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Abstract. We consider the subset sum pseudorandom generator, intro-
duced by Rueppel and Massey in 1985 and given by a linear recurrence
sequence ug, U1, . . . of order n over Z», and weights w = (wo, ..., wn—1) €
R™ for some ring R. The rings R = Z,, are of particular interest. The
ith value produced by this generator is ZOSj<n uiyjwj. It is also recom-
mended to discard about logn least significant bits of the result before
using this sequence. We present several attacks on this generator (with
and without the truncation), some of which are rigorously proven while
others are heuristic. They work when one “half” of the secret is given,
either the control sequence u; or the weights w;. Our attacks do not
mean that the generator is insecure, but that one has to be careful in
evaluating its security parameters.

each copyright holder, and in particular use them only for noncommercial pur-

1 Introduction

Let ug,u,... be a linear recurrence sequence of order n over the field Zs of
two elements; see [11, Chapter 8]. We may also consider each u; as an integer,
namely 0 or 1, and multiply by it an element z of an arbitrary ring R, so that

u;z € R.

We consider the following subset sum generator of pseudorandom elements.
Given an n-dimensional vector w = (wq,...,w,—1) € R™, its output is the
sequence

v = Z Uiy j W5, fori=0,1,..., (1)
0<j<n

of elements of R. A popular choice is to take R = Z,,, the residue ring modulo
m > 2. Particularly recommended is the choice m = 2F with some integer k,
in particular, it is natural to choose k = n; see [13, Section 6.3.2]. We also
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consider the case where m = p is prime. We call (u;) the control sequence and
wq, ... ,Wp—1 the weights.

This generator, which is also known as knapsack generator, was introduced
in [18] and studied in [16], see also [13, Section 6.3.2] and [17, Section 3.7.9]. The
generation algorithm is multiplication-free and involves only Boolean operations,
integer additions and one modular reduction; in the case R = Zsx, the reduction
modulo m = 2% is essentially for free in the binary representation. Thus it
presents a very attractive alternative to pseudorandom number generators based
on Boolean functions. On the other hand, its close relation to the subset sum
problem could make it cryptographically strong and suitable for using in stream
ciphers.

For cryptographic applications, it is usually recommended to use a linear
recurrence sequence of maximal period 2™ — 1, however here we consider more
general settings.

The linear complexity and distribution of this generator have been studied
in [5,16, 17] and have turned out to be rather attractive. We also remark that [13,
page 220] notes that no weaknesses of this generator have been reported in the
literature. The present paper presents some weaknesses. We do not, however,
consider these as lethal.

We study predictability properties of the subset sum generator and show that
its security is smaller than has been assumed previously, but presumably still
large enough, with appropriate parameters. In the simplest cases our attacks
are based on linear algebra. In more practical settings we use lattice algorithms,
namely algorithms for the shortest vector problem which essentially go back to
the seminal paper of Lenstra, Lenstra and Lovész [10]. Thus our results add one
more example to the substantial list of cryptographic constructions which have
been successfully attacked by such algorithms, see [12,14,15].

We note that our results resemble those about predictability of various re-
cursive pseudorandom number generators; see [1-4, 7-9] and references therein.

In general, if R = Z,,, the whole generator is defined by about n(2 + logm)
bits. Indeed, one needs n bits to describe the characteristic polynomial of the
control linear recurrence sequence (u;), n bits for its initial values, and about
nlogm bits to describe the weight vector w. Thus a brute force search through
the space of all possible parameters takes about (4m)" steps.

In our attacks we use polynomial time and assume that some partial infor-
mation about the generator is known. However, one might as well “guess” this
information; in this formulation our attacks lead to a substantial reduction of
the cost of brute force search. In the same vein, some of our results deal with the
generator before truncation, but one may simply “guess” the truncated parts
and then apply our attacks. For example, as we have mentioned, it is suggested
to discard about logn bits of each output v;, see [13, Section 6.3.2]. Usually our
attacks need only O(n) consecutive outputs, thus the total number of guesses
of the discarded bits is 20("1°87) which, for typically recommended values of
m near 2", is substantially smaller than (4m)" < 2" . On the other hand, in



some cases our attacks, empowered by lattice basis reduction algorithms, apply
to truncated outputs directly.

