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t. We 
onsider the subset sum pseudorandom generator, intro-du
ed by Rueppel and Massey in 1985 and given by a linear re
urren
esequen
e u0, u1, : : : of order n over Z2, and weights w = (w0; : : : ; wn�1) 2Rn for some ring R. The rings R = Zm are of parti
ular interest. Theith value produ
ed by this generator isP0�j<n ui+jwj . It is also re
om-mended to dis
ard about log n least signi�
ant bits of the result beforeusing this sequen
e. We present several atta
ks on this generator (withand without the trun
ation), some of whi
h are rigorously proven whileothers are heuristi
. They work when one \half" of the se
ret is given,either the 
ontrol sequen
e uj or the weights wj . Our atta
ks do notmean that the generator is inse
ure, but that one has to be 
areful inevaluating its se
urity parameters.1 Introdu
tionLet u0; u1; : : : be a linear re
urren
e sequen
e of order n over the �eld Z2 oftwo elements; see [11, Chapter 8℄. We may also 
onsider ea
h uj as an integer,namely 0 or 1, and multiply by it an element z of an arbitrary ring R, so thatujz 2 R.We 
onsider the following subset sum generator of pseudorandom elements.Given an n-dimensional ve
tor w = (w0; : : : ; wn�1) 2 Rn, its output is thesequen
e vi = X0�j<nui+jwj ; for i = 0; 1; : : : ; (1)of elements of R. A popular 
hoi
e is to take R = Zm, the residue ring modulom � 2. Parti
ularly re
ommended is the 
hoi
e m = 2k with some integer k,in parti
ular, it is natural to 
hoose k = n; see [13, Se
tion 6.3.2℄. We also
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onsider the 
ase where m = p is prime. We 
all (uj) the 
ontrol sequen
e andw0; : : : ; wn�1 the weights .This generator, whi
h is also known as knapsa
k generator , was introdu
edin [18℄ and studied in [16℄, see also [13, Se
tion 6.3.2℄ and [17, Se
tion 3.7.9℄. Thegeneration algorithm is multipli
ation-free and involves only Boolean operations,integer additions and one modular redu
tion; in the 
ase R = Z2k, the redu
tionmodulo m = 2k is essentially for free in the binary representation. Thus itpresents a very attra
tive alternative to pseudorandom number generators basedon Boolean fun
tions. On the other hand, its 
lose relation to the subset sumproblem 
ould make it 
ryptographi
ally strong and suitable for using in stream
iphers.For 
ryptographi
 appli
ations, it is usually re
ommended to use a linearre
urren
e sequen
e of maximal period 2n � 1, however here we 
onsider moregeneral settings.The linear 
omplexity and distribution of this generator have been studiedin [5, 16, 17℄ and have turned out to be rather attra
tive. We also remark that [13,page 220℄ notes that no weaknesses of this generator have been reported in theliterature. The present paper presents some weaknesses. We do not, however,
onsider these as lethal.We study predi
tability properties of the subset sum generator and show thatits se
urity is smaller than has been assumed previously, but presumably stilllarge enough, with appropriate parameters. In the simplest 
ases our atta
ksare based on linear algebra. In more pra
ti
al settings we use latti
e algorithms,namely algorithms for the shortest ve
tor problem whi
h essentially go ba
k tothe seminal paper of Lenstra, Lenstra and Lov�asz [10℄. Thus our results add onemore example to the substantial list of 
ryptographi
 
onstru
tions whi
h havebeen su

essfully atta
ked by su
h algorithms, see [12, 14, 15℄.We note that our results resemble those about predi
tability of various re-
ursive pseudorandom number generators; see [1{4, 7{9℄ and referen
es therein.In general, if R = Zm, the whole generator is de�ned by about n(2 + logm)bits. Indeed, one needs n bits to des
ribe the 
hara
teristi
 polynomial of the
ontrol linear re
urren
e sequen
e (uj), n bits for its initial values, and aboutn logm bits to des
ribe the weight ve
tor w. Thus a brute for
e sear
h throughthe spa
e of all possible parameters takes about (4m)n steps.In our atta
ks we use polynomial time and assume that some partial infor-mation about the generator is known. However, one might as well \guess" thisinformation; in this formulation our atta
ks lead to a substantial redu
tion ofthe 
ost of brute for
e sear
h. In the same vein, some of our results deal with thegenerator before trun
ation, but one may simply \guess" the trun
ated partsand then apply our atta
ks. For example, as we have mentioned, it is suggestedto dis
ard about logn bits of ea
h output vi, see [13, Se
tion 6.3.2℄. Usually ouratta
ks need only O(n) 
onse
utive outputs, thus the total number of guessesof the dis
arded bits is 2O(n logn) whi
h, for typi
ally re
ommended values ofm near 2n, is substantially smaller than (4m)n � 2n2 . On the other hand, in



