
Prediting Subset SumPseudorandom GeneratorsJoahim von zur Gathen1 and Igor E. Shparlinski21 Fakult�at f�ur Elektrotehnik, Informatik und MathematikUniversit�at Paderborn33095 Paderborn, Germanygathen�upb.dehttp://www-math.upb.de/~aggathen2 Department of Computing, Maquarie University,NSW 2109, Australiaigor�omp.mq.edu.auhttp://www.omp.mq.edu.au/~igorAbstrat. We onsider the subset sum pseudorandom generator, intro-dued by Rueppel and Massey in 1985 and given by a linear reurrenesequene u0, u1, : : : of order n over Z2, and weights w = (w0; : : : ; wn�1) 2Rn for some ring R. The rings R = Zm are of partiular interest. Theith value produed by this generator isP0�j<n ui+jwj . It is also reom-mended to disard about log n least signi�ant bits of the result beforeusing this sequene. We present several attaks on this generator (withand without the trunation), some of whih are rigorously proven whileothers are heuristi. They work when one \half" of the seret is given,either the ontrol sequene uj or the weights wj . Our attaks do notmean that the generator is inseure, but that one has to be areful inevaluating its seurity parameters.1 IntrodutionLet u0; u1; : : : be a linear reurrene sequene of order n over the �eld Z2 oftwo elements; see [11, Chapter 8℄. We may also onsider eah uj as an integer,namely 0 or 1, and multiply by it an element z of an arbitrary ring R, so thatujz 2 R.We onsider the following subset sum generator of pseudorandom elements.Given an n-dimensional vetor w = (w0; : : : ; wn�1) 2 Rn, its output is thesequene vi = X0�j<nui+jwj ; for i = 0; 1; : : : ; (1)of elements of R. A popular hoie is to take R = Zm, the residue ring modulom � 2. Partiularly reommended is the hoie m = 2k with some integer k,in partiular, it is natural to hoose k = n; see [13, Setion 6.3.2℄. We also
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onsider the ase where m = p is prime. We all (uj) the ontrol sequene andw0; : : : ; wn�1 the weights .This generator, whih is also known as knapsak generator , was introduedin [18℄ and studied in [16℄, see also [13, Setion 6.3.2℄ and [17, Setion 3.7.9℄. Thegeneration algorithm is multipliation-free and involves only Boolean operations,integer additions and one modular redution; in the ase R = Z2k, the redutionmodulo m = 2k is essentially for free in the binary representation. Thus itpresents a very attrative alternative to pseudorandom number generators basedon Boolean funtions. On the other hand, its lose relation to the subset sumproblem ould make it ryptographially strong and suitable for using in streamiphers.For ryptographi appliations, it is usually reommended to use a linearreurrene sequene of maximal period 2n � 1, however here we onsider moregeneral settings.The linear omplexity and distribution of this generator have been studiedin [5, 16, 17℄ and have turned out to be rather attrative. We also remark that [13,page 220℄ notes that no weaknesses of this generator have been reported in theliterature. The present paper presents some weaknesses. We do not, however,onsider these as lethal.We study preditability properties of the subset sum generator and show thatits seurity is smaller than has been assumed previously, but presumably stilllarge enough, with appropriate parameters. In the simplest ases our attaksare based on linear algebra. In more pratial settings we use lattie algorithms,namely algorithms for the shortest vetor problem whih essentially go bak tothe seminal paper of Lenstra, Lenstra and Lov�asz [10℄. Thus our results add onemore example to the substantial list of ryptographi onstrutions whih havebeen suessfully attaked by suh algorithms, see [12, 14, 15℄.We note that our results resemble those about preditability of various re-ursive pseudorandom number generators; see [1{4, 7{9℄ and referenes therein.In general, if R = Zm, the whole generator is de�ned by about n(2 + logm)bits. Indeed, one needs n bits to desribe the harateristi polynomial of theontrol linear reurrene sequene (uj), n bits for its initial values, and aboutn logm bits to desribe the weight vetor w. Thus a brute fore searh throughthe spae of all possible parameters takes about (4m)n steps.In our attaks we use polynomial time and assume that some partial infor-mation about the generator is known. However, one might as well \guess" thisinformation; in this formulation our attaks lead to a substantial redution ofthe ost of brute fore searh. In the same vein, some of our results deal with thegenerator before trunation, but one may simply \guess" the trunated partsand then apply our attaks. For example, as we have mentioned, it is suggestedto disard about logn bits of eah output vi, see [13, Setion 6.3.2℄. Usually ourattaks need only O(n) onseutive outputs, thus the total number of guessesof the disarded bits is 2O(n logn) whih, for typially reommended values ofm near 2n, is substantially smaller than (4m)n � 2n2 . On the other hand, in



