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1 Introduction

In this survey, we review two recent applications of a venerable tool: Gaufl
periods.

In Section 2, we describe Gauf}’ original construction, and how it can be used
to generate normal bases in extensions of finite fields.

Section 3 contains the first application: finding elements of exponentially large
order in certain finite fields. This can be viewed as a step towards solving
the famous open problem of finding efficiently a primitive element in a given
finite field. A pleasant feature is that the prime factorization of the order of
the multiplicative group is not required. In Section 4 we give another example
of the method, yielding a different kind of bound: among the g shifts 8 + a
of an element  of an extension of IF,, where a runs through F,, at most one
has “small” order.

The second application, in Section 5, deals with efficient exponentiation in
finite fields, an important subroutine in some cryptographic systems. Gaufl
periods lead to the fastest algorithms for this problem, both in theory and in
practice. In Section 6 we describe a recent generalization of Gaufl construc-
tion.

Our two applications are, in turn, useful in several areas: cryptography, cod-
ing theory, pseudo-random element generation, and combinatorial designs.
Actually, the two work in tandem: where one of them is required, usually the
other one is as well.

The results of Section 4 are new, while the others report on the recent liter-
ature.

2 Normal bases via Gaufl periods

Gauf} (1801) introduced his periods as follows. He lets n, k, and r be integers,
with r prime, and
nk=op(r)=r—1.



Furthermore, ¢ € Cis a primitive rth root of unity, and £ C Z,* = Gal (Q(¢): Q)
the unique subgroup of order k of the cyclic group Z). Then

n=Y ¢ eqQV)
i€k
is the Gauf} period of type (n,K) over Q.
The fields involved in this construction are as follows:

primitive rth root of unity ¢ € Q(()

Fig. 1. 17-gon with Gauf} periods of order 2, 4, and 8

As illustrated in Figure 1, Gaufl used the three subgroups of orders 2 (solid
line), 4 (dashed line), and 8 (dotted line) of Z7; = Gal(Q(¢): Q) whose periods



describe a tower of field extensions from Q to the field generated by the
primitive 17th root of unity ¢ = e2"/17, where each extension degree equals 2.
This shows that the regular 17-gon can be constructed by ruler and compass.
Over a finite field F, with ¢ elements, we can consider the analogous situation:
we have n, k,r, and K C Z* as above, and also require ged(g,r) = 1:

primitive rth root of unity 8 € Fyr—1

Then « is a GauB} period of type (n,K) over F,. (The required 2 exists in
F -1, but I, (3) may be a proper subfield of F,-1.)

A normal basis for F;» over I, is a basis of the form (vy,~9, ..., 'yq"_l) of
Fs» as a vector space over ;. Then v € Fg» is called normal over F,. We
will see in Section 5 that this data structure for representing the elements of
Fy- is particularly useful for exponentiation. Wassermann (1990) shows that
Gauf} periods often generate normal bases, namely that o is normal in Fy-
over I, if and only if ¢ and K together generate the multiplicative group Z:
{(gmod r, Ky =Z).

3 Elements of large order

The group Fy of units of F; is cyclic of order ¢ — 1. An element v € F* is
primitive if and only if its order is ¢ — 1.

Such elements are useful for a variety of tasks. How can we find one? Gaufl
writes in article 73 of his Disquisitiones Arithmeticae (1801): Methodi radices
primitivas inveniendi maximam partem tentando innituntur. [...] Ill. Euler
confitetur, maxime difficile videri, hos numeros assignare, eorumque indolem
ad profundissima numerorum mysteria esse referendam. At tentando satis
expedite sequenti modo determinari possunt. Exercitatus operationis prolix-
itati per multifaria artificia particularia succurrere sciet: haec vero per usum
multo citius quam per praecepta ediscuntur.!

Gauf’ method is a clever variant of exhaustive search and, in modern par-
lance, uses exponential time and space.

The importance of primitive elements for the human computers of the 19th
century is illustrated by several publications. The Canon arithmeticus of Ja-
cobi (1839) contains 240 pages of tables of primitive elements and discrete

! Methods for finding primitive roots are mainly reduced to trial and error. [...]
The illustrious Euler admits that it is extremely difficult to find these numbers
and that their nature is one of the deepest mysteries of numbers. But they can be
determined easily enough by the following method. The experienced computer
will know how to reduce the tediousness of the calculation by a variety of devices,
but these are better taught by practice than by rules.



logarithms, one table for each prime number up to 1000. Euler had previously
given such a table for 3 < p < 37, and Crelle (1832) for 3 < p < 101. The
tables of Bussey (1906, 1910) give primitive elements in nonprime fields F,
for all relevant g < 1000.

