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THE CREW PRAM COMPLEXITY
OF MODULAR INVERSION

JOACHIM VON ZUR GATHEN* AND TGOR SHPARILINSKI!

Abstract. One of the long-standing open questions in the theory of parallel computation is the
parallel complexity of the integer gcd and related problems, such as modular inversion. We present
a lower bound Q(logn) for the parallel time on an exclusive-write parallel random access machine
(CREW PRAM) computing the inverse modulo certain n-bit integers, including all such primes. For
infinitely many moduli, our lower bound matches asymptotically the known upper bound. We obtain
a similar lower bound for computing a specified bit in a large power of an integer. Our main tools
are certain estimates for exponential sums in finite fields.

1. Introduction. Tn this paper we address the problem of parallel computation
of the inverse of integers modulo an integer M. That is, given positive integers
M >3 and # < M, with ged(2, M) = 1, we want to compute its modular inverse
invys (2) € N defined by the conditions

(1.1) z-invy (2) =1 mod M, 1T <invy (2) < M.

(M)=1 mod M, where ¢ 1s the FEuler function, inversion can be

Since invyy (z) = 2%
considered as a special case of the more general question of modular exponentiation.
Both these problems can also be considered over finite fields and other algebraic

domains.

For inversion, exponentiation and ged, several parallel algorithms are in the literature
[1,2,3,9,10, 11,12, 13, 14, 15, 18, 20, 21, 23, 28, 30]. The question of obtaining
a general parallel algorithm running in poly-logarithmic time (log n)o(” for n-bit
integers M is wide open [11, 12].

Some lower bounds on the depth of arithmetic circuits are known [11, 15]. On the
other hand, some examples indicate that for this kind of problem the Boolean model
of computation may be more powerful than the arithmetic model; see discussions of
these phenomena in [9, 11, 15].

In this paper we show that the method of [5, 26] can be adapted to derive non-trivial
lower bounds on Boolean concurrent-read exclusive-write parallel random access ma-
chines (CREW PRAMS). Tt is based on estimates of exponential sums.

Our bounds are derived from lower bounds for the sensitivity o(f) (or critical complex-
ity) of a Boolean function f(X4,..., X,,) with binary inputs Xy, ..., X,,. Tt is defined
as the largest integer m < n such that there is a binary vector 2 = (2,...,2,) for
which f(z) # f(() for m values of i < n, where (") is the vector obtained from =
by flipping its ith coordinate. Tn other words, o(f) is the maximum, over all input
vectors x, of the number of points y on the unit Hamming sphere around z with

F(y) # F(2); see e, [31].

Since [4], the sensitivity has been used as an effective tool for obtaining lower bounds
of the CREW PRAM complexity, i.e., the time complexity on a parallel random access
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machine with an unlimited number of all-powerful processors, where each machine can
read from and write to one memory cell at each step, but where no write conflicts are
allowed: each memory cell may be written into by only one processor, at each time
step.

By [22], 0.51og,(a(f)/3) is a lower bound on the parallel time for computing f on
such machines, see also [6, 7, 8, 31]. This yields immediately the lower bound € (logn)
for the OR and the AND of n input bits. Tt should be contrasted with the common
CRCW PRAM, where write conflicts are allowed, provided every processor writes the
same result, and where all Boolean functions can be computed in constant time (with
a large number of processors).

The contents of the paper is as follows. In Section 2, we prove some auxiliary results
on exponential sums. We apply these in Section 3 to obtain a lower bound on the
sensitivity of the least bit of the inverse modulo a prime. In Section 4, we use the
same approach to obtain a lower bound on the sensitivity of the least bit of the inverse
modulo an odd squarefree integer M. The bound is somewhat weaker, and the proof
becomes more involved due to zero-divisors in the residue ring modulo M, but for
some such moduli we are able to match the known upper and the new lower bounds.
Namely, we obtain the lower bound Q(logn) on the CREW PRAM complexity of
inversion modulo an n-bit odd squarefree M with not ‘too many’ prime divisors, and
we exhibit infinite sequences of M for which this bound matches the upper bound
O(logn) from [11] on the depth of P-uniform Boolean circuits for inversion modulo
a ‘smooth’ M with only ‘small’ prime divisors; see (4.6) and (4.7). For example, the
bounds coincide for moduli M = py ---ps, where py,... ps are any [s/logs] prime
numbers between 5% and 253,

We apply our method in Section 5 to the following problem posed by Allan Borodin
(see Open Question 7.2 of [11]): given n-bit positive integers m, x, e, compute the mth
bit of x°.

Generally speaking, a parallel lower bound Q(logn) for a problem with n inputs is
not a big surprise. Our interest in these bounds comes from their following features:

some of these questions have been around for over a decade;

no similar lower bounds are known for the ged;

on the common CRCW PRAM, the problems can be solved in constant time;
for some types of inputs, our bounds are asymptotically optimal;

the powerful tools we use from the theory of finite fields might prove helpful

o 0 O O ©

for other problems in this area.

