
FINDING POINTS ON CURVES OVER FINITE FIELDSJOACHIM VON ZUR GATHEN�, IGOR SHPARLINSKIy, AND ALISTAIR SINCLAIRzSeptember 17, 2003Abstra
t. We solve two 
omputational problems 
on
erning plane algebrai
 
urves over �nite�elds: generating a uniformly random point, and �nding all points deterministi
ally in amortizedpolynomial time (over a prime �eld, for non-ex
eptional 
urves).1. Introdu
tion. Let q be a prime power, Fq a �nite �eld with q elements,f 2 Fq [x; y℄ of total degree n, and C = f(a; b) 2 F 2q : f(a; b) = 0g = ff = 0g theplane 
urve de�ned by f . We 
onsider two problems of �nding points on this 
urve:probabilisti
ally �nding a uniformly distributed random point, and deterministi
ally
omputing all its points.Curves over �nite �elds play a role in several appli
ations: fa
toring integers withellipti
 
urves, testing primality with ellipti
 
urves (or more general algebrai
 vari-eties), algebro-geometri
 Goppa 
odes, and fast multipli
ation over �nite �elds. Forthese appli
ations, spe
ial methods for �nding points (if needed) are used. This pa-per presents the �rst general and systemati
 approa
h to the problem, to the authors'knowledge.Throughout this paper, we will assume that f is squarefree, and denote by � thenumber of absolutely irredu
ible 
omponents of C whi
h are de�ned over Fq . Thefamous theorem of Weil says that the number of points #C on C satis�esj #C � �q j� n2q1=2: (1.1)The 
ase of an ex
eptional 
urve, 
orresponding to � = 0, needs spe
ial treatmentand is dealt with in Se
tion 5. So for now we assume that � � 1.In Se
tion 2 we provide a polynomial-time solution for the probabilisti
 variant ofour question: generating a uniform random point on C. The algorithm is elementaryand is based on the idea of reje
tion sampling. We also use this algorithm to obtainarbitrarily good probabilisti
 estimates of #C.With deterministi
 methods, the \brute for
e" approa
h to 
omputing all pointson C via �nding, for ea
h a 2 Fq , all b 2 Fq with f(a; b) = 0, takes O~(n2q3=2) opera-tions in Fq , using the fastest known deterministi
 algorithms to fa
tor the univariatepolynomial f(a; y), for all a 2 Fq (Shoup 1990; Se
tion 1.1 of Shparlinski 1999, von zurGathen & Shoup 1992). We present in Se
tion 3 a deterministi
 method that usesO~(n5q) operations, i.e., polynomial time per point. The 
entral tool for our estimatesis a bound of Perel'muter's (1969) on a 
ertain exponential sum. In order to use this,we have to study in Se
tion 4 some geometri
 and arithmeti
 properties of the �bresquare C �� C. Our approa
h only works in the 
ase of a prime �eld Fq , with q = pprime, and does not work for ex
eptional 
urves.Shoup (1990) has exhibited a deterministi
 univariate fa
toring algorithm whi
hfor almost all polynomials runs in polynomial time. Our deterministi
 result hastwo interpretations: the �rst is that the members of a \small" parametrized family�FB Mathematik-Informatik, Universit�at Paderborn, 33095 Paderborn, Germany, gathen�upb.deyDepartment of Computing, Ma
quarie University, Sydney, NSW 2109, Australia,igor�
omp.mq.edu.auzComputer S
ien
e Division, University of California, Berkeley, CA 94720-1776, USA,sin
lair�
s.berkeley.edu 1
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f(a; y) of univariate polynomials, for all a 2 Fp , 
an be fa
tored deterministi
ally in(amortized) polynomial time. The se
ond is that all points on a plane algebrai
 