To test whether a given v € Fj is primitive, we only have to check if
a1/t £ 1 for all prime divisors ¢t of ¢ — 1. There are p(q¢ — 1) many
primitive elements, so taking a random element of F will give a primitive
one with fairly high probability, namely p(¢—1)/(g—1) > ¢/ loglog g for some
absolute constant ¢ > 0, see Theorem 5.1 in Chapter 1 of Prachar (1957).
Computationally, the bottleneck in this procedure is the prime factorization
of ¢ — 1. No polynomial-time algorithm is known for this, where polynomial
time means (log ¢)?") operations, since the size of a reasonable representation
of an element of I, is proportional to log, g. We have the following tasks:

1. test whether a given v € F* is primitive,
2. find a primitive element,
3. find an element of “large order”.

To solve any of them in (random) polynomial time is an important open
problem.

Now a further relaxation of our requirements allows a successful solution of
the last problem. Namely, for a given N, we do not insist on finding a good
element in Fy v, but are content if we find one in F;» for some n close to N,
as in Theorem 1 below. A variation, mentioned at the end of this section,
works when we want to work in a small extension of F~ .

The progress here can be viewed as follows: finding a primitive element in
polynomial time is a black and white question: either you have such an al-
gorithm or you don’t. Now we have a question with many shades of gray
where incremental progress is possible: increase the order of the elements
and decrease the degree of the field extension.

We will make use of the following famous conjecture.

Artin’s conjecture: For a € Z, not —1 or a square, there exists c¢(a) > 0
such that

x

#{p < 2: (a mod p) € Z, is primitive } ~ c(a) ogz’

Hooley (1967) proved this under the Extended Riemann Hypothesis, and also
determined c(a) explicitly. Then Heath-Brown (1986) showed, without any
assumption, that a slightly weaker lower bound of the form c(a)z/ log® z for
the cardinality of the above set holds for all prime powers a, except maybe
powers of at most three primes. (It is conjectured that these three potential
exceptions are an artifact of the proof and actually do not exist.) In fact, even
more general results have been established in Heath-Brown (1986), but for
our purposes prime powers are of primal interest. Furthermore, even a weaker
version, say cardinality at least c(a)z/log® z for the set of prime powers a
would be sufficient for our applications.



This question is already implicit in Jacobi’s Canon, where he counts the
primes modulo which 10 is primitive in the first 25 blocks of 100 integers
each.

Theorem 1. Suppose that Artin’s conjecture holds for q. Then for any N
there exists n > N with n € O(Nlog N) such that the Gauf8 period a in Fyn
of type (n,{£1}) over Fy is normal and has order at least

2(2n)1/272.

These n and o can be computed (probabilistically) in time polynomial in N
and loggq.

We sketch the idea of the proof. Under the assumptions, we can find a prime r
so that n = (r—1)/2 is sufficient and ¢ is primitive in Z . We take a primitive
rth root of unity 8 in Fy2~ ; then 3 has degree r — 1 over F,. Furthermore, we
consider the quantities

a=p+p7",
h=r'?] -1,
S={i:0<i<r—1land1<(¢remr)<h}CFX,
U#U'CS,
u:qu, u' = qu.

s€U seu’

We now claim that a* # o . If the claim is true, then we have at least 2"
different powers of a, and the lower bound on the order of « follows with an
eagsy calculation.

If the claim is false, the following calculation yields a nonzero f € Fy[x] of
degree less than r — 1 with f(8) = 0. This contradiction to the fact that g8
has degree r — 1 over F, proves the claim.

We may suppose that U NU' = (). We assume that a* = oz“', and thus

0=a"—o" = J[(8+57)" - [[(B+57)"

seU seU!

=18 +1) -7 J[ (8 +).

seU seU’

Since f is an rth root of unity, we may reduce the exponents modulo r. We
define

E={¢remr:se€U},E'={¢°remr:se€U'} C{1,...,r — 1},

e:Zt, e':Zt.

tekE teE’



Then ENE' = (), and
0= JL (" +1) =5~ [ (5" +1).
teE teE’
We may assume that e’ > e, and let

flz) =2 ~° H (z* +1) - H (z** +1) € F,[z].

teE teE’
Then f(B8) =0, and

deg f <2’ <2 Z j=hh+1)<r—yr<r-1.

