Joachim von zur Gathen

Jamshid Shokrollahi B-IT - Universität Bonn Email: jamshid@bit.uni-bonn.de

(6000) B-IT - Universität Bonn Email: gathen@bit.uni-bonn.de Email: gathen@bit.uni-bonn.de Motorty and the study different possibilities of implementing the study of the study different possibilities of implementing the study of the stu Karatsuba multipliers for polynomials over \mathbb{F}_2 on Field Programmable Gate Arrays (FPGAs).

This is a core task for implementing finite fields of characterist 22 Algorithmic and platform dependent optimizations yield efficient hardware designs. The resulting structure is hybrid in two different aspects. On the one hand, a combination of various methods decreases the number of bit operations. On the other hand, a mixture of sequential and combinational circuit design techniques including pipelining is used to design a circuit which can be adapted flexibly to time-area constraints. The approachboth theory and implementation-can be viewed as a further step towards taming the machinery of fast algorithmics for hardware applications.

I. INTRODUCTION

over

Arithmetic in finite fields is a central algorithmic task in cryptography. There are two types of groups associated to such fields: their multiplicative group of invertible elements, and elliptic (or hyperelliptic) curves. These can then be used in group-based cryptography, relying on the difficulty of computing discrete logarithms. Here we focus on fields of characteristic 2. The most fundamental task in arithmetic is multiplication. In our case, this amounts to multiplication of polynomials over \mathbb{F}_2 , followed by a reduction modulo the fixed point defining the field extension. This reduction can it set f be performed by using multiplication routines or by a smale hardware circuit when the polynomial is sparse. A trinoni al can be used in many cases, and it is conjectured that otherwise a pentanomial can be found (see von zur Gathen & Nocker (2006)). As to the other arithmetic operations, addition is bitwise XORing of vectors, squaring a special case of multiplication (much simplified by using a normal basis), and ingention more expensive and usually kept to a minimum.

 $-C_{has}$ and the multiply two *n*-bit polynomials require $\overline{\mathfrak{Q}}(n^2)$ bit operations. The Karatsuba algorithm redec \mathbb{E} this to $O(n^{\log_2 3})$, and fast Fourier transformations to $O_{\overline{4}} n \overline{4} \delta_{\overline{6}} n \log \log n$). The Cantor multiplier with a cost of $O_{\underline{z}}^{\underline{z}}$ $n_{\underline{z}}^{\underline{z}}$ $n_{\underline{z}}^{$ 2. but we do not study it here (see Cantor (1989) and von zur Kathen & Gerhard (1996)). Traditional lore held that asymptotically fast methods are not suitable for hardware. We dsprove this view in the present paper, continuing the work bý Grabbe et al. (2003).

Our methods are asymptotically good and thus efficient for large degrees. Sophisticated implementation strategies decrease the crossover points between different algorithms and make them efficient for practical applications. Much care is

required for software implementations (see von zur Gathen & Gerhard (2003), chapter 8, and Shoup's NTL software). The Karatsuba method has the lowest crossover point with the classical algorithm.

The Karatsuba algorithm for multiplication of large integers was introduced by Karatsuba & Ofman (1963). It is commonly used recursively, but here we combine it with other algorithms for hardware realization of cryptographic tasks.

FPGAs provide useful implementation platforms for cryptographic algorithms both for prototyping where early error finding is possible, and as systems on chips where system parameters can easily be changed to satisfy evolving security requirements.

Efficient software implementations of Karatsuba multipliers using general purpose processors have been discussed thoroughly in the literature (see Paar (1994), Bailey & Paar (1998), Koç and Erdem (2002), Hankerson et al. (2003), chapter 2, and von zur Gathen & Gerhard (2003), chapter 8), but hardware implementations have attracted less attention. The only works known to us are Jung et al. (2002), Weimerskirch & Paar (2003), and Grabbe et al. (2003). Jung et al. (2002) and Weimerskirch & Paar (2003) suggest to use algorithms with $O(n^2)$ operations to multiply polynomials which contain a prime number of bits. Their proposed number of bit operations is by a constant factor smaller than the classical method but asymptotically larger than that for the Karatsuba method. Grabbe et al. (2003) propose a hybrid implementation of the Karatsuba method which reduces the latency by pipelining and by mixing sequential and combinational circuits.

