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Abstract. We consider the following computational problem: we are
given two coprime univariate polynomials f0 and f1 over a ring R and
want to find whether after a small perturbation we can achieve a large
gcd. We solve this problem in polynomial time for two notions of “large”
(and “small”): large degree (when R = F is an arbitrary field, in the
generic case when f0 and f1 have a so-called normal degree sequence),
and large height (when R = Z).
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1 Introduction

Symbolic (exact) computations of the gcd of two univariate polynomials form
a well-developed topic of computer algebra. These methods are not directly ap-
plicable when the coefficients are “inexact” real numbers, maybe coming from
physical measurements. The appropriate model here is to ask for a “large” gcd,
allowing “small” additive perturbations of the inputs. Numerical analysis pro-
vides several ways of formalizing this, and “approximate gcd” computations are
an emerging topic of computer algebra with a growing literature. We only point
to Bini & Boito (2007) and its references.

The present paper considers two “exact” notions of approximate gcds. Namely,
let f0, f1 ∈ F[x] be two univariate polynomials over a field F, both of degree at
most n, and d and e integers. We are interested in perturbations u0, u1 ∈ F[x]
of degree at most e such that deg gcd(f0 + u0, f1 + u1) ≥ d. We show that if
e < min{2d − n, n − d}, then the problem has at most one solution, and if one
exists, we can find it in polynomial time. Then we also consider polynomials
over Z and obtain similar results for perturbations v ∈ Z[x] of small height that
achieve a gcd(f0, f1 + v) of large height (without any restrictions on their degree
except that deg v ≤ n).

These results are natural polynomial analogues of those obtained recently by
Howgrave-Graham (2001).
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We prove that our algorithms solve the problem under rather restrictive
assumptions. It remains an open question whether either a variant or some other
algorithm can tackle a larger set of input values.

We also remark that finding multidimensional analogues, that is, constructing
algorithms to find “small” perturbations u0, . . . , us−1 of f0, . . . , fs−1 such that
gcd(f0 + u0, . . . , fs−1 + us−1) is “large” (in both number and polynomial cases)
is another interesting direction of research.

2 Gcd of large degree

We write f quo g and f rem g for the quotient and remainder on division of f by
nonzero g. Thus f = (f quo g) · g + (f rem g) and deg(f rem g) < deg g.

The degree sequence of two univariate polynomials f0, f1 ∈ F[x] is the se-
quence of degrees deg f0, deg f1, deg f2, . . . of the remainders f0, f1, f2, . . . in the
Euclidean algorithm. Usually, but not always, deg fi−1 = 1 + deg fi, and we say
that f0, f1 have a normal degree sequence if that is the case for all i. We denote
by M a polynomial multiplication time over F, so that two polynomials of de-
gree at most n can be multiplied with O(M(n)) operations in F. We may use
M(n) = n log n log log n. In particular M(n) ∈ O (̃n), where as usual A ∈ O (̃B)
means that |A| ≤ c1B(log(B + 2))c2 for some constants c1, c2 > 0; see von zur
Gathen & Gerhard (2003, Chapter 8).

For our first result, we consider a field F and univariate polynomials f0, f1 ∈
F[x]. We ask for perturbations u0, u1 ∈ F[x] of small degree so that the perturbed
polynomials have a gcd of large degree. More precisely, we also have integers
e0, e1, d, and we consider the set

U = {(u0, u1) ∈ F[x]2 : deg ui ≤ ei for i = 0, 1, deg gcd(f0 + u0, f1 + u1) = d}.
(1)

If ei is negative, then the condition is meant to imply that ui = 0. As an
example, we can take f1, g, u0 ∈ F[x] of degrees n1, m, e0, respectively, with
e0 < n1 < m, and f0 = gf1−u0, d = n1, and e1 = n1−m−1. Then U = {(u0, 0)},
and the hypotheses in the theorem below are satisfied.