1<j<h
If ¢’ > e, then f(0) = —1. Thus €’ = e. But then the monomial 227 occurs in
f with nonzero coefficient, where 7 = min(E U E'), and we have the desired
contradiction. O

Similar arguments yield:

— a denser sequence of n in Theorem 1,

— for each F;, a small extension Fy» and an element of exponential order
in it,

— unconditional results,

— deterministic algorithms.

These results have appeared, with complete proofs, in von zur Gathen &
Shparlinski (1998, 1999).

4 A new lower bound on multiplicative orders

Applying the same method as in the previous section, we obtain a new result
which is of independent interest, while its proof exhibits the main tool of
our method—information about the distribution of exponential functions in
residue classes.

Let 3 € F. be a root of an irreducible polynomial in F, [z] of degree n > 2.
For the order t of 8, we obviously have ¢t > n. In fact, this can be strengthened
a little as ¢(t) > n. This bound is tight, since it is attained if t = n + 1 is
prime, ¢ is a primitive root modulo ¢, and 3 is a primitive tth root of unity.
Below we show that for any e > 0 there is a constant ¢ > 0 such that among
the ¢ shifts 8 + a, with a € F;, at most one is of order less than c- nt/3-¢,
We need some results about exponential sums and their distribution in residue
classes of exponential functions.

Lemma 2. Let g and r be positive integers with gcd(q,7) = 1, and let T be
the order of ¢ modulo r. Then for any integer ¢ we have

Z exp(2micg® [r)| < 6Y/2¢1/2,
1<k<tT



where § = ged(e, r).

Proof. If 6 = 1, then this bound is essentially Theorem 10 in Chapter 1
of Korobov (1992); see also the proof of Lemma 2 in Korobov (1972). For
0 > 1, we denote by 7, the order of ¢ modulo p = r/d, and we also put
¢/d = ~. Thus ged(v, p) = 1 and we obtain

3 exp@ricg®/r)| < T Y exp (2ming®/p)| < TpH2.
1<k<T o |1 <h<r, To
Finally, we have 7 < 67, by Lemma 3 of Shparlinski (1988). O

We also need the following well-known identity (see Problem 11.a of Chapter 3
of Vinogradov (1954))

. 0if v £ 0 mod 7,
Z exp(2micu/r) = {r if u i O mod r (1)
0<c<r - ’
and the bound
Z Z exp (2micu/r)| = O(rlogr), (2)

1<c<r [0<u<h

which hold for any integers r > 1 and h > 0; see Problem 11.c of Chapter 3
of Vinogradov (1954).

Lemma 3. Let q,h, and r be positive integers, T the order of ¢ modulo r,
and T be the number of elements in {0,1,...,h — 1} that are powers of q
modulo r. Then for any € > 0, we have

T= Tr—h+0(7‘1/2+5).

Proof. From (1) we derive

T = % Z Z Z exp (27ric(qk — ar)/r)

1<k<7 0<z<h 0<c<T

:1 Z Z exp (2777:qu/7") Z exp (—2micz/r) .
r 0<e<r 1<k<T 0<z<h

The contribution of the term corresponding to ¢ = 0 is 7h/m. Therefore,
from Lemma 2 and the bound (2), we obtain

T_ =~
r

5% Z Z exp (2micg®/r)| - Z exp (2micz/r)

‘ Th
1<c<r [1<kLZT 0<z<h




IN

%Z Z Z exp (2micg® /r) Z exp (—2micz/T)

§lr  1<e<r 1<k<t 0<z<h
6<r ged(e,r)=4 - - -

1"1% Z §1/2 Z Z exp (2micz /1)

5|r 1<e<r  |0<z<h
5<r ged(e,r)y=6 | —

1"1% Z 6172 Z Z exp (2micdz/r)

5|r 1<ce<r/6 |0<z<h
oa<r -

IN

IN

€0 rl/zlong(S_l/2

e
s<n

Taking into account that

Yo <Y 1e o),

s|r élr
s<r

by Theorem 5.2 in Chapter 1 in Prachar (1957), we obtain the desired result.
O

Now we are prepared to establish the main result of this section.

Theorem 4. For any positive integers d and n and real € > 0, there exists
¢ > 0 such that for any nonconstant rational function R over F, of the form

R= Z R,z" € Fy(z),

—d<v<d

with all R, in Iy, and for any root B of an irreducible polynomial of degree

n with R(B) # 0, at least one of the elements B and R(B) has order at least
C’I’L4/3_5-

Proof. Let r be the order of 8. Because f is a root of an irreducible polynomial
of degree n, the order of ¢ modulo r is n. Indeed, if ¢* = 1 mod r for some
positive integer k, then ﬂqk = B and thus B € Fyv, which is true for k = n
and false for k < n.