urveover Fp 
an be found deterministi
ally in (amortized) polynomial time.Finally, Se
tion 5 presents a dis
ussion of the 
ase of ex
eptional 
urves whi
hhas been ex
luded in the other se
tions.A di�erent set of results on our problem (and higher-dimensional varieties) wasobtained by Adleman & Huang (2001), Huang & Wong (1999), Huang & Ierardi(1998), and Huang & Wong (1998).2. Generating uniform random points. In order to generate random pointson a plane 
urve, it is natural to take random points on a 
oordinate axis and 
omputepoints \above" them. So let � : C ! Fq be the proje
tion onto the �rst 
oordinate.For 0 � i � n let Ri = fa 2 Fq : #��1(fag) = igbe the set of points with exa
tly i preimages, and ri = #Ri. We assume that C
ontains no verti
al lines, so that no x�a with a 2 Fq divides f . Then Fq = S0�i�nRiis a partition, and q = X0�j�n rj ; #C = X1�j�n jrj :Algorithm 2.1. Random point.Input: f 2 Fq [x; y℄ of degree n.Output: Either a uniform random point (a; b) on C = ff = 0g � F 2q , or \failure".1. Choose a 2 Fq uniformly at random.2. Compute fa = g
d(yq � y; f(a; y)) 2 Fq [y℄.3. Choose a random root b 2 Fq of fa. [Then (a; b) 2 C.℄4. Set i = deg fa. [Then a 2 Ri.℄5. Choose YES with probability i=n, and NO with probability 1� i=n. If YES was
hosen, return (a; b), and otherwise return \failure".Theorem 2.2. Suppose that C is a nonex
eptional 
urve without verti
al lines. Thenthe algorithm returns a uniform random point on C with probability#Cnq � 1n�1� n2q�1=2�;and \failure" with probability 1 � #C=nq. For every P 2 C, P is returned withprobability 1=nq. The algorithm 
an be performed with an expe
ted number ofO(n logn log(nq) loglogn) operations in Fq .Proof. Let P = (a; b) 2 C with a 2 Ri. ThenprobfP is returnedg = 1q � 1i � in = 1nq :We denote by M(n) a multipli
ation time, so that the produ
t of two polynomialsin Fq [x℄ of degree at most n 
an be 
omputed with O(M(n)) operations in Fq . Then2



we 
an take M(n) = n logn loglogn, and a g
d 
an be 
omputed with O(M(n) logn)operations. Using repeated squaring to 
al
ulate yq mod f(a; y) with O(M(n) log q)operations, the 
ost of step 2 is O(M(n) log(nq)). The polynomial fa is a produ
tof i = deg fa many linear fa
tors in Fq [x℄. If we �nd a root using the randomizedalgorithms of Cantor & Zassenhaus (1981), it will be uniformly randomly distributedamong these i roots. The algorithm splits the polynomial re
ursively into two fa
tors,one of whi
h is g
d(y(q�1)=2 � 1); fa(y + b) for a random b 2 Fq , and 
ontinues withthe smaller fa
tor. (For even q, a di�erent formula is used.) We expe
t O(log i) splitsto suÆ
e, and ea
h 
osts O(M(i) log(qi)) operations in Fq .We think of q as being mu
h larger than n, say q � 
2n4 for some 
onstant 
.Then the su

ess probability of Algorithm 2.1 is at least 1n (1 � 
�1). Of 
ourse, we
an in
rease the su

ess probability by repeated runs of the algorithm.We 
an adapt Algorithm 2.1 to obtain an arbitrarily good approximation for #C,the number of points on C. An (�; Æ)-approximation � to #C satis�esprob fj ��#C j� �#Cg � 1� Æ:To a
hieve this, we simply run Algorithm 2.1 k times, 
ount the number t of timesthat YES was 
hosen in step 5, and return the value � = tnq=k. Sin
e YES is outputwith probability #C=nq, the expe
ted value of � is exa
tly #C, so it is an unbiasedestimator. The unbiased estimator theorem of Karp et al. (1989) tells us how large k,the number of samples, should be to guarantee an (�; Æ)-approximation. This value isk = d4� loge(2=Æ)��2e; (2.3)where � is an upper bound on nq=#C. But nq=#C � n(1 � n2q�1=2)�1, so � is notvery large. In fa
t, assuming as before that q � n4, the number of samples requiredis only about 4n loge(2=Æ)��2.It is even easier in prin
iple to estimate the individual ri's. We 
hoose k randomvalues a 2 Fq , determine for ea
h the j with a 2 Rj , 
ount the number t of timesthat j = i o