The upshot is that when n is large enough and both controls and weights
are kept secret, we still consider the generator to be secure. But we can mount
an exhaustive search attack with cost 227, so that it is not clear in how far
larger values of m make the generator much more secure than m =2 or m = 3.
(Our short vector attack becomes more expensive with growing m, but only by
a polynomial factor.) A variant of the truncation technique can be applied to
m = 2, by discarding output values, say according to some bit derived from the
controls.

2 Attacks with known control sequence

We first consider the case when the linear recurrence sequence (u;) is known.
It is equivalent to know the characteristic polynomial and n initial values, or
just 2n initial values; the characteristic polynomial can then be computed by
the Berlekamp-Massey algorithm (see, for example, [6, Section 12.3]).

It is useful to express (1) in terms of the power series

hu:E u;xt, hv:E vixt, hy = E Wp_ij_14"

i>0 i>0 0<i<n

in R[[z]]. We show that the power series h, - hy, and 2"~ 'h, agree at all but the
small-order coefficients.

Lemma 1 Let r = hy - hy remaz™ ™! be the remainder of hy, - hy, on division by
"~ 1. Then

hy by —1r =2""hy,. (2)

Proof. We have

$n71hv _ § Ui$z+n71 — § § ui+jwj$2+n71

i>0 i>0 0<j<n
= E ui+jm’+7 -wjm”_’_l = E upr® cwn_ 2t
i>0 k+i>n—1
0<j<n 0<i<n

The bijective correspondence
(i) = (k+1=n+1n—1=1) 6 (k1) = (i +jn—j—1)
is responsible for the last equation. The condition 7 > 0 means that k+1 > n—1.

Thus the coefficient of the terms of degree at least n — 1 in the products 2™ ',
and Ay, - hy coincide. |



When we take the weights as unknowns, the equations (1), or, equivalently,
(2) yield a Hankel system of linear equations with the matrix

H = (uitj)o<ij<n- (3)

In a finite prime field, the Hankel matrix (3) is not guaranteed to be non-
singular. Our attack works by building up matrices of maximal rank from lines
of the Hankel matrix (3). Accordingly, we may have to use n arbitrary outputs,
not necessarily the first ones. More precisely, we consider algorithms that for
1=0,1,... either output v; or query v;. The following result shows that we can
do with few queries.

Theorem 2. Over a finite field R =T, of q elements, given a control sequence
(uj) of order n, there is a deterministic algorithm to compute the sequence v;
fori=20,1,..., in polynomial time per element, making no more than n queries
in total.

Proof. The algorithm builds up ! x n matrices U; consisting of rows

ri = (Wi, Wit1y. s Uign—1) € FY

for growing values of [, up to n. The matrix U; has rank [ over F,. We also store
the values v; for the rows r; that appear in Uj.

We start with Uy = Iy = 0, and consider 4 = 0,1,.... If r; is not linearly
dependent over F, on the rows of the current U; (this is the case in the first step,
where ¢ = 0, unless ry = 0), then we set I;11 = [; U{i} and add the row r; to U,
to obtain Uj41, of rank [ + 1. We also query and store v;.

Otherwise we can write

r, = Z CrTk

kel

as a linear combination of the rows r, of U;, with k € I; and coefficients ¢;, € F,,.
Then we output

E CrVE = E Cr E Uk45W5

kel kel 0<j<n
= E w; E CrUk+j E Wj Ui4j = Vj-
0<j<n kel 0<j<n

We have to make at most n queries for values v;, since once we have n linearly
independent (over F,) rows r;, then we can actually compute the weight vector
w, and predict correctly ever after. O

In characteristic 2, the Hankel matrix (3) is guaranteed to be nonsingular,
and the algorithm simplifies as follows.