2. Exponential sums. The main tool for our bounds are estimates of exponen-
tial sums. For positive integers M and z, we write ey (z) = exp(2miz/M) € C. Thus
ey (z1 + 20) = ey (z1) + ep(22) for any zy, zo.

The following identity follows from the formula for a geometric sum.

LEMMA 2.1. For any integer a,

Z [0, ifuzOmod M,
e (au) = M, ifu=0mod M.
0<a< M



LEMMA 2.2, For positive integers M and H, we have

Sl Y ewlaly—o)| =+ )M =1 1)
0<a<M |0<2,y< H
where r = H — 1 mod M with 0 <r < M 1s the remainder of H — 1 modulo M.
Proof. We note that

Thus

Yool X ewaly—m)l= Y0 D ewl(aly )

0<a<M |0<2,y< H 0<a<M 0Lz, y< H

From Lemma 2.1 we see that the last sum is equal to MW, where W is the number
of (x,y) with z =y mod M and 0 < 2,y < H. Tt is easy to see that

W_gq%p)?

Tet s=r+1and g=|(H —1)/M] thus ¢ = (H — 5)/M. Then,

W= (r+1)(g+1)"+ (M —r—1)g° = M¢” + 5(2¢ + 1)
=(H—-s)g+2s¢g+s=(H+s)g+s
H27g2

: 1
= —|—s:M(H2—|—sM—32)

and the result follows. O

Taking into account that (r4+1)(M —r—1) < /\/[2/4 we derive from Lemma 2.2 that
the bound

(2.1) Sl Y ewmlaly—a)| < H + M /4
0<a<M |0<2,y< H
holds for any H and M.

Also, 1t 1s easy to see that for H < M, then »r = H — 1 the identity of Lemma 2.2
takes the form

(2.2) Sl Y ew(a(y—x)|=MH,  0<H<M.

0<a<M |0<2,y< H



Finally, we have

(2.3) S Y ewtalya)|= ()M 1)< M/

1<a<M |0<2, y<H

Tndeed, this sum is smaller by the term corresponding to a = 0, which equals A2.

In the sequel, we consider several sums over values of rational functions in residue
rings, which may not be defined for all values. We use the symbol 3" to express that
the summation is extended over those arguments for which the rational function 1s
well-defined, so that 1ts denominator is relatively prime to the modulus. We give an
explicit definition only in the example of the following statement, which is known as

the Weil bound; see [19, 25, 32].

TEMMaA 2.3, Let f,g € 7[X] be two polynomials of degrees n, m, respectively, and p a
prime number such that the rational function f/g is defined and not constant modulo
p. Then

Yoote(F@/a@)| =] Do e (@) /g@)| < (nFm—1)p'/%

0<z<p 0<xe<p
- ged(g(x),p)=1

Let w(k) denote the number of distinet prime divisors of an integer k. The following
statement 1s a combination of the Chinese Remainder Theorem and the Weil bound.

TEMMA 2.4, Let M € N be squarefree with M > 2, d a divisor of M, and f,g € 7.[X]
of degrees n, m, respectively, such that the rational function f/g is defined and not
constant modulo each prime divisor p > max{n,m} of M. Then

S tew (df(x)/g()| < (n+m - )eMDN2,

0<e<M

Proof. Tn the following, p stands for a prime divisor of M. We define M, € N by the
conditions

M, = 0 mod M/p, M, =1 mod p, 1< M, <M.
Then, one easily verifies the identity

Y Tew(df(x =11 > “er (@r(My2)/g(M,yz)).

0<e<M p|M 0<e<p

We use the estimate of T.emma 2.3 for those p for which p{ d and p > max{n, m},
and estimate trivially by p the sum for each other p. Then

S tew (df@)/g@)| <] m+m—1p"" v

0<o<M pld pld
= (n4+m—1)*MD )/,
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Since w(M/d) < w(M), we obtain the desired estimate. O

TEMMA 2.5. Let M > 2 be a squarefree integer, f,q € 7[X] of degrees n, m, respect-
iely, such that f/q is defined and neither constant nor a linear function modulo each
prime divisor p of M. Then for any N, H,d € N with H < M and d|M, we have

N+x—
Z *ear (dW) g(n+mf1)“}(M)HM1/2d1/2.
D<o g(N +2—y)

Proof. From Lemma 2.1 we obtain

R G sr=r)

o<z, y<H
. 1
= Z ey (d f(u)/g(u)) Z i Z ey (a(u—N—2+y))
0<u<M o<z, y<H 0<a< M

:1M Z “en (d f(un)/g(u)) Z Z erm (a(u— N —z+1y))

0<u<M 0<a<M 0Lz, y< H
= 1— Z ey (—aNl) Z * e (]f(“) + au Z ey (a(y — x))
Vi 2 ] 2 ,g(“) A7 2 ¥ x
0<a< M 0<u<M <z, y<H

—_

< o Z Z *en ((];E:; —|—r1,u) . Z ey (aly — 2))|.