We consider the set K of integers k € {1,...,n} such that the remainders
e = ¢* rem r with 0 < e < r satisfy e < n/8d. We denote by M = #K its
size, and claim that the M (M + 1)/2 powers

R(B)T+"  with b,k € K and k < ¥’
are pairwise distinct. Indeed

RB)* " = R R =R (5" )R (87) =R(E)R(5),



where e = ¢* rem r and € = ¢* rem r. We take two pairs (s,t) and (u,v)
of integers with 0 < s <t < n/8d,0 <u < v < n/8d, and R(B*) R(B) =
R(B*)R(BY), and claim that (s,t) = (u,v). We write R = f - 2! with some
integer [, where |I| < d and the polynomial f € F,[z] satisfies deg f < 2d and
f(0) # 0. Then the above equation implies that

F(B°) £ (8Y) B7IHD = £ (B) £ (%) B~
If I > 0, we consider the polynomial
G = f(a°) f () 2™H) — f (a*) f (z¥) &' CH € F, [a]

of degree
degG <2d-(s+t+u+v) <n.

Furthermore, G(8) = 0, and hence G = 0. This implies that s + ¢t = u + v,
and thus F = f (z°) f (zt) — f (z%) f (zV) is the zero polynomial.
If I < 0, we consider the polynomial

G=f(z°)f (xt) gl s+ f (@) f(zY) g l(utv)

to derive that s+t =u +v and F = 0.

Since s +t = u + v, we may assume that s # u, because otherwise (s,t) =
(u,v). Without loss of generality we may assume that s < u. We let a,, 2™ be
the term of smallest degree in f — f(0) with a,, # 0. Then the first product
contains the term a,,f(0)z™® # 0. Moreover, this term is unique and does
not cancel with any other term unless s = u. So we conclude that s = u and
t=w.

This proves our claim about the existence of M (M + 1)/2 pairwise distinct
powers of R(f), and thus the order of R(3) is at least M (M + 1)/2.

From Lemma 3, we know that for any € > 0

M= "_2 +O(r/>e/?)
8dr '

We let ¢; be the constant implicit in the “O”, and set ¢y = (8c1d)~2/(3+¢).
Then for r < ¢ - n*/375/2 we have

2
19/ ¢ T

~ 8&dr’
M > o eyrt/2te/2 > . > (16cyd) " 1n2/3—2/2
= 8dr = 16dr ~ '
Thus in this case the order of R(j3) is at least (16cod)~2n*/3~¢. Otherwise

the order of 3 is r larger than ¢y - n*/37</2, O

Corollary 5. For any € > 0 there exists ¢ > 0 such that for any root 8 of
an irreducible polynomial of degree m, at most one of the shifts 8 + a with
a € B, is of order less than cn*/3—¢.



We see from the proof of Theorem 4 that the more information about the
order r of 3, the order n of ¢ modulo r and the distribution of powers of ¢
modulo r is available, the stronger are the results produced by this method.
In particular, this explains how Artin’s conjecture comes into play: if ¢ is a
primitive root modulo r, then we have full control over the distribution of
powers of ¢ modulo r and, as we have seen in Section 3, this implies much
stronger results about the order of R(3). Another case when we have good
information about this distribution is the case when r is a product of large
powers of small primes, see Korobov (1972; 1992). Accordingly, these two
cases are the main sources of the results in von zur Gathen & Shparlinski
(1998; 1999).

5 Exponentiation in finite fields

We consider the following task: Given are finite fields F, C Fy», an integer
e with 1 < e < ¢", and u € F;». The objective is to compute u® € Fyn.
An important special case is ¢ = 2. This is a basic operation in several
cryptosystems: Diffie-Hellman and ElGamal.

The “classical” method is to use repeated squaring, with at most 2log, e <
2nlog, ¢ multiplications in F,» , and classical multiplication, with O(n?) op-
erations in F,. This gives a total of O(n®logq) operations in F, for one
exponentiation in Fg- .

In the polynomial representation, we write Fy» = F,[z]/(y), where ¢ € F,[z]
is irreducible of degree n, and use the basis (1,z mod ¢, ...,z"~! mod ¢) of
Fgn over I, .

