F&st arithmetic for polynomials ovéf;, in hardware

the explicit

8-14:20.)

. iz Joachim von zur Gathen Jamshid Shokrollahi
§ _§ B-IT - Universitat Bonn B-IT - Universitat Bonn
Q ;a Email: gathen@bit.uni-bonn.de Email: jamshid@bit.uni-bonn.de
PAbsact— We study different possibilities of implementing required for software implementations (see von zur Gathen

Kﬁratsu"ba multipliers for polynomials over F, on Field Pro- & Gerhard (2003), chaptes, and Shoup’s NTL software).

gigmnidble Gate Arrays (FPGAS). The Karatsuba method has the lowest crossover point with
“Thls is a core task for implementing finite fields of character . .
the classical algorithm.

ISE'CL 2z Algorlthmlc and platform dependent optimizations yield : o .
ieAt: hardware designs. The resulting structure is hybid in The Karatsuba algorithm for multiplication of large integie
two différent aspects. On the one hand, a combination of vadus ~was introduced by Karatsuba & Ofman (1963). It is commonly
m%thOﬁS decreases the number of bit operations. On the other ysed recursively, but here we combine it with other algamih
hand ?aemlxture of sequential and combinational circuit de®n t5, hardware realization of cryptographic tasks.

teghniqses including pipelining is used to design a circuitvhich . . .
C@ be adapted flexibly to time-area constraints. The approgh— FPGAs provide useful implementation platforms for cryp-

begh theory and implementation—can be viewed as a further sip tographic algorithms both for prototyping where early erro
towar&s:tamlng the machinery of fast algorithmics for hardware finding is possible, and as systems on chips where system
aplications. parameters can easily be changed to satisfy evolving sgcuri
] requirements.

Efficient software implementations of Karatsuba multigdie
metic in finite fields is a central algorithmic task inusing general purpose processors have been discussed thor-
raphy There are two types of groups associated doghly in the literature (see Paar (1994), Bailey & Paar 8)99
ields: their multiplicative group of invertible eleme, Koc¢ and Erdem (2002), Hankerson et al. (2003), chapter
fptic (or hyperelliptic) curves. These can then bedus2, and von zur Gathen & Gerhard (2003), chapter 8), but
gre p -based cryptography, relying on the difficulty ohardware implementations have attracted less attentibe. T
c'@ﬁmpug ing discrete logarithms. Here we focus on fields @hly works known to us are Jung et al. (2002), Weimerskirch

I3

clgar afi:ﬁ ristic2. The most fundamental task in arithmetic i® Paar (2003), and Grabbe et al. (2003). Jung et al. (2002) and

<l
2

mylt@gcatlon In our case, this amounts to multiplicatiof Weimerskirch & Paar (2003) suggest to use algorithms with
pglynéimals overF,, followed by a reduction modulo the O(n?) operations to multiply polynomials which contain a
fl@d ,pg)lynom|al defining the field extension. This reductioprime number of bits. Their proposed number of bit operation
cgn |tself be performed by using multiplication routinesbgr is by a constant factor smaller than the classical method
a;sm@l hardware circuit when the polynomial is sparse. But asymptotically larger than that for the Karatsuba metho
triflomgial can be used in many cases, and it is conjecturdd tiBrabbe et al. (2003) propose a hybrid implementation of the
o@uer@ﬁse a pentanomial can be found (see von zur Gatherk&ratsuba method which reduces the latency by pipelining an
NBcket (2006)). As to the other arithmetic operations,aid by mixing sequential and combinational circuits.