0<a<M [0<u<M o<z, y<H

From Lemma 2.4 we see that for each @ < M the sum over u can bhe estimated as
(max{n +m — 1,2m})w(M) M'251% where § = ged(d,a) < d. Applying the estim-
ate (2.2), we obtain the result. O

The following result is the particular case p = 2 of Theorem 1 of [29].

LEMMA 2.6. There exists a constant ¢ such that for all polynomials f = a; X' 4+ .. .+
a1 X + ag € 72[X] with ged(ay, ..., a1,2) = 1 and all integers m > 1 we have

ST eon (f(m)| <21,

0<e<2m™
For ag,...,ax_1 € 7, not all zero, we define p(aq, ..., ax_1) to be the largest exponent
e for which 2¢ divides aq, ..., ar_.
LEMMA 2.7. Let ag,...,ap_1 € 7 not be all zero, and
bj = Z a; 2"
0<i<k

fOTO §7 < k. Then /’L(bov'--vbk*1) < /i(flo,...,(lk,]) + (ki 1)(]?72)/2
5



Proof. We extend u to Q by u(a/b) = u(a) — u(h) and to nonzero matrices in QF**
by taking the minimum value at all nonzero columns. Then pu(U -v) > pu(U) + p(v)
for a matrix I/ and a vector v such that Uv # 0.

Tet Cf = (277'7')09;“7(;{. The determinant, of this Vandermonde matrix has value

pdet Co)=p | J[ @ -2]= > i:%k(k—ﬂ(k—?).

0<i<j<k 0<i<j<k

We consider an entry of the adjoint adC}, of Cf. FEach of the summands contributing
to the determinant expansion of that entry is divisible by

k=3)+2(k—4)+--+(k—3)

)

so that

p(adCr) > > i (k—2—1d) = %(k —1)(k—2)(k —3).

1<i<k—2

(Tn fact, we have equality, since det C_1 has the right hand side as its g-value and is
one entry of adCy.) Therefore
#(C ) > p(adCr) — p(det Cr)

>

> = =

(k— 1)k —2)(k —3) — %k(k—ﬂ(k—?)

(k- 1)(k -~ 2),

N | —

Now from the inequality u(a) = N(Czjb) > N(C;W + u(b) the result follows. O

We also need an estimate on the number of terms in the sum of Lemma 2.5. For a
polynomial ¢ € Z[X] and M, H € 7., we denote by T,(M, H) the number of 2 € 7 for
which 0 < 2 < H and ged (g(2), M) = 1. The following result is, probably, not new
and can be improved via more sophisticated sieve methods.

LEMMA 2.8. Let M > 1 be squarefree and g € 7.[2] of degree m such that ged(g(x), M) =
1 for some x € 7.. Then for all integers H < M, we have

min{m, p— 1}
p

Tq(/\/[,H)>HH<1 )(m+1)“<"“.

pIM
Proof. We denote by p(M, H) the number of 2 € {0,..., H — 1} such that

g(z) =0 mod M,

and set p(M) = p(M, M). Since M is squarefree, the inclusion-exclusion principle
yields

Tq(MvH):H+ Z (71)k Z p(d,H).

1<k<w(M) a

6



For any divisor d of M we have

mmmmwﬂ<mw—ﬂmm

pld
Therefore,
T,(M,H)> H + H z:(qﬁzjﬂﬁf p(d)
g ’ d
1<k<w(M) S d|M
P
=i (122 - TL 0+t
pIM pIM

By assumption, ¢ takes a nonzero value modulo every prime divisor p of M. Thus
p(p) < min{m, p— 1}, and the claim follows. O

Throughout this paper, logz means the logarithm of z in base 2, Inz means the
natural logarithm, and

I Iz, 2>,
ME=V 0, i<,

LEMMA 2.9. For positive integers m and M, with M > 1 squarefree, we have

1 (1 - w) > exp (—2mInlnw(M) — Tm) .

p|M P

Proof. We split the logarithm of the product as follows

(2.4) lnH(1w)>Zln<%)+Zln<1ﬂ),
o

pIM p p| M p

p<2m p>2m

and prove a lower bound on each summand. For the first one, we use that

1
Z]npgm 14+ for = > 1
2Inx

p<z

by [24], (3.15). Thus, for m > 1

1
2. E Inp < E Inp<2m (1 < 3m.
(2.5) nps NP m( +2]n2m)%m

p|M p<2m
p<2m =

Tt is easy to verify that for m = 1 the sum on the left hand side does not exceed 3m
as well.

