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We solve two computational problems concerning
Plane algebraic curves over finite fields: generating an
gapproxnnately) uniform random point, and finding
all points deterministically in amortized polynomial
Fime (over a prime field, for non-exceptional curves).

Introduction
Let ¢ be a prime power, I, the finite field with ¢
glements, f € F,[xz,y] of degree n, and C = {(a,b) €

]

iﬁ‘g f(a,b) = 0} = {f = 0} the plane curve defined
;;by f. We consider two problems of finding points on
his curve: probabilistically finding a uniformly dis-
ributed random point, and deterministically comput-
ing all its points.

Curves over finite fields play a role in several appli-
cations: factoring integers with elliptic curves, testing
primality with elliptic curves (or more general alge-
Draic varieties), algebro-geometric Goppa codes, and
gast multiplication over finite fields. For these appli-
%ations, special methods for finding points (if needed)
hre used. This paper presents the first general and
systematic approach to the problem, to the authors’
Jknowledge.

Throughout this paper, we will assume that f is
quarefree and denote by o the number of absolutely
Srreducible components of C which are defined over
. The case of an ezceptional curve, corresponding
to o = 0, needs special treatment and is dealt with in
ection 5. So now we assume that o > 1.

In Section 2 we study the probabilistic variant of
ur question: generating uniform random points on
Let 7:C — IF, be the projection onto the first
roordinate, for 0 < 1 <nlet
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be the set of points with exactly ¢ preimages, and r; =
#R;. A first attempt to generate a random point on
C might be to pick a random point a € [F;, and then a
random b € F, with (a,b) € C, if such a b exists. For
(a,b) € #~1(R;), the probability of being chosen is
1/(qt), which in general is not the uniform probability
1/#C = 1/21991]'7’]-.

In von zur Gathen & Shparlinski (1994), we have
shown how to compute approximations to the r;.
Given these, we present in Section 2 a method to
generate approximately uniform random points on
C. On the other hand, we also show that from any
method that generates (exactly or approximately) uni-
form random points on C, we obtain approximations
to the r;. The running time of our algorithm is expo-
nential in n, polynomial in log ¢ and the quality of the
approximation. For a certain fairly rough approxima-
tion quality, the running time becomes polynomial in
all parameters.

The famous theorem of Weil says that

| #C — ogq |< n?q'/2. (1)

With deterministic methods, the “brute force” ap-
proach to computing all points on € via finding, for
each a € Ty, all b € T, with f(a,b) = 0, takes
O (n¢*'?) operations in Iy, using the fastest known
deterministic algorithms to factor the univariate poly-
nomial f(a,y), for all @ € F, (Shoup 1990; Section
1.1 of Shparlinski 1992, von zur Gathen & Shoup
1992). We present a deterministic method that uses
O™(n®q) operations, i.e., polynomial time per point;
the method only works in the case of a prime field F,,
with ¢ = p prime, and does not work for exceptional
curves.

Shoup (1990) has exhibited a deterministic univari-
ate factoring algorithm which for almost all polynomi-
als runs in polynomial time.

Our deterministic result has two interpretations:



the first is that the members of a “small” parametrized
family f(a, y) of univariate polynomials, for all a € F,,
can be factored deterministically in (amortized) poly-
nomial time. The second is that all points on a plane
algebraic curve over IF, can be found deterministically
in (amortized) polynomial time.

Finally, Section 5 presents a discussion of the case
of exceptional curves which has been excluded in the
other sections.

2 Generating uniform random points
Recall from the introduction the distribution statis-
tics r; and R; for the projection m:C — [, so that
Y i<i<n tri = #C. We first assume that rq,..., 7, are
known, and then have the following algorithm.

ALGORITHM 2.1. Random point.

Input: f € Fy[z,y] of degree n, and rg ..., 7y.
Output: A uniform random point (a,b) on C = {f =
0} C 2.

1. Choose i € {1,...,n} at random with probability

2. Choose a € R; at random, by trying random a €
F, until an a € R; is found.

3. Choose b € w~'({a}) at random, and return

(a,b).

A basic subroutine, used in step 2, 1s to determine
for given a € [F, the i with a € R;. To this end, we
compute with O(M(n)log(ng)) operations

fa = ged(y? —y, f(a,y)) € Fyly]. (2)
so that a € R;, where ¢ = deg f}.