issbitwise XORing of vectors, squaring a special case of The present work tries to decrease the resource usage of
n@luﬁlﬁatlon (much simplified by using a normal basis)danpolynomial multipliers using both known algorithmic and
ingezsion more expensive and usually kept to a minimum. platform dependent methods. Our Table Il presents the best
ical methods to multiply twa-bit polynomials re- choice of hybrid multiplication algorithms for polynomsal
(n2) bit operations. The Karatsuba algorithm rewith at most8192 bits, as long as the choice is restricted
hIS toO(n'°e23), and fast Fourier transformations toto six (recursive) methods, namely classical, Karatsuba, a
nloglogn). The Cantor multiplier with a cost of variant of Karatsuba for quadratic polynomials, and thribeio
n)?(loglogn)?) is designed for fields of characteristicmethods proposed by Montgomery (2005). The “best” refers to
e do not study it here (see Cantor (1989) and vaninimizing the area measure. This is an algorithmic and ma-
v sthen & Gerhard (1996)). Traditional lore held thathine independent optimization. In an earlier implemeaotat
ﬁotlcally fast methods are not suitable for hardwdafe. (Grabbe et al. (2003)) we had designegia-bit multiplier on

— 5 F

d%pf(i\ﬁe this view in the present paper, continuing the woek XC2V6000-4FF1517-4 FPGA. We re-use this structure and
byg Graiabe et al. (2003). decrease its area and time by using the methods developed
Our methods are asymptotically good and thus efficieint Section 11l and better usage of pipelining deployed irs thi
for large degrees. Sophisticated implementation strasede- structure. Using thig40-bit multiplier we cover in particular
crease the crossover points between different algorithmds ahe 233-bit polynomials proposed by NIST for elliptic curve
make them efficient for practical applications. Much care iyptography in the Digital Signature Standard (DSS) (3000

CD

ight holder, an

I. INTRODUCTION

these documes

n

Forpokindgials over F.
¢ 01205:%113; over
w@mnmn thagy

;ﬁ?’@ g5

1
o
iethat aflDerse

erg

m)

h

et %’
sur cﬁ\h}m:}mﬁ(

it
s 1
omer&[ﬂbm_co

B ERR S
gg‘a&ﬂ%ﬂ
=33

The structure of this paper is as follows. First the Kara#sub I YT

method and its cost are studied in Section II. Section Illgs d fog,
voted to optimized hybrid Karatsuba implementations. iBact 214 13,12,11510,9 8
IV shows how a hybrid structure and pipelining together with A S

T X X xTxTx X

the reduction of number of recursion levels improves reseur
usage in the circuit from Grabbe et al. (2003) and Section V. Fig. 2. The overlap circuit for th&-bit Karatsuba multiplier
concludes the paper.

Parts of this paper have appeared in von zur Gathen &
Shokrollahi (2005). The inclusion of Montgomery multipli-and 2 for the overlap module of lengths:, 2m — 1, and
cation in Table Il and the corresponding considerations are— 1 respectively. Below we consider various algorithris

presented here for the first time. of a similar structure. We denote the size reduction factor,
the number of multiplications, input adders, output adders
Il. THE KARATSUBA ALGORITHM and the total number of bit operations to multiply twe

The three coefficients of the produet z+ao)(biz+bo) = bit polynomials in A by b, muly, ias, cax, and M4(n),
arb1x? + (a1bg + agb1)w + agby are “classically” computed respectively. Then
with 4 multiplications and1 addition from the four input _ :
coefficientsay, ag, b1, and bg. The following formula uses Ma(n) = ;(EI: Ml(;r(bgf 'a1;‘ m+oay (2m—1)+

only 3 multiplications and4 additions:
wherem = [n/b4] andM(m) is the cost of the multiplication
call for m-bit polynomials. ForA = K5, this becomes:

Mk,(n) =3 M(m)+8m —4, m=[n/2].

)

(a1I + ao)(blx + bo) = a1b1172+
((al + ao)(bl + bo) —aib; — aobo)x + apbg. (1)

We call this the2-segment Karatsuba method &f,. Setting . . .
m = [n/2], two n-bit polynomials (thus of degrees less than Our interest is not the usual recursive deployment of

n) can be rewritten and multiplied using the formula: this kind of algorithms, but rather the efficient interaatio
. . o . of various methods. We include in our study the classical
(f12™ + fo)(g12™ + go) = hox™™ + haz™ + ho, multiplication C, on b-bit polynomials and algorithms fa3,

where fo, f1, g0, and g1 are m-bit polynomials respectively. 9: 6, and7-segment polynomials whiph we cdil; (3-segment
The polynomialshg, hi1, and hy are computed by applying Karatsuba, see Blahut (1985), Section 3.4, page 88),Ms,

the Karatsuba algorithm to the polynomiafs, f:, go, and and M, (see Montgomery (2005)). The parameters of these
g1 as single coefficients and adding coefficients of comm@#gorithms are given in Table I.