For the second summand, we use that (1428)(1—-8) = 14+6(1-24) > 1for 0 < 4§ < 1/2,
so that exp(26) > 1428 > (1 —§6)~" and In(1 — ) > —24. This implies that



From [24], (3.20), we know that

1 1
E —STm]nm—FR—FT,
In“z
p<z

where B < 0.262 is a constant. Let s = w(M) and p, be the sth prime number, so
that p, < s” for s > 2. Thus for s > 2 we have

1 1 1
(2.6) Z - < Z - < Z — < Tnln(s?) 4+ B+ (Ins?)7? < Tnln(s) + 2.
P P P

p|M P<ps p<s?
p>2m -

The inequality between the first and last term is also valid for s = 1. Now (2.4), (2.5),
and (2.6) imply the claim. O

3. PRAM complexity of the least bit of the inverse modulo a prime
number. In this section, we prove a lower bound on the sensitivity of the Boolean
function representing the least bit of the inverse modulo p, for an n-bit prime p. For
x € Nwith ged(z, p) = 1, we recall the definition of inv, (x) € Nin (1.1). Furthermore,
for ®g, ..., mn_o € {0, 1} we let

(3.1) num(ag, ..., &p_9) = Z ;2

0<i<n—2
We consider Boolean functions f with n — 1 inputs which satisfy the congruence

(3.2) f(zo, ..., mn_2) = invy, (num(zq, ..., 2n_2)) mod 2

for all zq,... 2p_2 € {0,1} with (2q,...,2,_2) # (0,...,0). Thus no condition is
imposed for the value of f(0,...,0).

Finally we recall the sensitivity o from the introduction.

THrOREM 3.1. Let p be a sufficiently large n-bit prime. Suppose that a Boolean

Junction f(xg, ..., 2,_0) salisfies the congruence (3.2). Then
(n > 1 1 1 1
o(f) > gn—glogn —1.

Proof. We let k be an integer parameter to be determined later, with 2 < k£ < n — 3,
and show that o(f) > k for p large enough. For this, we prove that there is some

integer z with 1 < z <277 %~1 and

inv, (2%2) =1 mod 2, inv, (252427 =0mod2  for 1 <i<k,
provided that p is large enough. We note that all these 28z and 2%z 4+ 27 are indeed

invertible modulo p.

We set eg =0, 8g =1, and e, =271 §; = 0 for 1 < i < k. Then it is sufficient, to
show that there exist integers z,wy, ..., w; with

(282 4+ €;) 7" = 2w; + 6; mod p,
T<z< k=l 0<w; <(p—3)/2 for0<i<k.
&8

(3.3)



Next we set A =28 H =2""%"2 K = |(p—3)/4],and A; = 2K +4; for 0 <i < k.
Then it 1s sufficient to find integers =, y, uqg, ..., ug, vo, . . ., v satisfying

(A(H+2—y)+ 67;)71 = 2(u; — v;) + A; mod p,

3.4
(3.4) 0<ax,y< H, 0<ug,...,ug,vg,..., 00 < K.

Tndeed from each solution of the system (3.4) we obtain a solution of the system (3.3)
by putting z = H+2 —y and w; = K +u; —v;, 1 = 0,...,k. On the other hand,
the system (3.4) contains more variables and is somewhat easier to study. A typical
application of character sum estimates to systems of equations proceeds as follows.
One expresses the number of solutions as a sum over a € 7, using Lemma 2.1, then
isolates the term corresponding to a = 0, and (hopefully) finds that the remaining
sum 18 less than the isolated term. Usually, the challenge 1s to verify the last part. In
the task at hand, Lemma 2.1 expresses the number of solutions of (3.4) as

p (D) Z « Z

0<m y<H  0<ug, o uy,

POy vy <K
Z ep Z a; ((A(Ff—k.r—y)—|—e7;)71 —2(1/,7;—1)7;)—A7;)
0<an,...,ar<p 0<i<k
S DI B WA
0<an,...,ay<p 0<i<k
Z “ep Zai(A(H—FT—y)—Fﬁ) !
0<z,y<H 0<i<k
Z ep Z 2a;(v; — u;)
0<rg g 0<i<k
POy v <K

_ pf(k+1)(H2 [\72(1(7-{—1) + R),

where the first summand corresponds to ap = --- = a5 = 0 and R to the remaining
sum, and we used (2.2). For other k+1 tuples (aq, ..., ax), the sum over 2, y satisfies
the conditions of LLemma 2.5, with n = k and m = k + 1, indeed, we have
_ H4+x—

S a (A +a—y) +e) = %

oSk g =y
where

_ ) _ ) g

9= H (AX+61)7 f= Z “zm EZ[X]-
0<i<k 0<i<k

Therefore f/g is neither constant nor linear modulo p. Thus,

|R| < 2(k+ 1)Hp1/2 Z Z e, Z 2a; (v; — u;)

0<an,...,ax<p | 0<nun,-- Hp, 0<i<k
VO vp <K



:2(1{7—#1)[—7})1/2 H Z Z ep (ai(vi — u;))

0<i<k 0<a;<p |0<u;, v, <K
<2(k+ 1) Hp'/?(pK)FH.
We have left, out the factors |e,(—a; A;)|, which equal 1, transformed the summation
index 2a; into a;, and used the identity (2.2).
Tt is sufficient to show that H?K?*+1) is larger than |R|, or that

(35) HR’k-H > 2(]4’4— 1)pk+3/2.