THEOREM 2.2. Let f € Iy [z, y] be non-exceptional of
degree n, and q > 4n*. Then the algorithm correctly
returns a uniformly random point of C = {f = 0}.
It uses an expected number of O(log(ng)) random
bit choices, at most n? random choices in F,, and
O(nM(n)log(ng)) operations in T,

Proor. Correctness is clear. If ¢ is chosen in step
2, then the expected number of a € F, that we try
in step 2 is q/r;. Thus the total expected number of

trials is . )
iy q n-q 2
Y G S oge <t (3)
1<i<n #C r; 2#C
The last inequality
#C>q—n’q"? > q/2 (4)

follows from (1) and the assumption that o > 1.

Once we have a € R;, we factor f; completely into
linear factors with O(nlogq) operations and O(log n)
random choices in F, (Cantor & Zassenhaus 1981) and
choose a random root as b. (In fact, it is sufficient to
isolate a single random root b of f¥.) O

Next we only assume that we have approximations
pi to r; and p to #C, with

lpi—ri|[<efor 0<i<m[pu—#C|<y, (5)

and execute Algorithm Random Point with these val-
ues, i.e., p; for r; and p for #C. A natural choice would
be = 3", ;<, tpi, but we do not insist on this.

LEmMmaA 2.3. Let 1 < i < n, and (a,b) € C with a €
R;. Then for the probability « that (a,b) is chosen by
the above modified algorithm we have

1 176 ¥
< —(— —). 6
ProoF. Denote by F; and F, the events that ¢ and

a are chosen in steps 1 and 2, respectively. Then we
have

a = prob(F;) prob(Fy | F;) - prob(b is chosen | Fy)
i 1 1_p

1 pi 1 L opi p
——|= —— 1< =(1E -1 1-
o e =g <l 11+ e )

lreg | v
< (241,
<ulrge) o

In order to implement these ideas, we still need to
compute the r;’s or approximations to them. To calcu-
late them exactly, it seems that one has to completely
enumerate all points on C, as in Section 3 (except that
there is no need to factor any f¥), at a cost of Q(ng)
operations.

A faster calculation is given by Lemma 3.1 of
von zur Gathen & Shparlinski (1994). It yields prob-
abilistic approximations p; and g such that (5) holds
with probability at least 1 — &, where

g 2y
) YRG
y = (%-211(71—1—1)109;(271/6)) .

Here h is a parameter of the method, and the
cost is h computations as in (2), for a total of

O(hM(n) log(nq)) operations in [f,.



For a cost estimate, we assume that we have a pre-
scribed tolerance of the error in (6). By Weil’s theorem
(1), #C is about og¢, and we write this requirement as

1 g
a——|<E,
where we think of the quality of approximation 3 as
being small, say 8 =~ g~ /4.
Let 0 <: < n. We say that R; and r; are large if

and that P = (a,b) € C is over a large fibre setif a €
R; and R; is large. The motivation for this definition
will be discussed after the next theorem.

THEOREM 2.4. Let ¢ > 16n*"(n!)?, let C C qu be a
non-exceptional curve of degree n > 9, and 3,6 > 0.
Assume that

3. nl 172
B < Z(ﬁ) : )
With

O(n!M(n)log(nq) log(ns=")3?)

operations in I, we can compute approximations p;
to r;, for 1 < i < n, with the following property, for
any P € C over a large fibre set. If « is the probability
that Algorithm Random Point, when run with p; for
r; and p for #C, outputs P, then

1 g
a—— |<E
-5 1<t
holds with probability at least 1 — 6.
Proor. We set
81 - n! 2n
h = I—T . Og 7],

and compute with O(h M(n)log(ng)) operations in I,
values p; and p such that (5) and (7) hold. Let P =
(a,b) € C and 1 < i < n be such that a € R;. Then
by Lemma 2.3 we have

1 1 /¢ 04
S g (i I
o=z 1< (5 + g2) (10)
and it is sufficient to show that the righthand side is
at most 3/q.

We first need some bounds on the parameters in

(10). Asin (3), we have

#C>q—n¢""? > q/2,

since ¢ > 16n"(n!)? > 4n*. Since

3 nlii/2 3 n! \1/2
P By

bl

we have
[ #C—p|< v
q-nq-B? 2n.1/2
(81n!log(2n/6) 2n(n +1)log 6) (11)
_ngB (2(n+1))1/2 <1
9 n! - 6’
and thus

p>H#C—y>q—n2q? —y > q/2—q/6 = ¢/3.