The algorithm below executes the Extended Euclidean Algorithm (EEA) for
(f0, f1). It produces a finite series of “lines” (rj , sj , tj) such that sjf0+tjf1 = rj ,
where deg rj ≤ n is strictly decreasing with growing j (see von zur Gathen &
Gerhard 2003, Section 3.2). We have s1 = t0 = 0, and all other si and ti are
nonzero. Furthermore, since deg sj and deg tj are strictly increasing (see von zur
Gathen & Gerhard 2003, Lemma 3.10), there is at most one “line” (r, s, t) with
a prescribed degree for s (or t). We denote as lc(f) the leading coefficient of a
polynomial f .

Algorithm 2. Approximate gcd of large degree.

Input: f0, f1 ∈ F[x] monic of degrees n0 > n1, respectively, coprime and with a
normal degree sequence. Furthermore, integers d, e0, e1 with d > 0 and

e0 < min{2d− n1, n0 − d}, e1 < min{2d − n0, n1 − d}.



Output: U as in (1).

1. Execute the EEA with input (f0, f1).
2. Check if the EEA computes (r, s, t) with sf0 + tf1 = r and n0 − deg t =

n1 − deg s = d. If not, return U = ∅.
3. Otherwise, if s = 0, then let u0 = −(f0 rem f1) and return U = {(u0, 0)} if

deg u0 ≤ e0, and else U = ∅. If t = 0, then return U = ∅.
4. {We now have sf0 + tf1 = r and st 6= 0.} Compute

h0 = f0 quo t,

h1 = f1 quo s.

If h0 and h1 are not associates, return U = ∅.
5. Else, compute

h = lc(h0)
−1h0,

α = lc(t)−1,

q0 = αt,

q1 = −αs,

ui = qih − fi for i = 0, 1.

6. If deg ui ≤ ei for i = 0, 1, then return U = {(u0, u1)}, else return U = ∅.

Theorem 3. Let f0, f1, n = n0, n1, d, e0, e1 satisfy the input specification of

Algorithm 2. Then the set U contains at most one element, and Algorithm 2

computes it with O(M(n) log n) operations in F.

Proof. We have noted above that there is at most one “line” (r, s, t) in the EEA
with sf0 + tf1 = r and n0 − deg t = n1 − deg s = d. If there is no such line, then
our algorithm returns U = ∅. Otherwise we take that line.

We first have to check that any (u0, u1) returned by the algorithm is actually
in the set U . This is clear in Step 3. For an output in Step 6, we note that

gcd(f0 + u0, f1 + u1) = gcd(q0h, q1h) = h gcd(s, t) = h,

since gcd(s, t) = 1 (see von zur Gathen & Gerhard 2003, Lemma 3.8 (v)),

deg h = deg h0 = deg f0 − deg t = d,

and indeed (u0, u1) ∈ U .
To show correctness of the algorithm it remains to show that if U 6= ∅, then

the algorithm indeed returns this set U , and that U has at most one element.
So we now suppose that U 6= ∅, let (u0, u1) ∈ U , and h = gcd(f0+u0, f1+u1),

so that deg h = d. One first checks that the algorithm deals correctly with the
two special cases d = n0 and d = n1. In the other cases, there exist uniquely
determined q0, q1 ∈ F[x] such that

fi = qih − ui for i = 0, 1, (4)



since deg ui < 2d − n1−i < d = deg h. Eliminating h from these two equations,
we find

q1f0 − q0f1 = q0u1 − q1u0, (5)

and call this polynomial g = q0u1 − q1u0. We have deg q0 = n0 − d < n0. Now g
is nonzero, because otherwise f0 would divide q0, a polynomial of smaller degree
than f0, which would imply that q0 = 0, a contradiction.

We have

deg q0 + deg g ≤ n0 − d + max{(n0 − d) + e1, (n1 − d) + e0} < n0,

since ei < 2d − n1−i for i = 0, 1.
Thus (5) satisfies the degree inequalities of the EEA, and by the well-known

uniqueness property of polynomial continued fractions (see, for example, von zur
Gathen & Gerhard (2003, Lemma 5.15)), there exist a remainder r and corre-
sponding Bézout coefficients s, t in the EEA for f0 and f1, and nonzero α ∈ F[x]
so that

sf0 + tf1 = r and (g, q1,−q0) = α(r, s, t).