urred, and return the value �i = tq=k. This is obviously an unbiasedestimator of ri, and the number of samples required for an (�; Æ)-approximation is asin (2.3), where now � = �i is an upper bound on q=ri. With a parameter �, thisimplies that, by taking k = d4�n loge(2=Æ)��2e;we get an (�; Æ)-approximation for any ri satisfying ri � q=�. Sin
en X1�i�n ri � X1�i�n iri = #C;the ri's are on average at least #C=n2 � q(n�2 � q�1=2). Thus \on average" k willonly be about 4n2 loge(2=Æ)��2, assuming as before that q � n4. Su
h a value willenable us to estimate the \large" ri's, though not of 
ourse the small ones. In fa
t,when q is large 
ompared to n6n, then the ri separate into two 
lasses: Lemma 2.3of von zur Gathen & Shparlinski (1998) implies that either ri � qi!(n�i)! � 2n2nq1=2is reasonably large, or ri � 2n2nq1=2 is very small. Of 
ourse, the \reasonably large"may still be very small, and about q=ri samples are required. Thus if we use �i = n!,then in the �rst 
ase we obtain an (�; Æ)-approximation s
heme for ri; and in these
ond we expe
t to �nd no a 2 Ri: 3



Sin
e #Cn � X1�i�n ri � X1�i�n iri = #C;the ri's are on average at least #C=n2. To �nd approximations only to the \large"ri's, we might use �i = �n2, with some small number �.3. Deterministi
 
onstru
tion of all points. In this se
tion, we present adeterministi
 algorithm for �nding all points on C = ff = 0g over a prime �eldFp . It employs a deterministi
 polynomial{time algorithm for �nding all roots of theunivariate polynomials f(a; y), with a 2 Fp . This algorithm does not fa
tor f(a; y)
ompletely for all a, but we show that there are only about pp ex
eptional a, andfor these we use an always su

essful deterministi
 algorithm with time about pp;thus the total time is proportional to p, whi
h is about the size of C. Everything ispolynomial in the degree n.As a �rst step, we fa
tor f into irredu
ible fa
tors in Fp [x; y℄. The bivariatefa
toring algorithms (Lenstra 1985; von zur Gathen 1984; von zur Gathen & Kaltofen1985) 
an a
tually be made into deterministi
 redu
tions from bivariate to univariatefa
torization over �nite �elds. Thus f 
an be fa
tored with nO(1)p1=2 operations inFp . From now on, we assume that f is irredu
ible.The proje
tion � : C = ff = 0g ! Fp onto the �rst 
oordinate is 
alled separableif and only if hy = �h=�y 6= 0 for ea
h irredu
ible fa
tor h 2 Fp [x; y℄ of f . A simpleexample of an inseparable proje
tion is given by f = x � yp 2 Fp [x; y℄: The 
urveC = fx = ypg is smooth, and all tangents to C are verti
al.Let ' : Fp ! Fp denote the absolute Frobenius map, with '(a) = ap. For ouralgorithms, it is 
onvenient to have � separable, and the next lemma des
ribes asimple pro
edure for a
hieving this by fa
toring out '. (It a
tually works over any�nite �eld of 
hara
teristi
 p.)Lemma 3.1. Let f 2 Fp [x; y℄ be irredu
ible. We 
an 
ompute in polynomial timeg 2 Fp [x; y℄ and an integer k � logp(degy f) su
h thatid� 'k : F 2p �! F 2pgives a bije
tion between ff = 0g and fg = 0g, degx g = degx f; degy g � degy f; and� : fg = 0g ! Fp is separable.Proof. We write f =Pi;j fijxiyj , with ea
h fij 2 Fp . Thenfy = 0() 8i; j (fij 6= 0) p j j):If fy = 0 and h =Xi;jpjj fijxiyj=p 2 Fp [x; y℄;then f(a; b) = h(a; bp) for all (a; b) 2 F 2p , and thus id� ' : F 2p ! F 2p gives a bije
tionbetween ff = 0g and fh = 0g. Furthermore, h is irredu
ible. We repeat this pro
essuntil we obtain a polynomial g 2 Fp [x; y℄ and k 2 N with gy 6= 0 and id � 'k abije
tion between ff = 0g and fg = 0g. 4