powers ofz together. This method can be applied recursively. TABLE |

The circuit to perform a single stage is shown in Figure 1. THE PARAMETERS OF SOME MULTIPLICATION METHODS

g1 Algorithm A ba mul 4 [ED 0a A
Q‘P @ @ L S
K3 3 6 6 6
Ms 5 13 22 30
Msg 6 17 61 40
X X M~ 7 22 21 55
Cp,b>2 b b2 0 (b—1)2

I1l. HYBRID DESIGN
For fast multiplication software, a judicious mixture obta

| overlap circuit | look-up and classical, Karatsuba and even faster (FFT) algo

@ @ @ rithms must be used (see von zur Gathen & Gerhard (2003),
chapter8, and Hankerson et al. (2003), chap®r Suitable

Fig. 1. One level of the Karatsuba multiplication techniques for hardware implementations are not thorqughl

studied in the literature. In contrast to software impletaen

The “overlap circuit” adds common powers:ofn the three tions where the word-length of the processor, the datapath,
generated products. For examplerif = 8, then the input the set of commands are fixed, hardware designers have more
polynomials have degree at mdsteach of the polynomials flexibility. In software solutions speed and memory usage ar
fo, f1,90, and g1 is 4 bits long and thus of degree at mosthe measures of comparison whereas hardware implementa-
3, and their products will be of degree at mdéstThe effect tions are generally designed to minimize the area and time,
of the overlap module in this case is represented in Figurestnultaneously or with some weight-factors. In this settio
where coefficients to be added together are shown in the sanedetermine the least-cost combination of any basic restin
columns. for bit sizes up to8192. Here, cost corresponds to the total

Figures 1 and 2 show that we need three multiplication caltsimber of operations in software, and the area in hardware.
at sizem = [n/2] and some adder&:for input, 2 for output, Using pipelining and the structure of Grabbe et al. (2003)

this can also result in multipliers which have small timeaar coefficients. Our goal, however, is a pipelined structuremgh

parameters. such a consideration cannot be incorporated. The minimum
We present a general methodology for this purpose. Wgbrid cost over7 is

start with a toolbox7 of basic algorithms, namely = .

{classical K5, K3, M5, Mg, M }. EachA € T is defined for M(n) = AG’ZI’I*l-,ll?AZn Ma(n).

b-bit polynomials. We denote by™ the set of all iterated We first show that the infinitely many classical algorithms

(or hybriq algqrithms) compositions froriT_; this includes? 13 7 do not contribute to optimal methods beyond size
and the identity. Figure 3 shows the hierarchy of a hybri Lemma 1:For A € T* and integersn > 1 andb, ¢ > 2 we
algorithm for 12-bit polynomials using our toolbox . At have the foliowing = =

the top level, K> is used, meaning that th&2-bit input ,
polynomials are divided into twé-bit polynomials each and (_') Ma,c. (be) = Mg, (be).

K is used to multiply the input polynomials as if eagtbit (1) Mg, a(babm) = Mag, (babm). , ,

polynomial were a single coefficienk,C'; performs the three (ii) For anyn, there is an optimal hy_b”d algorithm al_l of
6-bit multiplications. One of thes@-bit multipliers is circled whose components are non-classical, except possibly the

in Figure 3 and unravels as follows: __ fghtmostone. _
(iv) If n > 13, thenC,, is not optimal.
(asz® +--- 4 ag) - (bsx® + -+ + bg) = We now present a dynamic programming algorithm which
((asz® + asz + az)a® + (a22% + a1 + ao)) computes an optimal hybrid algorithm fromi* for n-bit
(b52® + ba + by)z® + (boa? + baz + bo)) = multiplication, forn =1,2,....
(A1a® + Ag) - (Biz® + By) = A1 Biz®+ Algorithm 1 Finding optimal algorithms ir7 *
((A1 4 Ao)(B1 + By) — A1 By — AgBo)z® + Ay By Input: The toolbox7 = {classical K., K3, M5, Mg, M7}