some 
ases our atta
ks, empowered by latti
e basis redu
tion algorithms, applyto trun
ated outputs dire
tly.The upshot is that when n is large enough and both 
ontrols and weightsare kept se
ret, we still 
onsider the generator to be se
ure. But we 
an mountan exhaustive sear
h atta
k with 
ost 22n, so that it is not 
lear in how farlarger values of m make the generator mu
h more se
ure than m = 2 or m = 3.(Our short ve
tor atta
k be
omes more expensive with growing m, but only bya polynomial fa
tor.) A variant of the trun
ation te
hnique 
an be applied tom = 2, by dis
arding output values, say a

ording to some bit derived from the
ontrols.2 Atta
ks with known 
ontrol sequen
eWe �rst 
onsider the 
ase when the linear re
urren
e sequen
e (uj) is known.It is equivalent to know the 
hara
teristi
 polynomial and n initial values, orjust 2n initial values; the 
hara
teristi
 polynomial 
an then be 
omputed bythe Berlekamp-Massey algorithm (see, for example, [6, Se
tion 12.3℄).It is useful to express (1) in terms of the power serieshu =Xi�0 uixi; hv =Xi�0 vixi; hw = X0�i<nwn�i�1xiin R[[x℄℄. We show that the power series hu � hw and xn�1hv agree at all but thesmall-order 
oeÆ
ients.Lemma 1 Let r = hu � hw remxn�1 be the remainder of hu � hw on division byxn�1. Then hu � hw � r = xn�1hv: (2)Proof. We havexn�1hv =Xi�0 vixi+n�1 =Xi�0 X0�j<n ui+jwjxi+n�1= Xi�00�j<n ui+jxi+j � wjxn�j�1 = Xk+l�n�10�l<n ukxk � wn�l�1xl:The bije
tive 
orresponden
e(i; j) = (k + l � n+ 1; n� l � 1)$ (k; l) = (i+ j; n� j � 1)is responsible for the last equation. The 
ondition i � 0 means that k+ l � n�1.Thus the 
oeÆ
ient of the terms of degree at least n� 1 in the produ
ts xn�1hvand hu � hw 
oin
ide. ut



When we take the weights as unknowns, the equations (1), or, equivalently,(2) yield a Hankel system of linear equations with the matrixH = (ui+j)0�i;j<n: (3)In a �nite prime �eld, the Hankel matrix (3) is not guaranteed to be non-singular. Our atta
k works by building up matri
es of maximal rank from linesof the Hankel matrix (3). A

ordingly, we may have to use n arbitrary outputs,not ne
essarily the �rst ones. More pre
isely, we 
onsider algorithms that fori = 0; 1; : : : either output vi or query vi. The following result shows that we 
ando with few queries.Theorem 2. Over a �nite �eld R = Fq of q elements, given a 
ontrol sequen
e(uj) of order n, there is a deterministi
 algorithm to 
ompute the sequen
e vifor i = 0; 1; : : :, in polynomial time per element, making no more than n queriesin total.Proof. The algorithm builds up l � n matri
es Ul 
onsisting of rowsri = (ui; ui+1; : : : ; ui+n�1) 2 Fnqfor growing values of l, up to n. The matrix Ul has rank l over Fq . We also storethe values vi for the rows ri that appear in Ul.We start with U0 = I0 = ;, and 
onsider i = 0; 1; : : :. If ri is not linearlydependent over Fq on the rows of the 
urrent Ul (this is the 
ase in the �rst step,where i = 0, unless r0 = 0), then we set Il+1 = Il [ fig and add the row ri to Ulto obtain Ul+1, of rank l + 1. We also query and store vi.Otherwise we 
an write ri = Xk2Il 
krkas a linear 
ombination of the rows rk of Ul, with k 2 Il and 
oeÆ
ients 
k 2 Fq .Then we outputXk2Il 
kvk = Xk2Il 
k X0�j<n uk+jwj= X0�j<nwj Xk2Il 
kuk+j X0�j<nwj ui+j = vi:We have to make at most n queries for values vi, sin
e on
e we have n linearlyindependent (over Fq ) rows ri, then we 
an a
tually 
ompute the weight ve
torw, and predi
t 
orre
tly ever after. utIn 
hara
teristi
 2, the Hankel matrix (3) is guaranteed to be nonsingular,and the algorithm simpli�es as follows.Corollary 3 Given an integer k � 1, a 
ontrol sequen
e (uj) of order n overZ2, and n 
onse
utive outputs vi for 0 � i < n over R = Z2k, one 
an �nd theunknown weight ve
tor w 2 Rn in deterministi
 polynomial time.