Corollary 3 Given an integer k > 1, a control sequence (u;) of order n over
Zs, and n consecutive outputs v; for 0 < i < n over R = Zyx, one can find the
unknown weight vector w € R™ in deterministic polynomial time.



Proof. Because (u;) is of order n in F», the integer Hankel matrix (3) is nonsin-
gular modulo 2, see [11, Section 8.6], and hence also modulo 2*. |

The algorithm also works over rings R = Z,, with squarefree m > 2, by
using a “lazy” variant of Gaussian elimination. Here, whenever an element is to
be inverted, one calculates its greatest common divisor with the current moduli
(which initially is just m). If the greatest common divisor is nontrivial, one
obtains a factorization of the modulus, and continues with the factors separately
as new moduli.

3 Attacks with known weights

Here we consider the dual question, where the linear recurrence sequence (uy)
is unknown but the vector of weights w = (w1,...,w,) € Z, is given. When
we are given only a single output of the generator, then this is a subset sum
problem and N P-complete. However having several consecutive outputs allows
us to mount an efficient short vector attack.

We start with characteristic 2 and present our results in the case when the
characteristic polynomial of the control linear recurrence sequence (u;) is ir-
reducible, which includes the most interesting cases of such sequences. In the
general case one can obtain similar results, which however hold only for almost
all weights rather than for all w € ZZ;.

Theorem 4. Given an integer k > 1, the weights w = (wo, ..., wp—1) € R"
over R = Zsk, and 2n consecutive outputs v; for 0 < i < 2n, not all even,
one can find the controls u = (ug, ..., U2, 1) € Z3™ in deterministic polynomial

time, provided that the (unknown) characteristic polynomial of degree n over Zo
of the control linear recurrence sequence (u;) is irreducible.

Proof. The reduction of the sequence (v;) modulo 2 satisfies the same linear
recurrent relation as the control sequence (u;). By assumption, this reduction is
not identical to zero modulo 2. We use the Berlekamp—Massey algorithm, see [6,
Chapter 7] or [11, Section 8.6], to recover the characteristic polynomial

f = Z fZCCZ € ZQ[CE]

0<i<n

of this sequence, so that

Z fivg+i =0

0<i<n

for all & > 0. The first n equations in (2) plus the n — 1 equations for the control
values uy, ..., us,—o lead to the following system of 2n — 1 linear equations in



the 2n — 1 unknowns ug, ..., usp—o:

U v
wowy cc Wyqp O - 0 0 0
Uy U1
0 wO DR wn_an_l--- 0
Uy Up—
0 ...... wo wl ...wnil n—1 e n—1
fo fi o faa fa e 0 n 0
Unp+1 0
0 --v --- f fo - f : :
" U2p—2 0

We denote the matrix of the above system of equations by A € R(2n—1)x(2n=1)

and observe that A is the (transpose of the) Sylvester matrix of the two polyno-
mials f and
w= Z w;z' € Lolz].

0<i<n

The outputs are not all even, and hence also the weights, and thus w is nonzero
of degree less than n. Since f is irreducible of degree n, we have ged(w, f) =1
and hence A is nonsingular. Thus we can solve the system for ug, ..., usp,—o. O

When the characteristic polynomial f is not irreducible, the characteristic
polynomial g of vy, vy, ... is a divisor of f. If the weights are chosen at random,
we expect g = f to hold with high probability; see [6, Section 12.4]. Furthermore,
for random w the condition ged(w, f) =1 (so that A is nonsingular) holds with
probability

o(f)/2" = [T -27%),
j=1

where di,...,ds are the degrees of the distinct irreducible factors of f. Thus,
&(f) is the polynomial analogue of Euler’s ¢ function. Using the fact that the
number of irreducible polynomials of degree d over Zs[z] is 2¢/d + O(2%/?), one
can show that this probability is also reasonably large.