some ases our attaks, empowered by lattie basis redution algorithms, applyto trunated outputs diretly.The upshot is that when n is large enough and both ontrols and weightsare kept seret, we still onsider the generator to be seure. But we an mountan exhaustive searh attak with ost 22n, so that it is not lear in how farlarger values of m make the generator muh more seure than m = 2 or m = 3.(Our short vetor attak beomes more expensive with growing m, but only bya polynomial fator.) A variant of the trunation tehnique an be applied tom = 2, by disarding output values, say aording to some bit derived from theontrols.2 Attaks with known ontrol sequeneWe �rst onsider the ase when the linear reurrene sequene (uj) is known.It is equivalent to know the harateristi polynomial and n initial values, orjust 2n initial values; the harateristi polynomial an then be omputed bythe Berlekamp-Massey algorithm (see, for example, [6, Setion 12.3℄).It is useful to express (1) in terms of the power serieshu =Xi�0 uixi; hv =Xi�0 vixi; hw = X0�i<nwn�i�1xiin R[[x℄℄. We show that the power series hu � hw and xn�1hv agree at all but thesmall-order oeÆients.Lemma 1 Let r = hu � hw remxn�1 be the remainder of hu � hw on division byxn�1. Then hu � hw � r = xn�1hv: (2)Proof. We havexn�1hv =Xi�0 vixi+n�1 =Xi�0 X0�j<n ui+jwjxi+n�1= Xi�00�j<n ui+jxi+j � wjxn�j�1 = Xk+l�n�10�l<n ukxk � wn�l�1xl:The bijetive orrespondene(i; j) = (k + l � n+ 1; n� l � 1)$ (k; l) = (i+ j; n� j � 1)is responsible for the last equation. The ondition i � 0 means that k+ l � n�1.Thus the oeÆient of the terms of degree at least n� 1 in the produts xn�1hvand hu � hw oinide. ut



When we take the weights as unknowns, the equations (1), or, equivalently,(2) yield a Hankel system of linear equations with the matrixH = (ui+j)0�i;j<n: (3)In a �nite prime �eld, the Hankel matrix (3) is not guaranteed to be non-singular. Our attak works by building up matries of maximal rank from linesof the Hankel matrix (3). Aordingly, we may have to use n arbitrary outputs,not neessarily the �rst ones. More preisely, we onsider algorithms that fori = 0; 1; : : : either output vi or query vi. The following result shows that we ando with few queries.Theorem 2. Over a �nite �eld R = Fq of q elements, given a ontrol sequene(uj) of order n, there is a deterministi algorithm to ompute the sequene vifor i = 0; 1; : : :, in polynomial time per element, making no more than n queriesin total.Proof. The algorithm builds up l � n matries Ul onsisting of rowsri = (ui; ui+1; : : : ; ui+n�1) 2 Fnqfor growing values of l, up to n. The matrix Ul has rank l over Fq . We also storethe values vi for the rows ri that appear in Ul.We start with U0 = I0 = ;, and onsider i = 0; 1; : : :. If ri is not linearlydependent over Fq on the rows of the urrent Ul (this is the ase in the �rst step,where i = 0, unless r0 = 0), then we set Il+1 = Il [ fig and add the row ri to Ulto obtain Ul+1, of rank l + 1. We also query and store vi.Otherwise we an write ri = Xk2Il krkas a linear ombination of the rows rk of Ul, with k 2 Il and oeÆients k 2 Fq .Then we outputXk2Il kvk = Xk2Il k X0�j<n uk+jwj= X0�j<nwj Xk2Il kuk+j X0�j<nwj ui+j = vi:We have to make at most n queries for values vi, sine one we have n linearlyindependent (over Fq ) rows ri, then we an atually ompute the weight vetorw, and predit orretly ever after. utIn harateristi 2, the Hankel matrix (3) is guaranteed to be nonsingular,and the algorithm simpli�es as follows.Corollary 3 Given an integer k � 1, a ontrol sequene (uj) of order n overZ2, and n onseutive outputs vi for 0 � i < n over R = Z2k, one an �nd theunknown weight vetor w 2 Rn in deterministi polynomial time.