The present work tries to decrease the resource usage of polynomial multipliers using both known algorithmic and platform dependent methods. Our Table II presents the best choice of hybrid multiplication algorithms for polynomials with at most 8192 bits, as long as the choice is restricted to six (recursive) methods, namely classical, Karatsuba, a variant of Karatsuba for quadratic polynomials, and three other methods proposed by Montgomery (2005). The "best" refers to minimizing the area measure. This is an algorithmic and machine independent optimization. In an earlier implementation (Grabbe et al. (2003)) we had designed a 240-bit multiplier on a XC2V6000-4FF1517-4 FPGA. We re-use this structure and decrease its area and time by using the methods developed in Section III and better usage of pipelining deployed in this structure. Using this 240-bit multiplier we cover in particular the 233-bit polynomials proposed by NIST for elliptic curve cryptography in the Digital Signature Standard (DSS) (2000).

The structure of this paper is as follows. First the Karatsuba method and its cost are studied in Section II. Section III is devoted to optimized hybrid Karatsuba implementations. Section IV shows how a hybrid structure and pipelining together with the reduction of number of recursion levels improves resource usage in the circuit from Grabbe et al. (2003) and Section V concludes the paper.

Parts of this paper have appeared in von zur Gathen & Shokrollahi (2005). The inclusion of Montgomery multiplication in Table II and the corresponding considerations are presented here for the first time.

II. THE KARATSUBA ALGORITHM

The three coefficients of the product $(a_1x+a_0)(b_1x+b_0) = a_1b_1x^2 + (a_1b_0 + a_0b_1)x + a_0b_0$ are "classically" computed with 4 multiplications and 1 addition from the four input coefficients a_1 , a_0 , b_1 , and b_0 . The following formula uses only 3 multiplications and 4 additions:

$$(a_1x + a_0)(b_1x + b_0) = a_1b_1x^2 + ((a_1 + a_0)(b_1 + b_0) - a_1b_1 - a_0b_0)x + a_0b_0.$$
(1)

We call this the 2-segment Karatsuba method or K_2 . Setting $m = \lceil n/2 \rceil$, two *n*-bit polynomials (thus of degrees less than *n*) can be rewritten and multiplied using the formula:

$$(f_1x^m + f_0)(g_1x^m + g_0) = h_2x^{2m} + h_1x^m + h_0$$

where f_0, f_1, g_0 , and g_1 are *m*-bit polynomials respectively. The polynomials h_0 , h_1 , and h_2 are computed by applying the Karatsuba algorithm to the polynomials f_0 , f_1 , g_0 , and g_1 as single coefficients and adding coefficients of common powers of *x* together. This method can be applied recursively. The circuit to perform a single stage is shown in Figure 1.

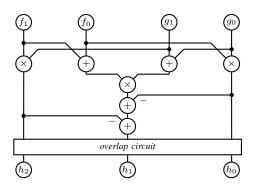


Fig. 1. One level of the Karatsuba multiplication

The "overlap circuit" adds common powers of x in the three generated products. For example if n = 8, then the input polynomials have degree at most 7, each of the polynomials f_0, f_1, g_0 , and g_1 is 4 bits long and thus of degree at most 3, and their products will be of degree at most 6. The effect of the overlap module in this case is represented in Figure 2, where coefficients to be added together are shown in the same columns.

Figures 1 and 2 show that we need three multiplication calls at size $m = \lceil n/2 \rceil$ and some adders: 2 for input, 2 for output,