Table 1. Multiplication in Fyn

|time
classical o(n?)
FFT (Schonhage & Strassen (1971))|O(nlog nloglogn)
additive subspaces (Cantor (1989)) |O(nlog®n)

Three multiplication algorithms are given in Table 1. The running time is
the number of operations in F,. Using the fastest method, the cost for one
exponentiation in F;» becomes O(n? lognloglognlog q) operations in F,.

A faster method is obtained from the polynomial representation of the Frobe-
nius map, using modular composition, as introduced in von zur Gathen &
Shoup (1992). Then exponentiation can be performed with O(n2 loglogn log q)
operations in F,, as proved in Gao et al. (2000).

n—1

Now we consider a normal basis (a,a?,...,a? ) of Fgn over F,, and the
. i
coordinates uo,...,un—1 € F; of a general element ), , u;a? of Fyn.

10



Then

q _ .
( Z uioﬂl> = Z u,-o/f+1 = Z ui,loﬂl,
0<i<n 0<i<n 0<i<n
where u_; = u,_1. Thus a gth power corresponds to a cyclic shift of coordi-
nates, and has no arithmetic cost. It is plausible that when a specific power,
as the gth one here, becomes cheaper, then this may also reduce the cost of a
general exponentiation. Indeed, the number of multiplications in Fy» becomes

at most (1 + o(l)) logn - for any e,
q

for most e

1
at least (§ + 0(1))

log, n

(von zur Gathen (1991)). The crucial question now is: How expensive is one
multiplication in Fy» ?

We begin by considering multiplication via linear algebra in general. Given
any basis ag, ..., an—1 of Fy» as vector space over Fy, we can represent “mul-
tiplication by «;” by an n x n matrix A;. This yields the multiplication tensor
(Ao, ---,A,_1). We then have the following estimates:

— cost for multiplication by 4; : O(n?),
— cost for a general multiplication: O(n?),
— cost for exponentiation: O(n*logq).

In a normal basis a; = a4 , each matrix A; is a shift of Agy. This corresponds to
the Massey-Omura multiplier. The time for a multiplication is still O(n®), but
the storage requirement is only O(n?), rather than O(n®). An exponentiation
costs O(n*log q) operations in F,.

Mullin et al. (1989) proved that Ay has at least 2n — 1 nonzero entries. A
fruitful suggestion of theirs was to consider “optimal” normal basis, which
have exactly this minimal number 2n — 1 of nonzero entries. Then the costs
drop by a factor of n:

— cost for one multiplication: O(n?),
— cost for exponentiation: O(n®/logn).

They had actually rediscovered a special case of Gaufl periods. Namely, Gao
& Lenstra (1992) showed that optimal normal bases correspond to Gauf
periods of type (n,K) with #K =1 or #K = 2, for ¢ = 2.

But even in this improved situation, the computation is slower by a factor of
almost n than those discussed in the above. The question is: can we reconcile
the advantages of normal bases with those of fast multiplication? Gao et al.
(1995) have shown that this is indeed possible. In the notation from Section 2,
we have the tower of fields:

]Fq c ]Fq" = ]Fq (a) C ]Fq (6)

11



We can represent the right hand field in a polynomial basis, using an appro-
priate polynomial which vanishes at £, and for the left hand extension we
have the advantages of the normal basis. Now the algorithms become quite
efficient;:

— cost for one multiplication: O(kn lognloglogn),
— cost for exponentiation: O(kn?loglogn logq)

operations in Fy, with &k as in Section 2.
The algorithms mentioned here work very well also in practice, as reported
in the experimental results of von zur Gathen & Nocker (1997, 1999).

Table 2. Cost of exponentiation algorithms, for ¢ = 2

classical n®

fast multiplication n?log nloglog n
optimal normal basis [n®/logn
modular composition |n? loglogn
optimal normal basis |n?loglogn

plus fast multiplication

6 Construction of Gaufl periods

When do optimal normal bases exist? Or, more generously, when do we have
Gauf} periods with £ “small”? Or any Gauf} period at all? In the terminology
of Section 2, we have r prime and ¢(r) = nk, and want k as small as possible.
Thus we study the following function.

min #K prime Gaufl period of type (n,K) over F, exists,
kp(g,m) = 00 if none exists.

Wassermann (1993), Theorem 3.3.4, showed that if p = char(F, ), ¢ = p™ and

n € N is positive, then k,(g,n) < oo if and only if the following conditions

hold:

(i) ged(m,n) =1,
(ii) 2pfmn,if p=1mod 4, and 4p{n, if p=2 or p = 3 mod 4.