Proof. Beause (uj) is of order n in F2 , the integer Hankel matrix (3) is nonsin-gular modulo 2, see [11, Setion 8.6℄, and hene also modulo 2k. utThe algorithm also works over rings R = Zm with squarefree m � 2, byusing a \lazy" variant of Gaussian elimination. Here, whenever an element is tobe inverted, one alulates its greatest ommon divisor with the urrent moduli(whih initially is just m). If the greatest ommon divisor is nontrivial, oneobtains a fatorization of the modulus, and ontinues with the fators separatelyas new moduli.3 Attaks with known weightsHere we onsider the dual question, where the linear reurrene sequene (un)is unknown but the vetor of weights w = (w1; : : : ; wr) 2 Znm is given. Whenwe are given only a single output of the generator, then this is a subset sumproblem and NP -omplete. However having several onseutive outputs allowsus to mount an eÆient short vetor attak.We start with harateristi 2 and present our results in the ase when theharateristi polynomial of the ontrol linear reurrene sequene (uj) is ir-reduible, whih inludes the most interesting ases of suh sequenes. In thegeneral ase one an obtain similar results, whih however hold only for almostall weights rather than for all w 2 Zn2k.Theorem 4. Given an integer k � 1, the weights w = (w0; : : : ; wn�1) 2 Rnover R = Z2k, and 2n onseutive outputs vi for 0 � i < 2n, not all even,one an �nd the ontrols u = (u0; : : : ; u2n�1) 2 Z2n2 in deterministi polynomialtime, provided that the (unknown) harateristi polynomial of degree n over Z2of the ontrol linear reurrene sequene (uj) is irreduible.Proof. The redution of the sequene (vi) modulo 2 satis�es the same linearreurrent relation as the ontrol sequene (uj). By assumption, this redution isnot idential to zero modulo 2. We use the Berlekamp{Massey algorithm, see [6,Chapter 7℄ or [11, Setion 8.6℄, to reover the harateristi polynomialf = X0�i�n fixi 2 Z2[x℄of this sequene, so that X0�i�n fiuk+i = 0for all k � 0. The �rst n equations in (2) plus the n�1 equations for the ontrolvalues un; : : : ; u2n�2 lead to the following system of 2n � 1 linear equations in



the 2n� 1 unknowns u0; : : : ; u2n�2:0BBBBBBBBBB�
w0 w1 � � � wn�1 0 � � � 00 w0 � � � wn�2 wn�1 � � � 0... . . . . . . . . . . . . � � � ...0 � � � � � � w0 w1 � � � wn�1f0 f1 � � � fn�1 fn � � � 0... . . . . . . . . . . . . . . . ...0 � � � � � � f1 f2 � � � fn