Algorithm 3.2. Finding all points.Input: f 2 Fp [x; y℄ of degree n, where p is a prime.Output: A list of all points (a; b) 2 F 2p with f(a; b) = 0.1. Set h = 288n4dlog2 pe2.2. For all a 2 Fp do 3{73. Compute fa=f(a; y) 2 Fp [y℄:4. Compute f�a = g
d(yp � y; fa) 2 Fp [y℄.5. For 0 � t < h 
ompute the two fa
torsga;t = g
d�(y � t)(p�1)=2 � 1; f�a�; g�a;t = g
d(y � t; f�a ) 2 Fp [y℄of f�a .6. Compute the 
ommon re�nement of the partial fa
torizations from Step 5.7. If Step 6 returns only linear fa
tors y� b, then add all these (a; b) to the list.Otherwise 
ompletely fa
tor f�a with the deterministi
 algorithm of von zurGathen & Shoup (1992), and add all resulting (a; b) to the list.Theorem 3.3. Let p be a prime, f 2 Fp [x; y℄ squarefree and non-ex
eptional, and� : C = ff = 0g ! Fp separable. Then the algorithm 
orre
tly 
omputes all pointson C. It uses O(n5p logn loglogn log(np) log2 p)or O~(n5p) operations in Fp .Proof. For all a; b 2 Fp we havef(a; b) = 0() f�a (b) = 0() y � b j f�a :Sin
e Step 7 returns all linear fa
tors of f�a , the �nal list 
orre
tly 
ontains all pointsof C = ff = 0g.It remains to analyze the running time. The 
ru
ial point is to understand whenStep 6 su

eeds in 
ompletely fa
toring f�a . Denote by S � Fp the set of all a forwhi
h this is not the 
ase, and s = #S. Furthermore, Ca = �2(C \ (fag�Fp )) 
onsistsof all b 2 Fp with (a; b) 2 C: ThusS = fa 2 Fp : 9b; 
 2 Ca b 6= 
; b; 
 � h; and 8t < h (y � b j ga;t () y � 
 j ga;t)g:The re�nement 
ost in Step 6, if done along a binary tree, is O(M(n) logn) forea
h t, or O(hM(n) logn) in total. For a 2 S, an appli
ation of the algorithm fromvon zur Gathen & Shoup (1992) 
osts O(M(n) p1=2 log(np)) operations in Fp . Theg
ds in Steps 4 and 5 are 
omputed by repeated squaring for the required power of yand y � t, redu
ing after ea
h multipli
ation modulo fa and f�a , respe
tively.For ea
h a in Step 2, we �nd the following number of operations in Fp :Æ Step 3: O(n2),Æ Step 4: O(M(n) log(np)),Æ Step 5: O(hM(n) log(np)),Æ Step 6: O(hM(n) logn),Æ Step 7: 0 if a 2 Fp n S, and O(M(n) p1=2 log(np)) if a 2 S:5



The total 
ost isO�p � (n2 + n4M(n) log(np) log2 p) + sM(n)p1=2 log(np)� (3.4)operations, and we now show that s is O(n2(n2 + log p)p1=2). This will imply the
laim about the running time. We letQ = fu 2 F�p : 9v 2 F�p u = v2g = fu 2 F�p : u(p�1)=2 = 1gbe the set of nonzero squares in Fp , and � the quadrati
 
hara
ter on Fp , with�(b) =8<: 1; if b 2 Q;�1; if b 62 Q; b 6= 0;0; if b = 0:For the time being, we work with an arbitrary integer parameter h; only at theend will we substitute the value from Step 1. Set H = f0; : : : ; h� 1g � Fp , where weidentify Fp with f0; : : : ; p� 1g. Two distin
t elements b; 
 2 Fp are h-separated if andonly if �(b � t) 6= �(
 � t) for some t 2 H . A set B � Fp is h-separated if any twodistin
t elements of B are. With this notation, we have for a 2 Fpa 2 S =) Ca is not h-separated:The reverse impli
ation is true if the non-h-separated b; 
 2 Ca are both at least h. Ifa 2 S, then for at least one pair of distin
t elements b; 
 2 Ca,h = X0�t<h��(t� b)(t� 
)�:Now we let k 2 N andw = Xa2Fp Xb;
2Cab6=
 �� X0�t<h��(t� b)(t� 
)���2k= X0�t1;:::;t2k<h Xa2Fp Xb;
2Cab6=
 ��(t1 � b)(t1 � 
) � � � (t2k � b)(t2k � 
)�:Then, by the above, sh2k � w. We 
onsider the setD0 = f(a; b; 
) 2 F 3p : f(a; b) = f(a; 
) = 0; b 6= 
g � F 3p :The �bre produ
t D = C �� C is the 
losure of D0 in F 3p ; it has degree at mostn(n� 1) < n2 and is dis
ussed in detail in Se
tion 4. Thenw = Xt2H2k XP2D�� t(P )�;where the inner sum is over all Fp -rational points P = (a; b; 
) 2 D with b 6= 
,  t isthe polynomial t = (y � t1) � � � (y � t2k)(z � t1) � � � (z � t2k) 2 Fp [y; z℄6