Since K > (p — 6)/4, it is sufficient that

k+1
(36) 277,71(772 > 2(]{7 —|— 1) (p%) p1/24k+1 .

We now set k& = | (n—3logn)/6], so that 6(k+1) <n <2"?In2 < (p—6)In2. Now
(1+ z”)z < e for real z > 0, and

k41
(L) = SN (-6) _ o
p—6

Furthermore, p'/? < 27/? and 32n/3 < n3/? and (3.6) follows from

32 . , .
272 5 9nl?. 5 231087 — g4 % gn/2m RN > 64k 4-1) - 2%,

Hence the inequality (3.5) holds, and we obtain o(f) > k > n/6 — 0.5logn — 1. 0

From [22] we know that the CREW PRAM complexity of any Boolean function f is
at least 0.5log(a(f)/3), and we have the following consequence.

CorOLLARY 3.2. Any CREW PRAM computing the least bit of the inverse modulo
a sufficiently large n-bit prime needs at least 0.5logn — 3 steps.

4. PRAM complexity of inversion modulo an odd squarefree integer.
In this section, we prove a lower bound on the PRAM complexity of finding the least
bit of the inverse modulo an odd squarefree integer.

To avoid complications with ged computations, we make the following (generous)
definition. T.et M be an odd squarefree n-bit integer, and f a Boolean function with
n inputs. Then f compuies the least bit of the inverse modulo M if and only if

invy (num(z)) = f(x) mod 2

for all # € {0,1}""" with ged(num(z), M) = 1, where num(z) is the nonnegative
integer with binary representation 2, similar to (3.1). Thus no condition is imposed
for integers x > 2”7 or that have a nontrivial common factor with M.

THEOREM 4.1. Let M > 2 be an odd squarefree integer with w(M) distinct prime

divisors, and f the Boolean function representing the least bit of the inverse modulo
M, as above. Then

In M — 2w(M)Tnln M

ATnlnw(M) 4+ O(1)
10

o(f) >




Proof. We let n = |log, M|, and k an integer parameter to be determined later. We
want to show that there is some integer z with 1 < z < 2775~ for which

invar (252) = 1 mod 2, invar (252427 = 0mod 2,  for 1 <i<k.

As in the proof of Theorem 3.1 we see that in this case o(f) > k.

Weput eq =0,8, =1, and e; =271 §;, =0 for 1 <i < k. Tt is sufficient to show
that there exist integers z, wq, ..., wg such that

(252 + €;)7" = 2w; + §; mod M,
T<z< k1 0<w < (M —3)/2 for0<i<k.

= = )

Next, we set A = 2% H = 277F=2 K — |[(M —3)/4], and A; = 2K 4 §; for
0 <7 < k. Asin the proof of Theorem 3.1 we see that 1t 1s sufficient to find integers
X, Y, Uq, ..., U, Vo, - . ., Vg satisfying the following conditions for 0 < i < k:

(A(H+2—y) —|—e7;)71 = 2(u; — v;) + Ay mod M,
0<ax,y< H, 0<ug,...,ug,vg,..., 00 < K.

Lemma 2.1 expresses the number of solutions as

Mf(k+1) Z * Z

0<my<H  0<ug, - uy,

Z ey Z a; ((%\(I‘-f—k.r—y)—|—e7;)71 —2(1/,7;—1)7;)—A7;)

0<aq,...,ax<M 0<i<k

= Mi(k_H) Z er — Z (17A7

0<aq,....an<M 0<i<k

> o[ 3wt nra

0<e y<H 0<i<k
E ey | 2 E a; (v; — ;)
0<ug, ..oy g, 0<i<k
VO vy <K
—(k+1)
M S,
a|m
where Sy is the subsum over those 0 < aq, ..., ap < M for which

ged(ag, ..., a,, M) =d.