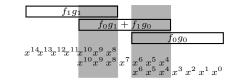


Fig. 2. The overlap circuit for the 8-bit Karatsuba multiplier

and 2 for the overlap module of lengths m, 2m - 1, and m - 1 respectively. Below we consider various algorithms A of a similar structure. We denote the size reduction factor, the number of multiplications, input adders, output adders, and the total number of bit operations to multiply two *n*-bit polynomials in A by b_A , mul_A , ia_A , oa_A , and $M_A(n)$, respectively. Then

$$M_A(n) = \max_A M(m) + ia_A m + oa_A (2m-1) + 2(b_A - 1)(m-1),$$
(2)

where $m = \lceil n/b_A \rceil$ and M(m) is the cost of the multiplication call for *m*-bit polynomials. For $A = K_2$, this becomes:

$$M_{K_2}(n) = 3 M(m) + 8m - 4, \quad m = \lceil n/2 \rceil.$$

Our interest is not the usual recursive deployment of this kind of algorithms, but rather the efficient interaction of various methods. We include in our study the classical multiplication C_b on b-bit polynomials and algorithms for 3, 5, 6, and 7-segment polynomials which we call K_3 (3-segment Karatsuba, see Blahut (1985), Section 3.4, page 85), M_5 , M_6 , and M_7 (see Montgomery (2005)). The parameters of these algorithms are given in Table I.

TABLE I THE PARAMETERS OF SOME MULTIPLICATION METHODS

Algorithm A	b_A	mul_A	ia _A	oa_A
K_2	2	3	2	2
K_3 M_7	3	$^{6}_{13}$	$\frac{6}{22}$	$\frac{6}{30}$
M_5 M_6	6	17	61	40
M_7^0	$\tilde{7}$	$\overline{22}$	$\tilde{21}$	$5\bar{5}$
$C_b, b \ge 2$	b	b^2	0	$(b-1)^2$

III. HYBRID DESIGN

For fast multiplication software, a judicious mixture of table look-up and classical, Karatsuba and even faster (FFT) algorithms must be used (see von zur Gathen & Gerhard (2003), chapter 8, and Hankerson et al. (2003), chapter 2). Suitable techniques for hardware implementations are not thoroughly studied in the literature. In contrast to software implementations where the word-length of the processor, the datapath, and the set of commands are fixed, hardware designers have more flexibility. In software solutions speed and memory usage are the measures of comparison whereas hardware implementations are generally designed to minimize the area and time, simultaneously or with some weight-factors. In this section we determine the least-cost combination of any basic routines for bit sizes up to 8192. Here, cost corresponds to the total number of operations in software, and the area in hardware. Using pipelining and the structure of Grabbe et al. (2003) this can also result in multipliers which have small time-area parameters.

We present a general methodology for this purpose. We start with a toolbox \mathcal{T} of basic algorithms, namely $\mathcal{T} = \{\text{classical}, K_2, K_3, M_5, M_6, M_7\}$. Each $A \in \mathcal{T}$ is defined for b_A -bit polynomials. We denote by \mathcal{T}^* the set of all iterated (or hybrid algorithms) compositions from \mathcal{T} ; this includes \mathcal{T} and the identity. Figure 3 shows the hierarchy of a hybrid algorithm for 12-bit polynomials using our toolbox \mathcal{T} . At the top level, K_2 is used, meaning that the 12-bit input polynomials are divided into two 6-bit polynomials each and K_2 is used to multiply the input polynomials as if each 6-bit polynomial were a single coefficient. K_2C_3 performs the three 6-bit multiplications. One of these 6-bit multipliers is circled in Figure 3 and unravels as follows:

$$(a_5x^5 + \dots + a_0) \cdot (b_5x^5 + \dots + b_0) = ((a_5x^2 + a_4x + a_3)x^3 + (a_2x^2 + a_1x + a_0)) \cdot ((b_5x^2 + b_4x + b_3)x^3 + (b_2x^2 + b_1x + b_0)) = (A_1x^3 + A_0) \cdot (B_1x^3 + B_0) = A_1B_1x^6 + ((A_1 + A_0)(B_1 + B_0) - A_1B_1 - A_0B_0)x^3 + A_0B_0$$

Each of A_1B_1 , $(A_1 + A_0)(B_1 + B_0)$, and A_0B_0 denotes a multiplication of 3-bit polynomials and will be done classically using the formula

$$(a_2x^2 + a_1x + a_0)(b_2x^2 + b_1x + b_0) = a_2b_2x^4 + (a_2b_1 + a_1b_2)x^3 + (a_2b_0 + a_1b_1 + a_0b_2)x^2 + (a_1b_0 + a_0b_1)x + a_0b_0.$$

Thick lines under each C_3 indicate the nine 1-bit multiplications to perform C_3 . We designate this algorithm, for 12bit polynomials, with $K_2K_2C_3 = K_2^2C_3$ where the left hand algorithm, in this case K_2 , is the topmost algorithm.