We now consider the case of an arbitrary modulus m. Given k consecutive
values v; for 0 < 7 < k, we may define the lattice L as the set of all integer
solutions x = (x_1,Z0,Z1,...Thtn_1) € Zk+n+1 of the system of congruences

Z Tirjw; + viz—1 = 0 mod m for 0 <i<k.
0<j<n

By (1), it contains a very short vector u = (—1,ug, ..., Uug+pn—1) with Eu-

clidean norm at most |Ju|| < (k + n + 1)'/2. Standard heuristic arguments, as
in [15, Section 3.4], imply that the discriminant of L is likely to be Dy = m*.
On the other hand, also standard heuristic arguments suggest that if ||ul|

is substantially smaller than D,lc/(H"), then any other nonzero vector x € L of

length substantially smaller than D,lc/(Hn) is likely to be proportional to u. Thus



applying any of the algorithms for the shortest vector problem, we can hope to
recover x; see [12,14,15] for outlines of recent progress in this area since the
celebrated result of Lenstra, Lenstra and Lovész [10].

If £ > n 4+ 1, then the vector x gives us the values u; for 0 < j < 2n. By
the Berlekamp-Massey algorithm, one can find the characteristic polynomial of
the linear recurrence sequence (u;) over Z, and thus continue to generate the
sequence (v;).

Furthermore, with £ = n + 1 we expect

Dllg/(k—i_n) ~ /(AR > 172
which is much larger than (k +n)'/? = (2n +1)/? for all practically interesting
situations.

We now consider the case when some bits of the output are discarded before
exhibiting the remaining bits. Although our approach works in more general
settings, here consider only the case which is outlined in [13, Section 6.5.6]. In
this case t = 2™ — 1, m = 2" and ¢ = [logn] bits of each value v; get discarded
before the rest is output, that is, only the “truncated” values Lvi/Q’ZJ are known.

Given k consecutive values Lvi/ZlJ for 0 < i < k, we define a lattice £y as the
set of all integer solutions X = (¥_1,Z0,%1, ... Tkin_1,Y0,---,Yk_1) € L2k+7—1
of the system of congruences

Z ziyjwj +2° |v;/2 221 +y; = 0mod m for 0 < i< k.
0<j<n

Again we observe that the discriminant of £, is likely to be Dy = m*. We also
see that it contains a very short vector

z = (_1, UQs - -y Uk4ns 205 - - -y Zk—l):
where z; = 2¢ |v;/2¢| — v; for 0 < i < k, whose Euclidean norm satisfies

1/2

lol < (E+n+ k(@2 — 1) = (k2 +0)'” < (2kn+n)"/”.

1/2

We see that if k& = [logn], then ||z|| < (2nlogn + O(n)) ', while

Dlle/(2k+n) — 2kn/(2k+n) > nn/(2k+n) — n1+o(1), for n — 00,

is much larger. Certainly increasing the value of k increases the chances that z
is much shorter than any other non-parallel vectors in £ and thus can be found
by an appropriate algorithm for the shortest vector problem.

We have conducted several tests for values of n up to n = 100 with m a 100-
bit prime. In each case, the short vector computed provided correctly the control
sequence. In all cases, there have not been other “smallish” short vectors in the
lattice. These experiments confirm that the algorithm always finds the control
sequence, at least for sufficiently large problems of cryptographically interesting
sizes.



4 Final remarks

As noted before, our results do not rule out the possibility of successfully using
the subset sum generator for cryptographic purposes. They merely imply that
the security is less than its naive estimate based on counting unknown bits in the
parameters defining the generator. Thus with a careful choice of these parameters
this generator can turn out to be very useful and reliable. Unfortunately, at the
present time it is hard to give any practical recommendations on the specific
choice of the parameters. This requires more extensive numerical experiments
using more computational power than has been used in our tests. Certainly this
issue deserves more attention.

It would be very interesting to obtain rigorous proofs for the heuristic attacks
described in this paper. Besides being of theoretic value, this may also give
further insight on the structure and thus security of the subset sum generator.

Finally, the construction itself may be applied to some other rings R, not
necessary residue rings. This may produce new and more robust sequences.
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