Tt 1s sufficient to show that

(4.1) DY

a|nM
A<M

Sl



First we note that Sar consists of only one summand corresponding to ag = --- =
ap = 0. Since all values to be added equal 1, we only have to estimate the number of
terms for which the argument of " is defined. For each y with 0 < y < H, we apply
Lemma 2.8 to the polynomial

g= TI (AH+X —y)+e) € 7Z[X]
0<i<k

of degree k + 1. We set. s = w(M), and using Lemmas 2.8 and 2.9, we deduce that

(42) Sy >H (Hexp (—2(k+ NTnlns — 7(k+ 1)) — (k+ 2)‘) K2k

The other |S;] are bounded from above by

|Sal < > Yo Cew| D w(AH+r—y) +e)

0<ag..nay <M |0<zy<H 0<i<k
p;(‘d(an,“qak,l\/f):d
E ey | 2 E a;(v; — u;)
0<ug, . oyny, 0<i<k
vy <K ==

Now let d = ged(ayg, .. ., ag, M) and

_ . _ 4 __ 9
o= II WX +e), f= 3 G5 €710
0<i<k 0<i<k
Then
a; o f(H+x—y)
ST G A by e = L)
0<i<k d g(H +x—y)

and f/g is neither constant nor linear modulo any prime divisor p > k+1 of M. Thus
we can apply Lemma 2.5 and find that

S e [d ) ai/d(A(H +x—y)+e) || < (2k+2) HM'/?d'7,
o<z, y<H 0<i<k

the hypothesis of the lemma is satisfied because M is squarefree. If d < M, then
a; = db; for some 0 < by, ..., by < M/d, with at least one b; # 0. Then

Z Z er/d Z 2a;(v; — u;)

0<an,..- ap<M 0<ng, g, 0<i<k
ged(ag,...,ap, M)=d | vg,.., v <K
<(k+1) E E en/d E 2b; (v; — u;)
1<bg<M/d 0L g, oyt n<i<k
0<by,..., bp<M/d | vg,.., 0 <K - -

12



=(k+1) Z Z enrya (2bo(vo — uo))

1<bo<M/d [0<un,va< K
. H E E enr/a (2b;(vi — ;)| .
1<i<k0<b,<M/d |[0<u,;, v, <K

Since M/d is odd, we may replace the summation index 2b; by b;. From the inequal-

ities (2.3) and (2.1) we find

M2
Z Z eyrya (bo(ve — ug))| < v

1<bo<M/d [0<un,va< K

-2 M? Do 2
Z Z en/a (bi(vi —u;))| < K —|—m§ 16/\/[ < M-,
0<b;<M/d [0<u; v, <K '

Combining these inequalities, we obtain

|Sal < (k4 1)(2k + 2)° HMr+5/24=3/2

therefore
ST 1Sl < (k4 1)(2h 4 2) H M523 g3
A Y
< /A (h+ 1) M,
where

(3/2)=>_h =261

B>

Using (4.1) and (4.2) it is now sufficient to prove that

H(H exp (=2(k+ DInlns = 7(k+ 1)) — (k+ 2)3) F2(k+1)
> C(3/2)(k + 1) 128 H MK+5/2

for some

InM — 2sT.nln M

4.3
(4-3) 4Tmins + O(1)

To do so we suppose that

(Hexp (—2(k 4 1)Tnlns — T(k 4+ 1)) — (k +2)*) K241

(44) S C(3/2)(k+ 1)3+123M2k+5/2

and will show that & satisfies the opposite inequality. Obviously, we may assume that

E<05InM —1.
13



We also recall that K > (M —6)/4 and H = 277%=2> M27%=3_ Now if

(k4+2)" <05Hexp(—2(k+ 1)Tnlns —7(k+ 1))

then, because s < log, M, we immediately obtain (4.3). Otherwise, we derive from (4.4)
that

exp (—2(k 4+ )Inlns+ O(k)) < (2k + 2)”’/\/[71/2 <M exp(sTnln M).
Comparing this inequality with the inequality (4.3) we obtain the desired statement.

0
Our bound takes the form

(4.5) a(f) = Q(n/Tnlnn)

for an odd squarefree n-bit M with w(M) < 8In M/Tnln M for some constant 5 < 0.5.
We recall that w(M) < (1 +o0(1))In M/Tnln M for any M > 1, and that w(M) =
O(Tnln M) for almost all odd squarefree numbers M.

We denote by ipgas (M) and ige (M) the CREW PRAM complexity and the Boolean
cireuit complexity, respectively, of inversion modulo M. We know from [11, 21] that

(4.6) irram (M) <inc(M) = O(n)

for any n-bit integer M. The smoothness v(M) of an integer M is defined as its
largest prime divisor, and M is b-smooth if and only if (M) < b. Then

(4.7) irram (M) <ipc(M) = O(log(ny(M))).

Since we are mainly interested in lower bounds in this paper, we do not discuss the
issue of uniformity.

COROLLARY 4.2.

for any odd squarefree n-bit integer M with w(M) < 0.491n M/Tnln M.

THEOREM 4.3. There 1s an infinite sequence of modult M such that the CREW
PRAM complexity and the Boolean circuit complerity of computing the least bit of the
inverse modulo M are both ©(logn), where n is the bit length of M.