Proof. Be
ause (uj) is of order n in F2 , the integer Hankel matrix (3) is nonsin-gular modulo 2, see [11, Se
tion 8.6℄, and hen
e also modulo 2k. utThe algorithm also works over rings R = Zm with squarefree m � 2, byusing a \lazy" variant of Gaussian elimination. Here, whenever an element is tobe inverted, one 
al
ulates its greatest 
ommon divisor with the 
urrent moduli(whi
h initially is just m). If the greatest 
ommon divisor is nontrivial, oneobtains a fa
torization of the modulus, and 
ontinues with the fa
tors separatelyas new moduli.3 Atta
ks with known weightsHere we 
onsider the dual question, where the linear re
urren
e sequen
e (un)is unknown but the ve
tor of weights w = (w1; : : : ; wr) 2 Znm is given. Whenwe are given only a single output of the generator, then this is a subset sumproblem and NP -
omplete. However having several 
onse
utive outputs allowsus to mount an eÆ
ient short ve
tor atta
k.We start with 
hara
teristi
 2 and present our results in the 
ase when the
hara
teristi
 polynomial of the 
ontrol linear re
urren
e sequen
e (uj) is ir-redu
ible, whi
h in
ludes the most interesting 
ases of su
h sequen
es. In thegeneral 
ase one 
an obtain similar results, whi
h however hold only for almostall weights rather than for all w 2 Zn2k.Theorem 4. Given an integer k � 1, the weights w = (w0; : : : ; wn�1) 2 Rnover R = Z2k, and 2n 
onse
utive outputs vi for 0 � i < 2n, not all even,one 
an �nd the 
ontrols u = (u0; : : : ; u2n�1) 2 Z2n2 in deterministi
 polynomialtime, provided that the (unknown) 
hara
teristi
 polynomial of degree n over Z2of the 
ontrol linear re
urren
e sequen
e (uj) is irredu
ible.Proof. The redu
tion of the sequen
e (vi) modulo 2 satis�es the same linearre
urrent relation as the 
ontrol sequen
e (uj). By assumption, this redu
tion isnot identi
al to zero modulo 2. We use the Berlekamp{Massey algorithm, see [6,Chapter 7℄ or [11, Se
tion 8.6℄, to re
over the 
hara
teristi
 polynomialf = X0�i�n fixi 2 Z2[x℄of this sequen
e, so that X0�i�n fiuk+i = 0for all k � 0. The �rst n equations in (2) plus the n�1 equations for the 
ontrolvalues un; : : : ; u2n�2 lead to the following system of 2n � 1 linear equations in



the 2n� 1 unknowns u0; : : : ; u2n�2:0BBBBBBBBBB�
w0 w1 � � � wn�1 0 � � � 00 w0 � � � wn�2 wn�1 � � � 0... . . . . . . . . . . . . � � � ...0 � � � � � � w0 w1 � � � wn�1f0 f1 � � � fn�1 fn � � � 0... . . . . . . . . . . . . . . . ...0 � � � � � � f1 f2 � � � fn

1CCCCCCCCCCA
0BBBBBBBBBBBB�

u0u1...un�1unun+1...u2n�2
1CCCCCCCCCCCCA = 0BBBBBBBBBBBB�

v0v1...vn�100...0
1CCCCCCCCCCCCA :

We denote the matrix of the above system of equations by A 2 R(2n�1)�(2n�1),and observe that A is the (transpose of the) Sylvester matrix of the two polyno-mials f and w = X0�i<nwixi 2 Z2[x℄:The outputs are not all even, and hen
e also the weights, and thus w is nonzeroof degree less than n. Sin
e f is irredu
ible of degree n, we have g
d(w; f) = 1and hen
e A is nonsingular. Thus we 
an solve the system for u0; : : : ; u2n�2. utWhen the 
hara
teristi
 polynomial f is not irredu
ible, the 
hara
teristi
polynomial g of v0; v1; : : : is a divisor of f . If the weights are 
hosen at random,we expe
t g = f to hold with high probability; see [6, Se
tion 12.4℄. Furthermore,for random w the 
ondition g
d(w; f) = 1 (so that A is nonsingular) holds withprobability �(f)=2n = sYj=1(1� 2�dj );where d1; : : : ; ds are the degrees of the distin
t irredu
ible fa
tors of f . Thus,�(f) is the polynomial analogue of Euler's � fun
tion. Using the fa
t that thenumber of irredu
ible polynomials of degree d over Z2[x℄ is 2d=d+O(2d=2), one
an show that this probability is also reasonably large.We now 
onsider the 
ase of an arbitrary modulus m. Given k 
onse
utivevalues vi for 0 � i < k, we may de�ne the latti
e L as the set of all integersolutions x = (x�1; x0; x1; : : : xk+n�1) 2 Zk+n+1 of the system of 
ongruen
esX0�j<n xi+jwj + vix�1 � 0 mod m for 0 � i < k:By (1), it 
ontains a very short ve
tor u = (�1; u0; : : : ; uk+n�1) with Eu-
lidean norm at most kuk � (k + n + 1)1=2. Standard heuristi
 arguments, asin [15, Se
tion 3.4℄, imply that the dis
riminant of L is likely to be Dk = mk.On the other hand, also standard heuristi
 arguments suggest that if kukis substantially smaller than D1=(k+n)k , then any other nonzero ve
tor x 2 L oflength substantially smaller than D1=(k+n)k is likely to be proportional to u. Thus