and an integetV.
Output: Table T with N rows containing the optimal algo-
rithms for1 < n < N and their costs.
1: Enter the classical algorithm and cdsfor n =1 into T’
(a2x2 + a1z + ao)(ngQ +bix + bO) = a2b2x4—|— 2.forn=2,...,N do
(azb1 + a1bs)a® + (azbo + a1by + aghs)z?+ bestalgorithm «— unknown,mincost « +infinity

;)) for A= Ks,...,M; do
(a1bo + aob1)z + aobo. ComputeM 4 (n) according to (2)

3
4
5

Thick lines under eactC; indicate the ninel-bit multipli- © if Ma(n) < mincost then
-,
8
9

Each of A1 By, (A1 + Ap)(B1 + Bop), and AypBy denotes a
multiplication of3-bit polynomials and will be done classically
using the formula

cations to perfornCs. We designate this algorithm, fdi2- bestalgorithm — A, mincost — Ma(n)
bit polynomials, withK, K>C5 = K2Cs where the left hand end if

algorithm, in this caseéss, is the topmost algorithm. gnd for
10: if n < 13 then

A 11: Mc, — 2n%—2n+1
/IJ\//" ~ 12: if M¢,, (n) < mincost then
it ;oK 13 bestalgorithm «— Cy,, mincost — M¢, (n)
C/J\c /JX{ /J\c ! 14: end if
3 C3 C3 C3 C3 3\03 3 C3 15: end if
1

1 1111l \J\- 1 J7/ 16: Enterbestalgorithm andmincost for n into T
/s

~— 17: end for
Fig. 3. The multiplication hierarchy fof{s K2C3

. . . . Theorem 2:Algorithm 1 works correctly as specified. The
AAZIn (?; the.c]?st of a hybrid algorithm, A, € 7+ with operations (arithmetic, table look-up) have integers with
1,42 € 77 satisties O(log N) bits as input, and their total numberG§ N).
Ma,a, (n) <mula, My, (m) +iaa, m+ The optimal recursive method for each polynomial length up
to 8192 is shown in Table Il. The column “length” of this table
034, (2m —1)+2(ba, = 1)(m —1), (3 represents the length (or the range of lengths) of polynismia
whereM (1) = 1 forany A € 7* andm = [n/(ba,ba,)] = for which the method specified in the column “method” must
[[n/ba,]/ba,|. EachA € T* has a well-defined input lengthbe used. As an example, f@4-bit polynomials the method
b4, given in Table | for basic tools and by multiplication forM; is used at the top level. This requirg® multiplications
composite methods. We extend the notion by applydnglso of polynomials with [194/7] = 28 bits, which are done
to fewer thanb 4 bits, by padding with leading zeros, so thaby means ofKy on top of 14-bit polynomials. Thesel4-
Ma(m) = My(ba) for 1 < m < by. For some purposes,bit multiplications are executed again usig, and finally
one might consider the savings due to such a-priori-zepolynomials of length7 are multiplied classically. Thus the