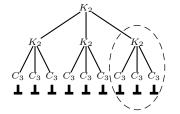


Fig. 3. The multiplication hierarchy for $K_2K_2C_3$

As in (2), the cost of a hybrid algorithm $A_2A_1 \in \mathcal{T}^*$ with $A_1, A_2 \in \mathcal{T}^*$ satisfies

$$\begin{split} \mathsf{M}_{A_{2}A_{1}}(n) \leq & \mathsf{mul}_{A_{2}} \; \mathsf{M}_{A_{1}}(m) + \mathsf{ia}_{A_{2}} \; m + \\ & \mathsf{oa}_{A_{2}} \; (2m-1) + 2(\mathsf{b}_{A_{2}} - 1)(m-1), \quad (3) \end{split}$$

where $M_A(1) = 1$ for any $A \in \mathcal{T}^*$ and $m = \lceil n/(\mathbf{b}_{A_2}\mathbf{b}_{A_1}) \rceil = \lceil \lceil n/\mathbf{b}_{A_2} \rceil/\mathbf{b}_{A_1} \rceil$. Each $A \in \mathcal{T}^*$ has a well-defined input length \mathbf{b}_A , given in Table I for basic tools and by multiplication for composite methods. We extend the notion by applying A also to fewer than \mathbf{b}_A bits, by padding with leading zeros, so that $M_A(m) = M_A(\mathbf{b}_A)$ for $1 \leq m \leq \mathbf{b}_A$. For some purposes, one might consider the savings due to such a-priori-zero

coefficients. Our goal, however, is a pipelined structure where such a consideration cannot be incorporated. The minimum hybrid cost over T is

$$\mathsf{M}(n) = \min_{A \in \mathcal{T}^*, \mathsf{b}_A \ge n} \mathsf{M}_A(n).$$

We first show that the infinitely many classical algorithms in \mathcal{T} do not contribute to optimal methods beyond size 12.

Lemma 1: For $A \in \mathcal{T}^*$ and integers $m \ge 1$ and $b, c \ge 2$ we have the following.

- (i) $\mathsf{M}_{C_bC_c}(bc) = \mathsf{M}_{C_{bc}}(bc)$.
- (*ii*) $\mathsf{M}_{C_bA}(\mathsf{b}_A bm) \ge \mathsf{M}_{AC_b}(\mathsf{b}_A bm).$
- (*iii*) For any *n*, there is an optimal hybrid algorithm all of whose components are non-classical, except possibly the right most one.
- (iv) If $n \ge 13$, then C_n is not optimal.

We now present a dynamic programming algorithm which computes an optimal hybrid algorithm from \mathcal{T}^* for *n*-bit multiplication, for n = 1, 2, ...

Algorithm 1 Finding optimal algorithms in \mathcal{T}^*

Input: The toolbox $\mathcal{T} = \{ \text{classical}, K_2, K_3, M_5, M_6, M_7 \}$ and an integer N.

Output: Table T with N rows containing the optimal algorithms for $1 \le n \le N$ and their costs.

1: Enter the classical algorithm and cost 1 for n = 1 into T

2: for n = 2, ..., N do

3: $bestalgorithm \leftarrow unknown, mincost \leftarrow +infinity$

- 4: **for** $A = K_2, \ldots, M_7$ **do**
- 5: Compute $M_A(n)$ according to (2)
- 6: **if** $M_A(n) < mincost$ **then**
- 7: $bestalgorithm \leftarrow A, mincost \leftarrow M_A(n)$
- 8: **end if**

```
9: end for
```

```
10: if n < 13 then
```

```
11: \mathsf{M}_{C_n} \leftarrow 2n^2 - 2n + 1
```

```
12: if M_{C_n}(n) < mincost then
```

13: $bestalgorithm \leftarrow C_n, mincost \leftarrow \mathsf{M}_{C_n}(n)$

14: end if

```
15: end if
```

17: end for

16: Enter bestalgorithm and mincost for n into T

Theorem 2: Algorithm 1 works correctly as specified. The operations (arithmetic, table look-up) have integers with $O(\log N)$ bits as input, and their total number is O(N).