in indeterminates y and z, and  t�(a; b; 
)� is obtained by substituting b and 
 for yand z, respe
tively.Theorem 4.6 below says that there are at most (12kn2h1=2)2k values of t 2 H2k forwhi
h �( t) is a square in the global ring OA of some irredu
ible 
omponent A � F 3of D, where � : F [x; y; z℄ �! OA is the restri
tion map.For other ve
tors t 2 F 2k , we may apply the bound on 
hara
ter sums along a
urve from Perel'muter (1969) that givesXP2D�� t(P )� � d � �n2(n2 + 2k)p1=2� (3.5)for some 
onstant d. Perel'muter's bound holds for ea
h irredu
ible 
omponent of D;we also use the fa
t that no su
h 
omponent is verti
al (Lemma 3.1 of von zur Gathenet al. 1996). Sin
e their degrees sum to degD < n2, (3.5) follows. Thereforew � (12kn2h1=2)2kp+ d � n2(n2 + 2k)h2kp1=2;s � (12kn2h�1=2)2kp+ d � n2(n2 + 2k)p1=2:Now, using k = dlog2 pe and h as in Step 1 of Algorithm Algorithm 3.2, we �nd(12kn2h�1=2)2k � 2�k � 2� log2 p = p�1:Hen
e s = O�n2(n2 + log p)p1=2�:Together with (3.4), this proves the estimate of the total 
ost.4. Squares on the �bre produ
t. The goal of this se
tion is to bound thenumber of produ
ts 	t whi
h are squares on some irredu
ible 
omponent of D; thiswas used in the previous proof.Let F be an algebrai
ally 
losed �eld, f 2 F[x; y℄ squarefree of degree n � 1,C = ff = 0g � F 2 the asso
iated plane 
urve, and � : C �! F the �rst proje
tion.We assume that � is separable. Then D = C �� C � F 3 , the �bre square over �, 
anbe de�ned as the 
losure in F 3 ofD0 = f(a; b; 
) 2 F 3 : f(a; b) = f(a; 
) = 0; b 6= 
g:Furthermore, let g = (f(x; y)� f(x; z))=(y � z) 2 F [x; y; z℄:A smooth point P = (a; b) 2 C is 
riti
al for � if and only if the tangent lineTP;C in F 2 is verti
al. If f is irredu
ible, this is equivalent to fy(a; b) = 0; wherefy = �f=�y 2 F[x; y℄; in general, we have to repla
e f by its (unique) irredu
iblefa
tor on whose 
omponent P lies. Sin
e � is separable, C has only �nitely many
riti
al points.Theorem 4.1. Let f 2 F[x; y℄ be squarefree and � separable.(i) D = ff(x; y) = g(x; y; z) = 0g:(ii) D = D0 [ f(a; b; b) : (a; b) 2 C is singular or 
riti
alg.(iii) (a; b; 
) 2 D with b 6= 
 is singular on D if and only if either (a; b) or (a; 
) issingular on C, or both (a; b) and (a; 
) are 
riti
al on C. All points of D n D0are singular on D. 7
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Fig. 4.1. P1; P2; P5 are 
riti
al for �; and P6 is singular on C. If Pi = (ai; bi), then (ai; bi; bi) 2D\� for i = 1; 2; 5; 6: These four points are singular on D. Furthermore, (a1; b1; b2) 2 S � D; and(a3; b3; b4) 2 D n S.(iv) degD � n(n� 1) < n2:Proof. Let� = f(a; b; b) 2 F 3 : a; b 2 Fg; D1 = ff(x; y) = g(x; y; z) = 0g;so that � is the diagonal. Clearly D n� = D0; and D0 � D1. By de�nition, D is the
losure of D0, and thus D � D1. We prove in the following that (ii) is valid with D1instead of D. Thus D1 \� is �nite, and D = D1 follows, hen
e (i), (ii), and (iv).So let u; v be indeterminates over F [x; y℄: Then the Taylor expansion of f around(u; v) of order 1 isf(x; y) = f(u; v) + fx(u; v)(x� u) + fy(u; v)(y � v) + hin F [x; y; u; v℄; with some h 2 (x� u; y � v)2. Thereforeg(x; y; z)= 1y � z � (fy(u; v)(y � v)� fy(u; v)(z � w) + h(x; y; u; v)� h(x; z; u; v))= fy(u; v) +H;with some H 2 (x � u; y � v; z � v): Thus for (a; b) 2 C(a; b; b) 2 D1 () fy(a; b) = 0() (a; b) is singular or 
riti
al on C:8