Proof. We show how to construct infinitely many odd squarefree integers M with
w(M) < 0.341In M/Tinln M| thus satisfying the lower bound (4.8), and with smooth-
ness y(M) = O(log® M), thus satisfying the upper bound O(Inln M) = O(logn)
of [11] on the depth of Boolean circuits for inversion modulo such M.

For each integer s > 1 we select |s/1n s| primes between s* and 2s%, and let M be the
product of these primes. Then, M > §3/™M% = exp(3s), and thus w(M) < s/Ins <
0.34In M/InIn M, provided that s is large enough. O

5. Complexity of one bit of an integer power. For nonnegative integers u
and m, we let Bty, (u) be the mth lower bit of u, i.e., Bty, (u) = upy, ifu=3",., ;2
with each u; € {0,1}. Tf u < 2™ then Bt,, (u) = 0. B

14



In this section, we obtain a lower bound on the CREW PRAM complexity of com-
puting Bt,, (2°). For small m, this function is simple, for example Btg(2°) = Btg(z)
can be computed in one step. However, we show that for larger m this is not the case,
and the PRAM complexity is Q(logn) for n-bit data.

FExponential sums modulo M are easiest to use when M is a prime, as in Section 3.
In Section 4 we had the more difficult case of a squarefree M, and now we have the
extreme case M = 2.

THROREM 5.1. Let m and n be positive integers with n > m+m'/?, and let f be the
Boolean function with 2n inputs and
flzo, - 2n_1,e0,. .., en_1) = By _q (%),
where . = num(xqo, ..., 2,_1) and e = num(ey, ..., e,_1); see (3.1). Then
o(f) >m'"* + 0(m'"?),
where y =3 —T7'/2 = (0.3542 .. .

Proof. We set e = {777,1/2]7 and consider g(2) = f(x,¢), so that o(f) > o(g). Further-
more, k 18 an integer parameter with e > k£ > 2 to be determined later.

To prove that o(g) > k, it is sufficient to show that there exists an integer x with
0<2<2"¢ Bty ((2°2)°) = 0, and Bty ((2°2 +29)°) = 1 for 0 < i < k.

The first equality holds for any such z because e? > m, and thus the conditions are
equivalent to the existence of integers x, uq, ..., u;_1 such that

(2°x + 277)8 =927~ 4 u; mod 2™,
0<x<27°, 0< g, ..., up_1 <2770 for0<i<k,

which 1s implied by the existence of @, ug ..., ug_1,v0,...,vp_1 with
(5.1) (2°x + 277)8 =9m=1 4 9m=2 4y, — w; mod 27,
. 0<x<277° 0<uy,u <272 for0<i<k.

Weset H=2""2and K =271 4 9m—2

Lemma 2.1 expresses the number of solutions of (5.1) as

DYDY

LOREE o1 <H
Z eym Z a; ((29‘.17 + Qi)e — (K 4+ u; — 1)7;))
0<an,..., a1 <2™ 0<i<k
ot 2777’7,1(7 Z e2m(*[\/7 Z (]7) Z €om Z (],i(?eflf—FQi)e
0<an,... ap_1 <27 0<i<k  0<m<an—e 0<i<h
Z eqgm ( Z a; (v; — u;))
0<ug,. ., wp 9 0<i<k
LOREE vE—1<H
= mk Z Ss,
0<d<m



where S5 1s the subsum over all integers 0 < ag, ..., a;_1 < 27 with
ged(ag, ..., a-1,2™) = 29

Tt 1s sufficient to show that

(5.2) Sm > Y 1Ss].

0<d<m
Sy contains only one summand, for ag = --- = ax_1 = 0, and equals
(5 2) S gn—e H2k _ 2n,+2m,k74k7e
5o S = = .
Using the function p from Section 2, we have for § < m that

|Ss| < Z Z egm Z a; (2°x + Qi)e

0<an,--- ap_1 <2 |0<p2n e 0<i<k
p(an,. - ap_1)=48

Z Qom Z ai(”i - “’77)

0<ng, g9, 0<i<k

vt <H
Now let aq,...,ap_1 < 27". We set,
(5.4) h(X)= > a(2°X +2) = Y A;X €7[X],

0<i<k 0<j<e
so that
. fe . .
A; =29 ( ) Z a; 27 7), for 0 < j <e.
17 0<i<k

We put,

A= pu(Ar, . A
Tf A < m, then h is periodic modulo 27 with period 274
h(X 4277 2) = h(X) mod 2™.