The optimal recursive method for each polynomial length up to 8192 is shown in Table II. The column "length" of this table represents the length (or the range of lengths) of polynomials for which the method specified in the column "method" must be used. As an example, for 194-bit polynomials the method M_7 is used at the top level. This requires 22 multiplications of polynomials with $\lceil 194/7 \rceil = 28$ bits, which are done by means of K_2 on top of 14-bit polynomials. These 14bit multiplications are executed again using K_2 and finally polynomials of length 7 are multiplied classically. Thus the

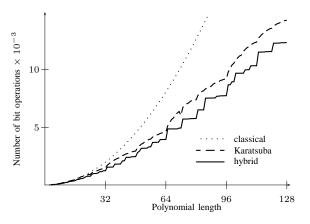


Fig. 4. The number of bit operations of the classical, recursive Karatsuba, and the hybrid methods to multiply polynomials of degree smaller than 128

 TABLE II

 Optimal multiplications for polynomial lengths up to 8192

length	method	length	method	length	method
1 - 5	$C_1 - C_5$	301 - 320	K2	1603 - 1610	M_5
6	K_{2}^{-1}	321 - 343	M_7	1611 - 1728	M_6
7	C_7	344 - 360	M'_5	1729 - 1792	M_{7}
8	K_2	361 - 384	K_2	1793 - 1800	M_5
9	K_3^{-}	385 - 392	M_7	1801 - 1920	M_6
10	K_2^0	393 - 400	M_5	1921 - 1960	M_7^0
11	C_{11}	401 - 420	M_7	1961 - 2048	K_2
12 - 14	K_2	421 - 432	K_2	2049 - 2058	M_7^2
15	K_3^2	433 - 448	M_{7}	2059 - 2100	M_5
16 - 20	K_2^3	449 - 450	M_5	2101 - 2240	M_7^3
21	M_7^2	451 - 454	K_2^3	2241 - 2304	M'_6
22 - 24	K_2'	455	M_5^2	2305 - 2352	$M\tilde{\tau}$
25	M_5^2	456	K_2^3	2353 - 2400	M_6'
26 - 27	K ₃	457 - 460	M_5^2	2401 - 2560	K_2^0
28 - 40	K_2^3	461 - 512	K_2^3	2561 - 2744	M_7^2
41 - 42	M_7^2	513 - 525	M_5^2	2745 - 2800	M'_5
43 - 45	K_3	526 - 560	M_7^3	2801 - 2880	M_6^3
46 - 48	K_2^3	561 - 576	K_2	2881 - 3072	K_2^0
49	M_7^2	577 - 588	M_7^2	3073 - 3136	M_7^2
50	M_5'	589 - 600	M_5	3137 - 3200	M_5'
51 - 64	K2	601 - 640	K_2^{5}	3201 - 3456	M6
65 - 70	M_7	641 - 686	M_7^2	3457 - 3584	M_7^{0}
71 - 80	K2	687 - 720	M_5	3585 - 3840	M_6
81 - 84	M_7^2	721 - 768	$K_2^{m_5}$	3841 - 3920	M_7^{0}
81 - 84 85 - 96	K2	721 - 703 769 - 784	$M_7^{\Lambda_2}$	3921 - 4096	K_2^{M7}
97 - 98	M_7	765 - 784 785 - 800	M_5^{M7}	4097 - 4116	$M_7^{\Lambda_2}$
99 - 100	M7 M5	801 - 840	M_7^{5}	4097 - 4110 4117 - 4200	M_5^{7}
101 - 105	M_7^{5}	841 - 864	M_6^{M7}	4201 - 4320	M_6^{105}
101 - 103 106 - 108	K_2^{M7}	865 - 896	$M_{7}^{M_{6}}$	4201 - 4320 4321 - 4480	M6 M-
100 - 100 109 - 112	M_7^2	897 - 900	M_5	4481 - 4608	M_{6}^{M7}
109 - 112 113 - 128	K_2^{M7}	901 - 912	$M_6^{M_5}$	4609 - 4704	M_{7}^{6}
113 - 123 129 - 140	M-	913 - 920	$M_5^{M_6}$	4009 - 4704 4705 - 4800	M_6^{M7}
129 - 140 141 - 144	$M_7 K_2$	913 - 920 921 - 936	$M_6^{M_5}$	4703 - 4800 4801 - 5120	$K_2^{M_6}$
141 - 144 145 - 147	M_7	937 - 940	M6	5121 - 5184	$M_6^{\Lambda_2}$
143 - 147 148 - 150	M_5^{N17}	941 - 960	M_6°	5121 - 5184 5185 - 5488	M_{7}^{6}
151 - 160	$K_2^{m_5}$	961 - 980	M_7^{6}	5489 - 5600	M_5
161 - 168		981 - 1024	K2	5601 - 5880	Ma
161 - 168 169 - 175	$M_{5}^{M_{7}}$	1025 - 1024	M7	5881 - 5888	$M_6 K_2$
109 - 175 176 - 192	K_2^{M5}	1025 - 1029 1030 - 1050	M_5^{M7}	5889 - 5952	$M_6^{\Lambda_2}$
170 - 192 193 - 196	M_7	1050 - 1050 1051 - 1120	$M_7^{M_5}$	5953 - 6016	K2
193 - 190 197 - 200	M_5^{M7}	1051 - 1120 1121 - 1152	M-	6017 - 6144	M-
197 = 200 201 - 210	M-	1121 - 1152 1153 - 1176	M_{6}	6145 - 6272	M_{6}
201 - 210 211 - 216	M_7^0	1153 - 1176 1177 - 1200	M_7^0	6145 - 6272 6273 - 6400	M_7^0
211 - 216 217 - 224	$M_7^{K_2}$	1177 - 1200 1201 - 1280	M_5	6273 - 6400 6401 - 6912	M_5
217 - 224 225	M7	1201 - 1280 1281 - 1372	K_2^0	6913 - 7168	M6 M6
225 226 - 256	M_5'	1281 - 1372 1373 - 1440	M_7	7169 - 7680	M_7^0
226 - 256 257 - 280	K_2	1373 - 1440 1441 - 1536	M_5	7681 - 7840	M_{6}
257 - 280 281 - 288	M_7	1441 - 1536 1537 - 1568	K_2	7681 - 7840 7841 - 8064	M_7^0
281 - 288 289 - 294	K_2	1537 - 1568 1569 - 1600	M_7		M ₆
	M_7		M_5	8065 - 8192	K_2°
295 - 300	M_5	1601 - 1602	M_6°		