1CCCCCCCCCCA
0BBBBBBBBBBBB�

u0u1...un�1unun+1...u2n�2
1CCCCCCCCCCCCA = 0BBBBBBBBBBBB�

v0v1...vn�100...0
1CCCCCCCCCCCCA :

We denote the matrix of the above system of equations by A 2 R(2n�1)�(2n�1),and observe that A is the (transpose of the) Sylvester matrix of the two polyno-mials f and w = X0�i<nwixi 2 Z2[x℄:The outputs are not all even, and hene also the weights, and thus w is nonzeroof degree less than n. Sine f is irreduible of degree n, we have gd(w; f) = 1and hene A is nonsingular. Thus we an solve the system for u0; : : : ; u2n�2. utWhen the harateristi polynomial f is not irreduible, the harateristipolynomial g of v0; v1; : : : is a divisor of f . If the weights are hosen at random,we expet g = f to hold with high probability; see [6, Setion 12.4℄. Furthermore,for random w the ondition gd(w; f) = 1 (so that A is nonsingular) holds withprobability �(f)=2n = sYj=1(1� 2�dj );where d1; : : : ; ds are the degrees of the distint irreduible fators of f . Thus,�(f) is the polynomial analogue of Euler's � funtion. Using the fat that thenumber of irreduible polynomials of degree d over Z2[x℄ is 2d=d+O(2d=2), onean show that this probability is also reasonably large.We now onsider the ase of an arbitrary modulus m. Given k onseutivevalues vi for 0 � i < k, we may de�ne the lattie L as the set of all integersolutions x = (x�1; x0; x1; : : : xk+n�1) 2 Zk+n+1 of the system of ongruenesX0�j<n xi+jwj + vix�1 � 0 mod m for 0 � i < k:By (1), it ontains a very short vetor u = (�1; u0; : : : ; uk+n�1) with Eu-lidean norm at most kuk � (k + n + 1)1=2. Standard heuristi arguments, asin [15, Setion 3.4℄, imply that the disriminant of L is likely to be Dk = mk.On the other hand, also standard heuristi arguments suggest that if kukis substantially smaller than D1=(k+n)k , then any other nonzero vetor x 2 L oflength substantially smaller than D1=(k+n)k is likely to be proportional to u. Thus



applying any of the algorithms for the shortest vetor problem, we an hope toreover x; see [12, 14, 15℄ for outlines of reent progress in this area sine theelebrated result of Lenstra, Lenstra and Lov�asz [10℄.If k � n + 1, then the vetor x gives us the values uj for 0 � j < 2n. Bythe Berlekamp-Massey algorithm, one an �nd the harateristi polynomial ofthe linear reurrene sequene (uj) over Z2 and thus ontinue to generate thesequene (vi).Furthermore, with k = n+ 1 we expetD1=(k+n)k � mk=(k+n) � m1=2whih is muh larger than (k+n)1=2 = (2n+1)1=2 for all pratially interestingsituations.We now onsider the ase when some bits of the output are disarded beforeexhibiting the remaining bits. Although our approah works in more generalsettings, here onsider only the ase whih is outlined in [13, Setion 6.5.6℄. Inthis ase t = 2n � 1, m = 2n and ` = dlogne bits of eah value vi get disardedbefore the rest is output, that is, only the \trunated" values �vi=2`� are known.Given k onseutive values �vi=2`� for 0 � i < k, we de�ne a lattie Lk as theset of all integer solutions x = (x�1; x0; x1; : : : xk+n�1; y0; : : : ; yk�1) 2 Z2k+n�1of the system of ongruenesX0�j<n xi+jwj + 2` �vi=2`�x�1 + yi � 0 mod m for 0 � i < k:Again we observe that the disriminant of Lk is likely to be Dk = mk. We alsosee that it ontains a very short vetorz = (�1; u0; : : : ; uk+n; z0; : : : ; zk�1);where zi = 2` �vi=2`�� vi for 0 � i < k, whose Eulidean norm satis�eskzk � �k + n+ k �2` � 1��1=2 = �k2` + n�1=2 � (2kn+ n)1=2 :We see that if k = dlogne, then kzk � (2n logn+O(n))1=2, whileD1=(2k+n)k = 2kn=(2k+n) � nn=(2k+n) = n1+o(1); for n!1;is muh larger. Certainly inreasing the value of k inreases the hanes that zis muh shorter than any other non-parallel vetors in Lk and thus an be foundby an appropriate algorithm for the shortest vetor problem.We have onduted several tests for values of n up to n = 100 with m a 100-bit prime. In eah ase, the short vetor omputed provided orretly the ontrolsequene. In all ases, there have not been other \smallish" short vetors in thelattie. These experiments on�rm that the algorithm always �nds the ontrolsequene, at least for suÆiently large problems of ryptographially interestingsizes.