For (iii), let (a; b; 
) 2 D with b 6= 
. The Ja
obian of D at (a; b; 
) isJ(a; b; 
) = 0BBBBB� fx(a; b) fx(a; b)� fx(a; 
)b� 
fy(a; b) fy(a; b)b� 
0 �fy(a; 
)b� 

1CCCCCA :After multiplying the se
ond 
olumn by 
 � b and then adding the �rst 
olumnto the se
ond, we obtain the matrixA = 0� fx(a; b) fx(a; 
)fy(a; b) 00 fy(a; 
) 1A :Thus(a; b; 
) is singular on D () rank (J(a; b; 
)) � 1() rank (A) � 1() (a; b) or (a; 
) is singular on C; or both are 
riti
al on C:The 
ondition that � be separable is ne
essary, sin
e otherwise all points on C are
riti
al. Re
all the example C = fx = ypg, where p = 
harF, from Se
tion 3. Thenfy = 0, C is smooth, and all tangent lines to C are verti
al. Furthermore, D0 = �,g = (yp�zp)=(y�z) = (y�z)p�1, and C�� C equals f(a; b; b) 2 F 3 : a = bpg, 
ountedp � 1 times. On the other hand, when C = fy = g(x)g is the graph of a polynomialg 2 Fq [x℄; then � is separable, and D = �:We de�neS = f(a; b; 
) 2 D : (a; b) or (a; 
) is singular or 
riti
al on Cg:We now let A be an irredu
ible 
omponent of D, and want to estimate the numberof t su
h that  t = Y1�i�2k(ti � y)(ti � z)is a square in OA. We let � : F [x; y; z℄ �! OA be the restri
tion map.Let t 2 F 2k , and T = f1; : : : ; 2kg. The overall goal of this se
tion is to show inTheorem 4.6 that only few �( t) are squares, when t is 
hosen from a �nite subset Hof F 2k . For a simple example of a square, we take the parabola f = x � y2; so thatC = fx = y2g, and D = fx � y2 = y + z = 0g is irredu
ible. If k = 1 and t2 = �t1;then �( t) = �((t1 � y)(t1 � z)(t2 � y)(t2 � z)) = �((t1 � y)2(t1 + y)2) (4.2)is a square on D:The 
ondition that �( t) not be a square for (3.5) to hold is not an artifa
t ofPerel'muter's proof, but without it (3.5) may a
tually fail to be true.In the sequel, we de�ne several 
ombinatorial obje
ts on the index set T . We�rst 
olle
t pairs of equal values of ti in a systemati
 way. Namely, we take thelexi
ographi
ally �rst maximal mat
hing on the dire
ted graph with vertex set T ,and where (i; j) are 
onne
ted if and only if i < j and ti = tj . Then T1 � T is de�ned9



as the set of these �rst 
oordinates i, and �1 : T1 ! T is de�ned by �1(i) = j if (i; j)o