optimal algorithm is $A = M_7 K_2^2 C_7$, of total cost $M_A(194) = 22 \cdot M_{K_2^2 C_7}(28) + 3937 = 26575$ bit operations.

Figure 4 shows the recursive cost of the Karatsuba method, as used in Weimerskirch & Paar (2003), of our hybrid method, and the classical method.

Lemma 1 implies that the classical methods need only be considered for $n \leq 12$. We can prune \mathcal{T} further and now illustrate this for K_3 . One first checks that $M_{AK_3B}(3b_Ab_B) < M_{K_3AB}(3b_Ab_B)$ for $A \in \{K_2, M_5, M_6, M_7\}$, $B \in \mathcal{T}^*$, and $b_B \geq 2$. Therefore for K_3 to be the top-level tool in an optimal algorithm over \mathcal{T} the next algorithm to it must be either K_3 or C_b for some b. Since the classical method is not optimal for $n \geq 13$ and Table II does not list K_3 in the interval 46 to $3 \cdot 45 = 135$, K_3 is not the top-level tool for $n \geq 135$. Table III gives the asymptotic behavior of the costs of the algorithms in the toolbox \mathcal{T} when used recursively. It is expected that for very large polynomials only the asymptotically fastest method, namely M_6 , should be used. But due to the tiny differences in the cost exponents this seems to happen only for very large polynomial lengths, beyond the sizes which are shown in Table II.