The “prime” (and the index p of k) refers to the fact that r is prime in
the above construction. Gaufl (1801) suggested in article 356 of his Disqui-
sitiones Arithmeticae to remove this condition: Haecce theoremata salva vel
potius aucta elegantia sua etiam ad valores quosvis compositos ipsius n ex-
tendi posse: sed de his rebus, quae altioris sunt indaginis, hoc loco tacere

12



earumgque considerationem ad aliam occasionem nobis reservare oportet.? It
seems that the other occasion never arose.

Following Gauf}’ suggestion, we now drop this requirement, and take positive
integers n, k, and r, with nk = ¢(r), a subgroup K C Z* of order k, a
primitive rth root of unity 8 € F e, and a =3, 8%

Theorem 6. The Gauf period a is normal in Fy» over Fy if and only if r
is squarefree, ged(r,q) =1, and {q¢,K) =Z,*.

For arbitrary r, the expression for a reads as follows. For a prime divisor £
of 7, we let vy(r) be the multiplicity of £ in 7. We write r = r;r2 where ro is
the product of all primes £ such that v¢(r) = 1. For any prime ¢ dividing 7,
let ¢/ =r/¢"("), and set

g=z" H Z 2t € Z[z).

£)r1 0<i<v,(r1)

The general Gauf period of type (n,K) is defined as

a=>g(B".

a€

If r is squarefree, then a general Gaufl period is given by the same formula as
a Gauf} period. Theorem 6, without the squarefreeness condition, also holds
for these GauB3 periods (Feisel et al. (1999)). The proof argues mainly in
algebraic number fields, which is of course Gauf}’ original setting. It would
be nice to have an argument working just in finite fields.

The corresponding variant of k,(g,n) is the following:

min #K general Gauf} period of type (n,K)
kg(g,n) = over F, exists,
00 if none exists.

Then x4(g,n) < Kkp(g,n).

There are considerably more of these general Gaufl periods than of the ones
with r prime, and the smallest value of k often gets reduced. For g = 2, this
is illustrated in Table 3, where the “O0” means that r has a square factor.
Fast arithmetic can also be used with these more general Gaufl periods; see
von zur Gathen & Nocker (1999).

From an different point of view, von zur Gathen & Pappalardi (2000) have
determined the density of primes r = nk + 1 that yield a Gaufl period over
F,, in terms of n and q.

% These theorems can be extended to arbitrary composite values of n [in our no-
tation: r], retaining or even enhancing their elegance; but these matters, which
are at a higher level of research, are best left unsaid in this place, and we reserve
their consideration for another occasion.

13



Table 3. Improvements for ¢ = 2 and 2 < n < 156:

n|kp(2,n) Ky4(2,n) ratio r K

6 2 1 20| 9 O {1y

200 3 1 30| 25 0O {1}

21 10 2 50| 49 O {1, 48}

2 3 2 15| 69 {1, 68}

271 6 2 30| 8 O {1, 80}

34 9 6 1.5 | 309 {1, 46, 47, 262, 263, 308}
42 5 2 2.5 | 147 O {1, 146}

a4 9 2 45 | 115 {1,901}

46 3 2 1.5 | 141 {1, 140}

54/ 3 1 30| 81 O {1}

55| 12 260|121 O {1, 120}

57 10 6 1.67| 361 O {1, 68, 69, 292, 293, 360}
68 9 6 1.5 | 515 O {1, 46, 56, 356, 366, 411}
70, 3 2 15 | 213 {1, 212}

75 10 8  1.25| 707 {1, 111, 293, 302, 405, 414, 596, 706}
78 7 235|169 O {1, 168}

84 5 2 25| 203 {1, 202}

92 3 2 15| 235 {1, 46}
102 6 2 3.0 | 309 {1, 308}
108 5 225|405 O {1, 404}
110 6 1 60121 O {1}
11| 20 8 2.5 1043 {1, 148, 342, 491, 552, 701, 895, 1042}
114 5 3 167|361 O {1, 68, 292}
16| 3 2 1.5 | 295 {1, 176}
123 10 4 2.5 | 581 {1, 167, 414, 580}
125 6 4 15625 O {1, 182, 443, 624}
132 5 2 2.5 | 299 {1, 298}
140 3 2 15 | 319 {1, 318}
145 10 4 25 | 649 {1, 296, 353, 648}
147, 6 2 30343 O {1, 342}
150 19 4 4.75| 707 {1, 302, 405, 706}
154| 25 4 6.25| 667 {1, 231, 505, 597}
156 13 1 13.0 | 169 O {1}
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