urs in that mat
hing. As an example, if t3 = t5 = t8 = t11 = t13 and no other tiequals these, then T1 = f3; 5g, �1(3) = 8, and �1(5) = 11.Next, we setT2 = fi 2 T n (T1 [ �1(T1)) : A \ fy = tig � S or A \ fz = tig � Sg:Then the ti for i 2 T3 = T n (T1 [ �1(T1) [ T2)are pairwise distin
t, and (T1; �1(T1); T2; T3) is a partition of T . Next, we letS0 = T3 � f0g; S1 = T3 � f1gbe two disjoint 
opies of T3, and de�ne a bipartite undire
ted graph G = (S0 [S1; E)as follows. For i; j 2 T3, (i; 0) and (j; 1) are 
onne
ted in G if and only if there issome (a; b; 
) 2 A n S su
h that b = ti and 
 = tj :In the example (4.2) of a parabola, we have T1 = T2 = �, andG = .(1; 0)(2; 0) (1; 1)(2; 1)������Lemma 4.3. If t 2 F 2k is su
h that �( t) 2 OA is a square, then ea
h vertex in Ghas degree at least one.Proof. By symmetry, it is suÆ
ient to show the 
laim for a vertex (i; 0) 2 S0.Sin
e i 62 T2; we 
an 
hoose some P = (a; ti; 
) 2 A n S; then 
 6= ti. LetU0 = fj 2 T : tj = tig; U1 = fj 2 T : tj = 
g;� : F [x; y; z℄ ! OA the restri
tion to A, R = OP;A the lo
al ring at P , whi
h isa Unique Fa
torization Domain (see e. g. Shafarevi
h 1974, Theorem II.3.2), and� = (OA ! OP;A) Æ � the 
omposition of � with the lo
alization at P: Then i 2 U0and U0; U1 � T n T2.For every j 2 T n (U0 [ �1(U0) [ fig), we have tj 6= ti, and thus �(y � tj) is aunit in R. Similarly, ea
h �(z � tj) with tj 6= 
 is a unit in R. Sin
e (a; ti) 2 C is not
riti
al for �, we have fy(a; ti) 6= 0, and therefore �(y � ti) 2 R is a lo
al parameterin R. Similarly, ea
h �(z � tj) with tj = 
 is a lo
al parameter in R.By the above, there is a unit u 2 R su
h that�( t) = Yj2T �(y � tj) �Yj2T �(z � tj)= u � Yj2U0[�1(U0)[fig�(y � tj) � Yj2U1 �(z � tj)is a square in R. Thus the total number of lo
al parameters in the produ
t is even.We have #U0 = #�1(U0) and i 62 U0[�1(U0). It follows that in the left hand produ
t,the number of lo
al parameters is odd, and therefore also in the right hand produ
t.Thus there exists some j 2 T3 with tj = 
; then f(i; 0); (j; 1)g 2 E:10



We now take a maximal \disjoint" mat
hing (V0; V1) in G of the following type.The sets V0; V1 � T3 are disjoint, G indu
es a perfe
t mat
hing on (V0 �f0g)[ (V1 �f1g), and this mat
hing is maximal. Furthermore, let � : V0 �! V1 be the 
orre-sponding bije
tion, with �(i) = j if and only if f(i; 0); (j; 1)g o

urs in the mat
hing.For every i 2 V2 = T3 n (V0[V1), (i; 0) is 
onne
ted to some (j; 1) 2 T3�f1g, andby the maximality of the mat
hing, we have j 2 V0 [ V1. We take � : V2 �! V0 [ V1su
h that �(i) = j for some su
h j, and note that (V0; V1; V2) is a partition of T3.Finally, we indi
ate how to des
ribe ti for i 2 V0 su

in
tly if f(i; 0); (j; 1)g 2E and tj is known. For this, we take an arbitrary total order � on F. For ea
ht 2 F; C \ fy = tg has at most n points, say (a1; t); : : : ; (al; t) with l � n anda1 � � � � � al. If j = �(i) and t = tj , then (ar; ti; tj) 2 D n S for one of those points,with 1 � r � l. We 
hoose the smallest su
h r; then C \ fx = arg 
onsists again ofat most n points. We let v be the position of (ar; ti) in this list, ordered a