Furthermore, since the Euclidean degree sequence is normal, α is a constant.
We have n0 − deg q0 = n0 − deg t = d, similarly n1 − deg q1 = d, and deg ui ≤
ei < ni − d = deg qi, so that ui equals the remainder of fi on division by qi, for
i = 0, 1. It follows from (4) that indeed (u0, u1) is returned by the algorithm.

In particular, since at most one (u0, u1) is returned by the algorithm and it
equals each element of U (if U 6= ∅), U contains at most one element.

The cost for computing a single line in the Extended Euclidean Scheme is
O(M(n) log n); see von zur Gathen & Gerhard (2003, Algorithm 11.4). All other
operations are not more expensive. ⊓⊔

In particular the cost of Algorithm 2 is in O (̃n).
Figure 1 indicates at the bottom the triangle of values in the e0-d-plane

satisfying the restriction required for e0, with large n0 = n1+1. There are trivial
solutions ui = −fi rem h for i = 0, 1 when e0, e1 ≥ d − 1, for any h of degree
d; these form the area above the diagonal. We ran experiments with “random”
polynomials, with and without a planted perturbed gcd. Values in the bottom
triangle were, of course, correctly dealt with. We also ran the algorithm without
any of the bounds d, e0, e1. Then it would typically compute (u0, u1) ∈ U with
e0 = n0 − d and 1 ≤ d ≤ n1, which is the dotted line in Figure 1. Planted gcds
with d < n0/2 were usually not detected.

3 Gcd of large height

We now look at the same problem in a different setting which we consider only for
polynomials over Z (although it can be extended to polynomials over other fields
and rings). Namely, we consider the case where the height H(f) = max{|fj| : 0 ≤
j ≤ n} of a polynomial

f =
n

∑

j=0

fjx
j ∈ Z[x]



d
n0

e0

Fig. 1. The three areas – bottom triangle, half-plane, dotted line – are explained in
the text.

is the measure of interest.
We first need to know that a large polynomial takes a small value only very

rarely. Our bound is in fact the same as for the number of roots of the polynomial.

Lemma 6. Let h ∈ Z[x] have degree d ≥ 3, let A ≥ 2 be an integer, and

A = {a ∈ Z : − A ≤ a ≤ A, |h(a)| ≤ H(h)2−dA−d2

}.

Then #A ≤ d.

Proof. Let a0, . . . , ad ∈ {−A, . . . , A} be d + 1 distinct integers, and let V =
(aj

i )0≤i,j≤d be the corresponding (d + 1) × (d + 1) Vandermonde matrix. Each
column of V has L2-norm at most

(
∑

0≤i≤d

A2i)1/2 ≤ 21/2Ad.

We write h = hdx
d + · · · + h1x + h0. Then

V · (h0, . . . , hd)
T = (h(a0), . . . , h(ad))

T

The determinant of V is a nonzero integer, therefore from Cramer’s rule and
Hadamard’s inequality we find

H(h) = max
0≤k≤d

|hk| ≤ (21/2Ad)d





∑

0≤j≤d

h(aj)
2





1/2

≤ (d + 1)1/2(21/2Ad)d max
0≤j≤d

|h(aj)| ≤ 2dAd2

max
0≤j≤d

|h(aj)|,

which proves the claim. ⊓⊔



The bound of Lemma 6 can be improved slightly by estimating the deter-
minant of V more carefully.

We also need the following statement which has essentially been proved
in Howgrave-Graham (2001). For the sake of completeness we present a suc-
cinct proof. The gcd of two integers, at least one of which is nonzero, is taken
to be positive.

Lemma 7. Let F0 and F1 be integers. Then the set of all integers V with

|V | < |F1| and

gcd(F0, F1 + V ) ≥ 2
√

|F0V |

can be computed in time polynomial in log (|F0F1| + 1).

Proof. For an integer V we write

∆ = gcd(F0, F1 + V ), G0 =
F0

∆
, G1 =

F1 + V

∆
.

We have |F1 + V | < 2|F1|. Then one verifies that

F0G1 − F1G0 =
F0V

∆
=

(F1 + V1)(F0V1 − F1V0)

G1∆2
.