4 Final remarksAs noted before, our results do not rule out the possibility of suessfully usingthe subset sum generator for ryptographi purposes. They merely imply thatthe seurity is less than its naive estimate based on ounting unknown bits in theparameters de�ning the generator. Thus with a areful hoie of these parametersthis generator an turn out to be very useful and reliable. Unfortunately, at thepresent time it is hard to give any pratial reommendations on the spei�hoie of the parameters. This requires more extensive numerial experimentsusing more omputational power than has been used in our tests. Certainly thisissue deserves more attention.It would be very interesting to obtain rigorous proofs for the heuristi attaksdesribed in this paper. Besides being of theoreti value, this may also givefurther insight on the struture and thus seurity of the subset sum generator.Finally, the onstrution itself may be applied to some other rings R, notneessary residue rings. This may produe new and more robust sequenes.Referenes1. S. R. Blakburn, D. Gomez-Perez, J. Gutierrez and I. E. Shparlinski, `Preditingthe inversive generator', Let. Notes in Comp. Si., Springer-Verlag, Berlin, 2898(2003), 264{275.2. S. R. Blakburn, D. Gomez-Perez, J. Gutierrez and I. E. Shparlinski, `Preditingnonlinear pseudorandom number generators', Math. Comp., (to appear).3. S. R. Blakburn, D. Gomez-Perez, J. Gutierrez and I. E. Shparlinski, `Reonstrut-ing noisy polynomial evaluation in residue rings', J. Algorithms, (to appear).4. E. F. Brikell and A. M. Odlyzko, `Cryptoanalysis: A survey of reent results',Contemp. Cryptology , IEEE Press, NY, 1992, 501{540.5. A. Conitti and I. E. Shparlinski, `On the multidimensional distribution of thesubset sum generator of pseudorandom numbers', Math. Comp., 73 (2004), 1005{1011.6. J. von zur Gathen and J. Gerhard,Modern omputer algebra, Cambridge UniversityPress, Cambridge, 2003.7. A. Joux and J. Stern, `Lattie redution: A toolbox for the ryptanalyst', J. Cryp-tology , 11 (1998), 161{185.8. H. Krawzyk, `How to predit ongruential generators', J. Algorithms, 13 (1992),527{545.9. J. C. Lagarias, `Pseudorandom number generators in ryptography and numbertheory', Pro. Symp. in Appl. Math., Amer. Math. So., Providene, RI, 42 (1990),115{143.10. A. K. Lenstra, H. W. Lenstra and L. Lov�asz, `Fatoring polynomials with rationaloeÆients', Mathematishe Annalen, 261 (1982), 515{534.11. R. Lidl and H. Niederreiter, Finite �elds, Cambridge University Press, Cambridge,1997.12. D. Miianio and S. Goldwasser, Complexity of lattie problems, Kluwer Aad.Publ., 2002.13. A. J. Menezes, P. C. van Oorshot and S. A. Vanstone, Handbook of applied ryp-tography , CRC Press, Boa Raton, FL, 1996.
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