ording to�, and set �3(i) = (r; v). Then ti is determined by j = �(i), tj , and �3(i).Similarly, we de�ne �3 : V2 �! f1; : : : ; ng2 so that for i 2 V2, ti is determined byj = �(i), tj , and �3(i).We have thus asso
iated to any t 2 F 2k with �( t) a square the following data:T1; �1; T2; V0; �; �3; and ti for i 2 T1 [ T2 [ V1: (4.4)Lemma 4.5. If �( t) is a square in OA, then t is determined by the data in (4.4).Proof. (T1; �1(T1); T2; V0; V1; V2) is a partition of T , and ti = t�2(i) for ea
h i 2 T1.Thus it remains to show that ea
h ti with i 2 V0 [ V2 is determined by (4.4). Butthat is pre
isely what the 
onstru
tion of � and �3 a
hieves.We are now ready for the main result of this se
tion, an upper bound on thenumber of  t whi
h are squares. The bound is rather 
oarse, but suÆ
ient for ourpurposes.Theorem 4.6. Let F be an algebrai
ally 
losed �eld, f 2 F[x; y℄ squarefree, C =ff = 0g with � : C ! F separable, H � F be a �nite set with h elements, and k 2 Npositive. The number of t 2 H2k su
h that �( t) is a square in OA for some irredu
ible
omponent A of C �� C is at most (12kn2h1=2)2k.Proof. We �rst �x a 
omponent A of D, and show the 
orresponding bound. ByLemma 4.5, it is suÆ
ient to give an upper bound on the number of 
hoi
es for thedata in (4.4).The six sets T1; �1(T1); T2; V0; V1; V2 form a partition of T , and there are at most62k 
hoi
es for this partition.Suppose that these sets are 
hosen, with 
ardinalities 
1; 
2; 
3; 
4; 
5; 
6, respe
-tively. Then 
1 = 
2, 
3 < n2, and 
4 = 
5. The number of 
hoi
es for �1 is at most(2k)
1 , for � at most (2k)
4+
6 , for �3 at most (n2)
4+
6 , and for all ti's required in(Theorem 4.1) at most h
1+
5 � (n2)
3 . Sin
e 
1 + 
5 � 2k=2 = k, the total 
omes tom = 62k � (2k)
1+
4+
6 � (n2)
3+
4+
6 � h
1+
5 : (4.7)11



Sin
e degD � n(n� 1) by Theorem 4.1 (i), D has at most n(n� 1) < n2 irredu
ible
omponents. So the total number of t 
onsidered is at most n2m, andn2m � 62k � (2k)2k � (n2h1=2)2k:Here we use that either 
1 + 
2 + 
5 > 0 and then n2 � (n2)
3+
4+
6 � (n2)2k; or
2 + 
3 + 
4 + 
6 > 0 and then n2(h)
1+
5 � hk:5. Ex
eptional polynomials. In this se
tion, we deal with the somewhat trou-blesome 
ase ex
luded so far: ex
eptional polynomials, for whi
h � = 0. No analogueof the deterministi
 result of Theorem 3.3 is known for them, while the probabilisti
results of Se
tion 2 
arry over easily.We �rst note that it is not surprising that they are diÆ
ult to deal with, sin
eany subset of F 2q is an ex
eptional 
urve. If 
 2 Fq is a nonsquare and f = x2 + 
y2,then f is ex
eptional and ff = 0g = f(0; 0)g; (5.1)and by translation and �nite unions the 
laim follows. If 
har Fq � 3, then (5.1) alsoholds for f = xq�1 + yq�1. If b 2 Fq2nFq with b2 2 Fq , then bq�1 = (b2)(q�1)=2 = �1:Thus f is the produ
t of all x� by with these b, and thus f is ex
eptional, too.Now given an arbitrary f 2 Fq [x; y℄ of degree n, there are well-known probabilisti
algorithms with time polynomial in n log q that fa
tor f into its irredu
ible fa
torsover Fq (von zur Gathen & Kaltofen 1985) and test ea
h su
h fa
tor for absoluteirredu
ibility (Kaltofen 1985). For simpli
ity, assume now that f is irredu
ible overFq , and not absolutely irredu
ible. Then Kaltofen's algorithm 
an be used to �nd a�eld extension K of Fq with [K : Fq ℄ � n and a proper fa
torization of f over K. If gand h are two distin
t fa
tors, then the �rst 
oordinate of any 
ommon root is a rootof resy(g; h) 2 K[x℄:Thus it is easy to 
al
ulate all 
ommon roots of g and h, to 
he
k whi
h ones are inF 2q , and to determine whether they are indeed roots of f: All roots of f are found inthis way; there are at most n2=4 of them (von zur Gathen et al. 1996).Theorem 5.2. Let f 2 Fq [x; y℄ have degree n. There is a probabilisti
 algorithmusing (n log q)O(1) operations in Fq that determines whether f is ex
eptional and, ifit is, �nds all points of ff = 0g.A
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