Hence
∣

∣

∣

∣

F0

F1

−
G0

G1

∣

∣

∣

∣

≤
2|F1|(|F0V |)

|F1|G2
1∆

2
≤

1

2G2
1

.

Thus G0/G1 is one of the convergents in the continued fraction expansion of
F0/F1, and can be found in polynomial time. Thus ∆ = F0/G0 can take only
polynomially many values. For each of them, we verify whether V = G1∆ − F1

satisfies the condition of the lemma. ⊓⊔

The gcd of polynomials f0 and f1 in Z[x] is monic if one of f0 or f1 is. We
now consider for given f0, f1 ∈ Z[x] and integers D, E the set

V = {v ∈ Z[x] : H(v) ≤ E, H(gcd(f0, f1 + v)) ≥ D}. (8)

Algorithm 9. Approximate gcd of large degree.

Input: f0, f1 ∈ F[x] monic of degrees n ≥ n1 and heights H0 and H1, respec-
tively, and such that gcd(f0, f1) = 1. Furthermore, we are given a positive
ε < 1 and positive integers D and E.

Output: V as in (8).

1. Initialize V = ∅. Put A =
⌈

4ε−1n2
⌉

and choose n + 1 distinct integers
a0, . . . , an+1 uniformly at random in the interval {−A, . . . , A}.

2. Evaluate fi(aj) for j = 0, . . . , n and i = 0, 1.
3. For each j = 0, . . . , n, compute continued fraction expansions of f0(aj)/f1(aj)

and find the set of all Vj with

gcd (f0(aj), f1(aj) + Vj) ≥ D2−nA−n2

.



4. For each possible choice (V0, . . . , Vn) compute the unique interpolation poly-
nomial v ∈ Q[x] of degree at most n with v(aj) = Vj for all j. If v satisfies
the conditions in (8), then add v to V .

5. Return V .

Theorem 10. Let f0, f1, ε, D, E be inputs to Algorithm 9. If

E < H12
−n−1(4ε−1n2 + 1)−n2−n

and

D ≥ 2n+2(4ε−1n2 + 1)n2
+n(H0E)1/2,

then Algorithm 9 computes V with probability 1 − ε in time polynomial in

(log(DH1ε
−1))n.

Proof. Let v ∈ V as in (8), h = gcd(f0, f1 + v), and d = deg h. We want to show
that with probability at least 1 − ε, v is found in step 4.

For a0, . . . , an chosen in step 1, by Lemma 6 we see that with probability at
least

(

1 −
4n

2A + 1

)n

>
(

1 −
ε

2n

)n

> 1 − ε,

we have simultaneously

|h(aj)| ≥ H(h)2−dA−d2

≥ D2−nA−n2

and |fi(aj)| ≥ Hi2
−nA−n2

for each j = 0, . . . , n and i = 0, 1, since each aj has to avoid the at most
d + 2n ≤ 3n “small” values of h, f0 and f1, and also the values a0, . . . , aj−1. We
also have

|f1(aj)| ≥ H12
−nA−n2

> 2EAn ≥ |v(aj)|

for each j, so that f1(aj)+v(aj) 6= 0. Since the value of a polynomial gcd divides
the gcd of the polynomial values, we find

gcd (f0(aj), f1(aj) + v(aj)) ≥ |h(aj)| ≥ D2−nA−n2

.

On the other hand,

|fi(aj)| ≤ 2HiA
n and |v(aj)| ≤ 2EAn

for each j = 0, . . . , n and i = 0, 1. Thus, under the conditions of the theorem we
have

2(|f0(aj)v(aj)|)
1/2 ≤ (16H0EA2n)1/2

≤ (16D22−2n−4(4ε−1n2 + 1)−2n2−2nA2n)1/2

≤ (D22−2nA−2n2

)1/2 = D2−nA−n2

.

The above inequalities show that Lemma 7 applies and step 3 indeed finds the
value Vj = v(aj). Thus Algorithm 9 works correctly. For any j, the set of all Vj

in step 3 can be computed in time polynomial in n log(H0H1ε
−1), by Lemma 7.

Finally, the number of possibilities for the vector (V0, . . . , Vn) is polynomial in
(log DH1ε

−1)n. ⊓⊔
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