TABLE III Asymptotical cost $O(n^k)$ of algorithms in the toolbox ${\mathcal T}$

algorithm	k
$C_b, b \ge 2$	$\log_b b^2 = 2$
K_2	$\log_2 3 \approx 1.5850$
K_3	$\log_3 6 \approx 1.6309$
M_5	$\log_5 13 \approx 1.5937$
M_6	$\log_6 17 \approx 1.5812$
M_7	$\log_7 22 \approx 1.5885$

IV. HARDWARE STRUCTURE

The delay of a fully parallel combinational Karatsuba multiplier is $4\lceil \log_2 n \rceil$, which is almost 4 times that of a classical multiplier, namely $\lceil \log_2 n \rceil + 1$. It is the main disadvantage of the Karatsuba method for hardware implementations. Grabbe et al. (2003) suggested as solution a pipelined Karatsuba multiplier for 240-bit polynomials, shown in Figure 5.

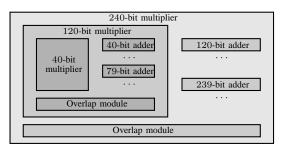


Fig. 5. The 240-bit multiplier by Grabbe et al. (2003)

The innermost part of the design is a combinational pipelined 40-bit classical multiplier equipped with 40-bit and 79-bit adders. The multiplier, these adders, and the overlap module, together with a control circuit, constitute a 120-bit multiplier. The algorithm is based on a modification of a Karatsuba formula for 3-segment polynomials. Another suitable control circuit performs the 2-segment Karatsuba method for 240 bits by means of a 120-bit recursion, 239-bit adders, and an overlap circuit.

We improve this multiplier with respect to both area and time. The multiplier of Grabbe et al. (2003) can be seen as implementing the factorization $240 = 2 \cdot 3 \cdot 40$. Table III implies that it is usually best to apply the 3-segment Karatsuba for small inputs. Translating this into hardware reality, the new design is based on the factorization $240 = 2 \cdot 2 \cdot 2 \cdot 30$.

The new 30-bit multiplier follows the recipe of Table II. It is a combinational circuit without feedback and the design goal is to minimize its area. In general, k pipeline stages can

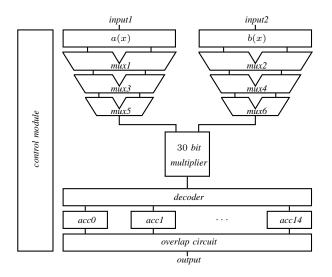


Fig. 6. The structure of the Karatsuba multiplier with few recursions

perform n parallel multiplications in n + k - 1 instead of nk clock cycles without pipelining.

In the recursive Karatsuba multiplier of Grabbe et al. (2003), the core of the system, namely the combinational multiplier, is idle for about half of the time. To improve the resource usage, we reduce the communication overhead by decreasing the levels of recursion. In this new 240-bit multiplier, an 8segment Karatsuba is applied at once to 30-bit polynomials. We computed symbolically the formulas describing three recursive levels of Karatsuba, and implemented these formulas directly.

The new circuit is shown in Figure 6. The multiplexers *mux1* to *mux6* are adders at the same time. Their inputs are 30-bit sections of the two original 240-bit polynomials which are added according to the Karatsuba rules. Now their 27 output pairs are pipelined as inputs into the 30-bit multiplier. The 27 corresponding 59-bit polynomials are subsequently combined according to the overlap rules to yield the final result. The synchronization is set so that the 30-bit multipliers require 1 and 4 clock cycles for the classical and hybrid Karatsuba implementations, respectively.

The time and space consumptions after place and route are shown in Table IV and compared with the results of Grabbe et al. (2003) and the classical method. The second column shows the number of clock cycles for a multiplication. The third column represents the area in terms of number of slices. This measure contains both logic elements, or LUTs, and flip-flops used for pipelining. The fourth column is the multiplication time as returned by the hardware synthesis tool. Finally the last column shows the product of area and time in order to compare the AT measures of our designs.

V. CONCLUSION

In this paper we have shown how combining algorithmic techniques with platform dependent strategies can be used to develop designs which are highly optimized for FPGAs. These modules have been considered as appropriate implementation

TABLE IV

TIME AND AREA OF DIFFERENT 2	240-bit multipliers
------------------------------	---------------------

multiplier type	clock cycles	slices	time	$\frac{\mathbf{AT}}{\text{Slices} \times \mu s}$
classical	56	1582	$0.523 \mu s$	827
the circuit of Fig. 5	54	1660	$0.655 \mu s$	1087
hybrid (Fig. 6)	30	1480	$0.378 \mu s$	559

targets for cryptographic purposes both as prototyping platforms and as system on chips.