applying any of the algorithms for the shortest ve
tor problem, we 
an hope tore
over x; see [12, 14, 15℄ for outlines of re
ent progress in this area sin
e the
elebrated result of Lenstra, Lenstra and Lov�asz [10℄.If k � n + 1, then the ve
tor x gives us the values uj for 0 � j < 2n. Bythe Berlekamp-Massey algorithm, one 
an �nd the 
hara
teristi
 polynomial ofthe linear re
urren
e sequen
e (uj) over Z2 and thus 
ontinue to generate thesequen
e (vi).Furthermore, with k = n+ 1 we expe
tD1=(k+n)k � mk=(k+n) � m1=2whi
h is mu
h larger than (k+n)1=2 = (2n+1)1=2 for all pra
ti
ally interestingsituations.We now 
onsider the 
ase when some bits of the output are dis
arded beforeexhibiting the remaining bits. Although our approa
h works in more generalsettings, here 
onsider only the 
ase whi
h is outlined in [13, Se
tion 6.5.6℄. Inthis 
ase t = 2n � 1, m = 2n and ` = dlogne bits of ea
h value vi get dis
ardedbefore the rest is output, that is, only the \trun
ated" values �vi=2`� are known.Given k 
onse
utive values �vi=2`� for 0 � i < k, we de�ne a latti
e Lk as theset of all integer solutions x = (x�1; x0; x1; : : : xk+n�1; y0; : : : ; yk�1) 2 Z2k+n�1of the system of 
ongruen
esX0�j<n xi+jwj + 2` �vi=2`�x�1 + yi � 0 mod m for 0 � i < k:Again we observe that the dis
riminant of Lk is likely to be Dk = mk. We alsosee that it 
ontains a very short ve
torz = (�1; u0; : : : ; uk+n; z0; : : : ; zk�1);where zi = 2` �vi=2`�� vi for 0 � i < k, whose Eu
lidean norm satis�eskzk � �k + n+ k �2` � 1��1=2 = �k2` + n�1=2 � (2kn+ n)1=2 :We see that if k = dlogne, then kzk � (2n logn+O(n))1=2, whileD1=(2k+n)k = 2kn=(2k+n) � nn=(2k+n) = n1+o(1); for n!1;is mu
h larger. Certainly in
reasing the value of k in
reases the 
han
es that zis mu
h shorter than any other non-parallel ve
tors in Lk and thus 
an be foundby an appropriate algorithm for the shortest ve
tor problem.We have 
ondu
ted several tests for values of n up to n = 100 with m a 100-bit prime. In ea
h 
ase, the short ve
tor 
omputed provided 
orre
tly the 
ontrolsequen
e. In all 
ases, there have not been other \smallish" short ve
tors in thelatti
e. These experiments 
on�rm that the algorithm always �nds the 
ontrolsequen
e, at least for suÆ
iently large problems of 
ryptographi
ally interestingsizes.



4 Final remarksAs noted before, our results do not rule out the possibility of su

essfully usingthe subset sum generator for 
ryptographi
 purposes. They merely imply thatthe se
urity is less than its naive estimate based on 
ounting unknown bits in theparameters de�ning the generator. Thus with a 
areful 
hoi
e of these parametersthis generator 
an turn out to be very useful and reliable. Unfortunately, at thepresent time it is hard to give any pra
ti
al re
ommendations on the spe
i�

hoi
e of the parameters. This requires more extensive numeri
al experimentsusing more 
omputational power than has been used in our tests. Certainly thisissue deserves more attention.It would be very interesting to obtain rigorous proofs for the heuristi
 atta
ksdes
ribed in this paper. Besides being of theoreti
 value, this may also givefurther insight on the stru
ture and thus se
urity of the subset sum generator.Finally, the 
onstru
tion itself may be applied to some other rings R, notne
essary residue rings. This may produ
e new and more robust sequen
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