e Table Il gives the asymptotic behavior of the costs of the
7 g algorithms in the toolboX” when used recursively. It is ex-
(e}
; pected that for very large polynomials only the asymptditica
5 101 fastest method, namel\/s, should be used. But due to the tiny
£ differences in the cost exponents this seems to happen only
o for very large polynomial lengths, beyond the sizes whiah ar
5 ol shown in Table II.
s | e classical
g TABLE Il
g -—- Karqtsuba L
z ——— hybrid ASYMPTOTICAL COSTO(n") OF ALGORITHMS IN THE TOOLBOX7
3‘2 6}4 9}6 1;8 algorithm k
2
Polynomial length Cryb =2 log, b = 2
Ko log, 3 ~ 1.5850
Fig. 4. The number of bit operations of the classical, recar&aratsuba, Ks logz 6 ~ 1.6309
and the hybrid methods to multiply polynomials of degree lfmahan 128 Ms logs 13 &~ 1.5937
Mg logg 17 ~ 1.5812
TABLE II My log, 22 ~ 1.5885
OPTIMAL MULTIPLICATIONS FOR POLYNOMIAL LENGTHS UP TO8192
e S R S L 1 R 1 LM LS IV. HARDWARE STRUCTURE
? &2 341360 | ML | 1720 _i7os | M o
8 X3 sol-dsd | kg | 17031800 | Mo The delay of a fully parallel combinational Karatsuba mul-
19 A2 e AE | 10a1 Zh0s | ¥r tiplier is 4[log, n], which is almost times that of a classical
12 — 14 2 421 — 432 K. 2049 — 2058 M~y
15 K5 433 — 413 | M7 | 2059 —2100 | Mg multiplier, namely[log, n] + 1. It is the main disadvantage of
TN S V7 I et < B [1 o the Karatsuba method for hardware implementations. Grabb
2! T st g 6 e Karatsuba method for hardware implementations. Grabbe
2252 fved %8 K5 | 3383 " %G00 | g : plernen
20 =27 K3 a7 — 460 a5 | 2301 - 2560 | K3 et al. (2003) suggested as solution a pipelined Karatsuba
1508 %zz s | M5 | 2Tab - 2800 kgg multiplier for 240-bit polynomials, shown in Figure 5.
46 — 48 Ko 561 — 576 K. 2881 — 3072 K.
49 M7 577 — 588 M7 3073 — 3136 M7
570 Ms 589 - 600 Mg 3137 - 3200 Mg 220bit muItipIier
85— %0 el 641~ Gs6 | A2 | 3157 —3saq | MO S
71 — 80 Ko 687 — 720 My 3585 — 3840 Mg 120-bit multiplier
81 — 84 M7 721 — 768 Ko 3841 — 3920 M7 . -
85 — 96 Ko 769 — 784 M7 3921 — 4096 K [40-bit adde} [120-bit adder |
97 — 98 M7 785 — 800 Mg 4097 — 4116 M7
101 — o5 ire 81— 804 | b | dzoi_asz0 | A1 40-bit - o
T - G i : Itipli 5
100~ 193 fved 897 —o00 | aL | 4431 —acos | b mutiplier _
113 — 128 K 901 — 912 Mg 4609 — 4704 My ..
129 — 140 M~ 913 — 920 Mg 4705 — 4800 Mg
141 — 144 K 921 — 936 Mg 4801 — 5120 Ko e
145 — 147 My 937 — 940 Mg 5121 — 5184 Mg [Overlap module]
148 — 150 Ms 941 — 960 Mg 5185 — 5488 M~y
151 — 160 K 961 — 980 M~ 5489 — 5600 M5y
161 — 168 M~ 981 — 1024 K. 5601 — 5880 Mg
176 ~ 163 yis3 1030 — 1030 | ML | 5880 — om0 | A2 | Overlap module |
193 — 196 M~ 1051 — 1120 M? 5953 — 6016 K6
197 — 200 Ms 1121 — 1152 Mg 6017 — 6144 Mg
201 — 210 M~ 1153 — 1176 M~y 6145 — 6272 M~y
3358 v 1507 Z 1530 1%3 Sare o | A Fig. 5. The240-bit multiplier by Grabbe et al. (2003)
225 Ms 1281 — 1372 7 6913 — 7168 7
226 — 256 K 1373 — 1440 M5y 7169 — 7680 Mg
257 — 280 M7 1441 — 1536 K 7681 — 7840 My i) . . i
2o 258 o2 1A ane | MT | Seas T aves | M The innermost part of the design is a combinational
295 - 500 25 10011002 | Mg pipelined40-bit classical multiplier equipped with0-bit and
79-bit adders. The multiplier, these adders, and the overlap
module, together with a control circuit, constitutel 20-bit
optimal algorithm isA = M, K2C+, of total costM 4(194) = multiplier. The algorithm is based on a modification of a
22 - MK§C7(28) + 3937 = 26575 bit operations. Karatsuba formula foB-segment polynomials. Another suit-

Figure 4 shows the recursive cost of the Karatsuba meth@dthle control circuit performs th2-segment Karatsuba method
as used in Weimerskirch & Paar (2003), of our hybrid methothr 240 bits by means of d20-bit recursion,239-bit adders,
and the classical method. and an overlap circuit.