Since n — e > m and eps(z) is periodic with period M then

Z €gm (Zogi<k a;i(2%w + 27:)9,) ‘

0<zg2n—"

5.5

(5:5) = gn-e-mtA Z €om—a (27Ah(m))
OS,’L‘(Q’"*A

< gn—e—m+A Qm,fAf(m,fA)/e — - 2n,7e7(m,7A)/e

)
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where ¢ 18 the constant from Lemma 2.6. This bound also holds for A > m, because
the sum contains 2”7¢ terms with absolute value 1. Using the (crude) estimate

e e
2 (()) < log, () <log, 2° <,
J J

Ap_j = ge(k—j) (k i j) Z (aﬂi(e%)) 91

0<i<k

and noting that

from Lemma 2.7 we derive that for tuples with p(ap,...,ax_1) =4,

A<p(Ar, o Ag)<ek4+e+d+(k—1)(e—k)+ (k—1)(k—2)/2
=2k +6— (k—1)(k+2)/2 <2k +d—k/2,

provided that k > 2. Substituting this bound in (5.5), we obtain

|S($| <e- 271,787(m,72ek75+k2/2)/e716 —©c. 271,7efm,/e+5/e+2k7k2/28716

where
Ts = Z Z egm Z a; (v; — ;)
0<an,-- a1 <27 [ 0<ug, g, 0<i<k
plag,--ap)=8 o 1 <H
We set,
U 22(m76) + 22(m72) ]f $ Z 37
§7 g2mod-2 if0<d<2.

Then Us < 22773 for all § > 0, and as in the proof of Theorem 4.1, from Lemma 2.2
we find

Ts < k - Z Z Z €om—s Z bi(v; — u;)

]Sbn<2m—8 OS}” AAAAA bk,1<2m*5 00,y ()Si<k
V1 <H

<k 22(777,7(3)(](?71 < . 9Pmho k2043
Next, we obtain

E |S($| <e- E 2n,7efm,/e+5/e+2k7k2/2e k. 22m,k73k725+3
0<d<m 0<d<m
- ok - 2n,+2m,k7k7efm,/efk2/2e+3 § 27(3(271/@
0<d<m

< ck - 2n,+2m,k7k7efm,/efk2/2e+4

We set,

k= bm1/2 - m1/3J
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where v = 3 — 7'/2 = (0.3542 . . satisfies —y — 1 —~%/2 = —4~. Tt easy to verify that
the inequality (5.2) holds for this choice of k, provided that m is large enough. O

COROLLARY 5.2. Let n > m +m'/>. The CREW PRAM complexity of finding the
mith bit of an n-bit power of an n-bit integer is at least 0.25logm — o(logm). In
particular, for m = [n/2] it is Q(logn).

6. Conclusion and open problems. Tnversion in arbitrary residue rings can
be considered along these lines. There are two main obstacles for obtaining similar
results. Instead of the powerful Weil estimate of Lemma 2.3, only essentially weaker
(and unimprovable) estimates are available [17, 27, 29]. Also, we need a good explicit
estimate, while the bounds of [17, 27] contain non-specified constants depending on
the degree of the rational function in the exponential sum. The paper [29] deals with
polynomials rather than with rational functions, and its generalization has not been
worked out yet.

OPEN QUESTION 6.1. FExtend Theorem 4.1 to arbitrary moduli M .

Moduli of the form M = p™, where p is a small prime number, are of special interest
because Hensel’s lifting allows to design efficient parallel algorithms for them [2, 11,
15]. Theorem 5.1 and its proof demonstrate how to deal with such moduli and what
kind of result should be expected.

Each Boolean function f(Xy,..., X,) can be uniquely represented as a multilinear
polynomial of degree n over Fy of the form

F(Xq, .., X)) = Z Z Aiy Xy o X, €[ X, X,
0<k<d 1<ir<..<ip<r

We define its weight as the number of nonzero coefficients in this representation. Both
the weight and the degree can be considered as measures of complexity of f. Tn [5, 26],
the same method was applied to obtain good lower bounds on these characteristics of
the Boolean function f deciding whether # is a quadratic residue modulo p. However,
for the Boolean functions of this paper, the same approach produces rather poor
results.

OPEN QUESTION 6.2.  Obtain lower bounds on the weight and the degree of the
Boolean function f of Theorem 4. 1.

Tt 18 well known that the modular inversion problem 1s closely related to the GCD-
problem.

OPEN QUESTION 6.3. Obtain a lower bound on the PRAM complexity of computing
integers w, v such that Mu+ Nv = 1 for given relatively prime integers M > N > 1.

Tn the previous question we assume that ged(N, M) = 1 is guaranteed. Otherwise
one can easily obtain the lower hound a(f) > €(n) on the sensitivity of the Boolean
function f which on input of two n-bit integers M and N, returns 1 if they are
relatively prime, and 0 otherwise. Indeed, if M = p is an n bit integer, then the
function returns 0 for N = p and 1 for all other n bit integers. That is, the PRAM
complexity of this Boolean function is at least 0.5logn + O(1).
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