. G. Cantor, “On arithmetical algorithms over finite fields,” Journal of
Combinatorial Theory, Series A, vol. 50, pp. 285–300, 1989.

[4] Digital Signature Standard (DSS), U.S. Department of Commerce /
National Institute of Standards and Technology, January 2000, federal
Information Processings Standards Publication 186-2.

[5] J. von zur Gathen and J. Gerhard, “Arithmetic and factorization of
polynomials overF2,” in Proceedings of the 1996 International Sym-
posium on Symbolic and Algebraic Computation ISSAC ’96,Zürich,
Switzerland, Y. N. Lakshman, Ed. ACM Press, 1996, pp. 1–9.

[6] ——, Modern Computer Algebra, 2nd ed. Cambridge, UK: Cambridge
University Press, 2003, first edition 1999.

[7] J. von zur Gathen and M. Nöcker, “Polynomial and normal bases
for finite fields,” Journal of Cryptology, vol. 18, no. 4, pp. 337–355,
September 2005.

[8] J. von zur Gathen and J. Shokrollahi, “Efficient FPGA-based Karatsuba
multipliers for polynomials overF2,” in Selected Areas in Cryptography
(SAC 2005). Springer-Verlag, 2005, to appear.

[9] C. Grabbe, M. Bednara, J. Shokrollahi, J. Teich, and J. von zur Gathen,
“FPGA designs of parallel high performanceGF (2233) multipliers,”
in Proc. of the IEEE International Symposium on Circuits and Systems
(ISCAS-03), vol. II, Bangkok, Thailand, May 2003, pp. 268–271.

[10] D. Hankerson, A. Menezes, and S. Vanstone,Guide to Elliptic Curve
Cryptography. Springer-Verlag, 2003.

[11] M. Jung, F. Madlener, M. Ernst, and S. Huss, “A Reconfigurable
Coprocessor for Finite Field Multiplication inGF (2n),” in Workshop
on Cryptographic Hardware and Embedded Systems. Hamburg: IEEE,
April 2002.

[12] A. Karatsuba and Y. Ofman, “Multiplication of multidigit numbers on
automata,”Soviet Physics–Doklady, vol. 7, no. 7, pp. 595–596, January
1963, translated from Doklady Akademii Nauk SSSR, Vol. 145,No. 2,
pp. 293–294, July, 1962.

[13] Ç. K. Koç and S. S. Erdem, “Improved Karatsuba-Ofman Multiplication
in GF (2m),” US Patent Application, January 2002.

[14] P. L. Montgomery, “Five, Six, and seven-Term Karatsuba-Like Formu-
lae,” IEEE Transactions on Computers, vol. 54, no. 3, pp. 362–369,
March 2005.

[15] C. Paar, “Efficient VLSI Architectures for Bit-Parallel Computation in
Galois Fields,” Ph.D. dissertation, Institute for Experimental Mathemat-
ics, University of Essen, Essen, Germany, June 1994.

[16] A. Weimerskirch and C. Paar, “Generalizations of the Karatsuba Al-
gorithm for Efficient Implementations,” Ruhr-Universität-Bochum, Ger-
many, Tech. Rep., 2003.