Lemma 1 implies that the classical methods need only beWe improve this multiplier with respect to both area and
considered forn < 12. We can pruneZ further and now time. The multiplier of Grabbe et al. (2003) can be seen as
illustrate this forK;. One first checks tha¥/ 4 i, 5 (3babg) < implementing the factorizatiopd0 = 2-3-40. Table Ill implies
My, ap(3babg) for A € {Ks, M5, Mg, M7}, B € T*, and that it is usually best to apply th&-segment Karatsuba for
bp > 2. Therefore forK; to be the top-level tool in an optimal small inputs. Translating this into hardware reality, thewn
algorithm over7 the next algorithm to it must be eithdf; design is based on the factorizatidf0 = 2 -2 - 2 - 30.
or C, for someb. Since the classical method is not optimal The new30-bit multiplier follows the recipe of Table II.
for n > 13 and Table Il does not lisk's in the interval46 to It is a combinational circuit without feedback and the desig
3-45 =135, K3 is not the top-level tool forn > 135. goal is to minimize its area. In generalpipeline stages can

inrlxutl inrlxut2 TABLE IV

| a(x) | | b(x) | TIME AND AREA OF DIFFERENT240-BIT MULTIPLIERS
I I I I
n%(l r}éz multiplier clock | slices time]
type cycles Slicesx us

' ' classical 56 1582 | 0.523us 827
the circuit of Fig. 5 54 1660 | 0.655us 1087
' ' hybrid (Fig. 6) 30 1480 | 0.378us 559

30 bit targets for cryptographic purposes both as prototyping pla
multiplier forms and as system on chips.
I The benefits of hybrid implementations are well known for
| decoder | software implementations, where the crossover points dxstw
' ' — subquadratic and classical methods depend on the available
|

control module

| acc0 | acel | memory and processor word size. There seems to be no pre-
| overlap circuit vious systematic investigation on how to apply these method
output efficiently for hardware implementations. We have showr tha
a hybrid implementation mixing classical and asymptolycal

Fig. 6. The structure of the Karatsuba multiplier with feveuesions fast recursive methods can result in significant area saving
REFERENCES

performn parallel multiplications i + k — 1 instead ofnk [1] D. V. Bailey and C. Paar, “Optimal extension fields for tfasithmetic
in public-key algorithms,” inAdvances in Cryptology: Proceedings

clock cycles without pipelining. of CRYPTO ’'98,Santa Barbara CA, ser. Lecture Notes in Computer

In the recursive Karatsuba multiplier of Grabbe et al. (9003 Science, H. Krawczyk, Ed., no. 1462. Springer-Verlag, 1998 472
inati inli 485.
.the. core of the system, name.ly the Cqmbmatlonal mUItlpller[2] R. E. Blahut, Fast Algorithms for Digital Signal Processing Read-
is idle for about half of the time. To improve the resource ~ ing MA: Addison-Wesley, 1985.

usage, we reduce the communication overhead by decreasiap D. G. Cantor, “On arithmetical algorithms over finite fis|” Journal of

; i _hi inli _ Combinatorial Theory, Series,Aol. 50, pp. 285-300, 1989.
the levels of recurS|c_>n. In t.hIS newA0-bit m.ultlpller, aIT|8 [4] Digital Signature Standard (DSSJ.S. Department of Commerce /
segment Karatsuba is applied at once3@ebit polynomials. National Institute of Standards and Technology, Januag02@ederal

We computed symbolically the formulas describing three Information Processings Standards Publication 186-2.

recursive levels of Karatsuba, and implemented these fiignu [3] J- von zur Gathen and J. Gerhard, "Arithmetic and fafion of
. ! polynomials overF2,” in Proceedings of the 1996 International Sym-
directly. o o _ posium on Symbolic and Algebraic Computation ISSAC Brich,
The new circuit is shown in Figure 6. The multiplexemax1 Switzerland, Y. N. Lakshman, Ed. ACM Press, 1996, pp. 1-9.