The benefits of hybrid implementations are well known for software implementations, where the crossover points between subquadratic and classical methods depend on the available memory and processor word size. There seems to be no previous systematic investigation on how to apply these methods efficiently for hardware implementations. We have shown that a hybrid implementation mixing classical and asymptotically fast recursive methods can result in significant area savings.

REFERENCES

- D. V. Bailey and C. Paar, "Optimal extension fields for fast arithmetic in public-key algorithms," in *Advances in Cryptology: Proceedings* of CRYPTO '98, Santa Barbara CA, ser. Lecture Notes in Computer Science, H. Krawczyk, Ed., no. 1462. Springer-Verlag, 1998, pp. 472– 485.
- [2] R. E. Blahut, Fast Algorithms for Digital Signal Processing. Reading MA: Addison-Wesley, 1985.
- [3] D. G. Cantor, "On arithmetical algorithms over finite fields," *Journal of Combinatorial Theory, Series A*, vol. 50, pp. 285–300, 1989.
- [4] Digital Signature Standard (DSS), U.S. Department of Commerce / National Institute of Standards and Technology, January 2000, federal Information Processings Standards Publication 186-2.
- [5] J. von zur Gathen and J. Gerhard, "Arithmetic and factorization of polynomials over F₂," in *Proceedings of the 1996 International Symposium on Symbolic and Algebraic Computation ISSAC '96*, Zürich, Switzerland, Y. N. Lakshman, Ed. ACM Press, 1996, pp. 1–9.
- [6] —, Modern Computer Algebra, 2nd ed. Cambridge, UK: Cambridge University Press, 2003, first edition 1999.
- [7] J. von zur Gathen and M. Nöcker, "Polynomial and normal bases for finite fields," *Journal of Cryptology*, vol. 18, no. 4, pp. 337–355, September 2005.
- [8] J. von zur Gathen and J. Shokrollahi, "Efficient FPGA-based Karatsuba multipliers for polynomials over F₂," in *Selected Areas in Cryptography* (*SAC 2005*). Springer-Verlag, 2005, to appear.
- [9] C. Grabbe, M. Bednara, J. Shokrollahi, J. Teich, and J. von zur Gathen, "FPGA designs of parallel high performance GF(2²³³) multipliers," in Proc. of the IEEE International Symposium on Circuits and Systems (ISCAS-03), vol. II, Bangkok, Thailand, May 2003, pp. 268–271.
- [10] D. Hankerson, A. Menezes, and S. Vanstone, *Guide to Elliptic Curve Cryptography*. Springer-Verlag, 2003.
- [11] M. Jung, F. Madlener, M. Ernst, and S. Huss, "A Reconfigurable Coprocessor for Finite Field Multiplication in GF(2ⁿ)," in Workshop on Cryptographic Hardware and Embedded Systems. Hamburg: IEEE, April 2002.
- [12] A. Karatsuba and Y. Ofman, "Multiplication of multidigit numbers on automata," *Soviet Physics–Doklady*, vol. 7, no. 7, pp. 595–596, January 1963, translated from Doklady Akademii Nauk SSSR, Vol. 145, No. 2, pp. 293–294, July, 1962.
- [13] Ç. K. Koç and S. S. Erdem, "Improved Karatsuba-Ofman Multiplication in GF(2^m)," US Patent Application, January 2002.
- [14] P. L. Montgomery, "Five, Six, and seven-Term Karatsuba-Like Formulae," *IEEE Transactions on Computers*, vol. 54, no. 3, pp. 362–369, March 2005.
- [15] C. Paar, "Efficient VLSI Architectures for Bit-Parallel Computation in Galois Fields," Ph.D. dissertation, Institute for Experimental Mathematics, University of Essen, Essen, Germany, June 1994.
- [16] A. Weimerskirch and C. Paar, "Generalizations of the Karatsuba Algorithm for Efficient Implementations," Ruhr-Universität-Bochum, Germany, Tech. Rep., 2003.