; e ; [6] ——, Modern Computer Algebrend ed. Cambridge, UK: Cambridge
to mux6are adders at the same time. Their inputs 3rdit University Press, 2003, first edition 1999.

sections of th_e two origina240-bit polynomials WhiCh aré [7] J. von zur Gathen and M. Nocker, “Polynomial and normalséds
added according to the Karatsuba rules. Now tB&ioutput for finite fields,” Journal of Cryptology vol. 18, no. 4, pp. 337-355,

i inali i i i inli September 2005.
pairs are plpellnec_i as mputs_lnto the-bit mUItlpher' The27_ [8] J. von zur Gathen and J. Shokrollahi, “Efficient FPGAdzhKaratsuba
correspondlnc'jf)-blt polynomials are _SUbseqU_ently combined ™ myltipliers for polynomials oveFs,” in Selected Areas in Cryptography
according to the overlap rules to yield the final result. The (SAC 2005) Springer-Verlag, 2005, to appear.

; ; ; _hi Al ; [9] C. Grabbe, M. Bednara, J. Shokrollahi, J. Teich, and d. zr Gathen,
synchronization is set so that tf#-bit multipliers require “FPGA designs of parallel high performane@F (2253 multipliers”

1 and 4 clock cycles for the classical and hybrid Karatsuba iy proc. of the IEEE International Symposium on Circuits andt&ys
implementations, respectively. (ISCAS-03)vol. II, Bangkok, Thailand, May 2003, pp. 268-271.

The time and space consumptions after place and ro&l[@ D. Hankerson, A. Menezes, and S. VanstoBejde to Elliptic Curve
. _ Cryptography Springer-Verlag, 2003.
are shown in Table IV and compared with the results ¢fi] M. jung, F. Madlener, M. Emst, and S. Huss, “A Reconfidle

Grabbe et al. (2003) and the classical method. The second Coprocessor for Finite Field Multiplication i F(2™),” in Workshop

column shows the number of clock cycles for a multiplication z';rﬁ%’gg’zgraphic Hardware and Embedded Systerrtamburg: IEEE,

The third column represents the area in terms of number @§] A Kkaratsuba and Y. Ofman, “Multiplication of multidignumbers on
slices. This measure contains both logic elements, or LUTs, automata,"Soviet Physics—Dokladyol. 7, no. 7, pp. 595-596, January

AL inalini ; 1963, translated from Doklady Akademii Nauk SSSR, Vol. 1Mb, 2,
and flip-flops used for pipelining. The fourth column is the op. 203-294, July, 1962,

m_ultiplication time as returned by the hardware Synthmt [13] C.K.Kogand S.S. Erdem, “Improved Karatsuba-Ofmaaltiglication
Finally the last column shows the product of area and time in in GF(2™),” US Patent Application, January 2002.

; [14] P. L. Montgomery, “Five, Six, and seven-Term Karatsillee Formu-
order to compare the AT measures of our deSIQnS' lae,” IEEE Transactions on Computersol. 54, no. 3, pp. 362-369,
March 2005.
V. CONCLUSION [15] C. Paar, “Efficient VLSI Architectures for Bit-Parall€omputation in

; i ; ; Galois Fields,” Ph.D. dissertation, Institute for Expegimeal Mathemat-
In this paper we have shown how combining algorithmic ics, University of Essen. Essen. Germany, June 1994,

techniques With pla'_[form dependent _str_ategies can be wseqib) A Weimerskirch and C. Paar, “Generalizations of therdtguba Al-
develop designs which are highly optimized for FPGAs. These gorithm for Efficient Implementations,” Ruhr-UniveritBochum, Ger-

modules have been considered as appropriate implementatio ™any. Tech. Rep., 2003.