Substituting the bound on r; and all these estimates

in (10), we find

(o)
< g(%)m(log%”)”z(ﬁ% (%)1/2)
< (113T : (81 Tl .fjg@n/é))lﬂ - (log 2771)1/2 )
"11%((8 )2 4 2(n? 4 n)/?)
% (9 n)Hf2 = g o

The bound (9) on 2 was chosen so that the last in-
equality in (11) holds. If we choose f maximal under
this condition, say 8 = ¢(n!/n®)'/? for some constant
¢, then the running time of our algorithm is polyno-
mial in nloggq; the quality of approximation is then
rather poor.

What about those r; that are not large? By Lemma
2.3 of von zur Gathen & Shparlinski (1994), we have

| 7 — i |< 207" g!/?

for some \; € Q with n!'); € Z. It follows that either
n!A; > 1 and

ri > q/nt—2n%"¢"? > q/2n!, (12)

or n!A; <0 and
ri < 2n°"q'/7. (13)
Thus each r; is either large in the sense of (8), or very

small. The total fraction of P = (a,b) € C that are
not in a large fibre set is at most

7’L~27’L2nq1/2 < on_
# - q/2  ~

2n2n+1q1/2 n 1
nl (n—1V



under the assumptions of Theorem 2.4. For such a
point, r; might be only 1, say, and thus the estimates
(5) and (7) do not yield a useful bound, close to 1, on
the relative error p; /r;. In fact, each R; corresponds
to the points on a certain curve I);, the ith fibre power
of C, and for those R; that are not large, this curve D;
is exceptional. It is not surprising that our methods
are, again, not adequate to deal with this exceptional
situation.

At our current state of knowledge, computing the
r;’s exactly is feasible only for small values of ¢, and
computing approximations only for not too large val-
ues of n and ¢. Thus it seems somewhat unfortunate
that we used such approximations in our uniform ran-
dom generation algorithm.

We next show conversely that this is so by necessity,
namely that from an approximate uniform generation
method we obtain approximations to the r;’s.

So let ¢ > 0 and A be a probabilistic algorithm
that outputs a point on C such that for each P € C
the probability « that P is output satisfies

1 <
| o 7C |<e.
Now let 0 < 7 < n and k¥ € N. We now run A for
k times, count the number ¢ of times that the output
P = (a,b) satisfies a € R;, using (2), and return p; =
t/k. The general definition of an (¢, §)-approximation
requires, in our case, that

prob (|, —pi |[<er;) >1-—6.

The estimator theorem of Karp et al. (1989) says that
we have such a scheme if we choose

k = [45; log,(2/6)e™"],

where 3; > #C/r;. Recall that under the assumptions

of Theorem 2.4 we have #C > ¢/2, and either r; >

q/2nlor r; < 2n2n¢1/2 Thus if we use 3; = n!, then in

the first case we obtain an (e, §)-approximation scheme

for r;, and in the second we expect to find no a € R;.
Since

#S dYoom< ) im=#C,

1<i<n 1<i<n

the r;’s are on average at least #C/n%. To find ap-
proximations only to the “large” r;’s, we might use
B; = An?, with some small number A. The dependence
on ¢ of this algorithm is only O(logg), while stand-
alone methods, such as in Theorem 3.4 of von zur Ga-
then et al. (1993), not using our assumed uniform ran-
dom generator, use Q(¢®) operations for some « > 0.

3 Deterministic construction of all
points

In this section, we present a deterministic algorithm
for finding all points on C = {f = 0} over a prime
field IF,. It employs a deterministic polynomial-time
algorithm for finding all roots of the univariate poly-
nomials f(a,y), with a € F,. This algorithm does not
factor f(a,y) completely for all @, but we show that
there are only about ,/p exceptional a, and for these
we use an always successful deterministic algorithm
with time about ,/p; thus the total time is propor-
tional to p, which is about the size of C. Everything
is polynomial in the degree n.

As a first step, we factor f into irreducible fac-
tors in Fy[z,y]. The bivariate factoring algorithms
(Lenstra 1985, von zur Gathen 1984, von zur Gathen
& Kaltofen 1985) can actually be made into determin-
istic reductions from bivariate to univariate factoriza-
tion over finite fields. Thus f can be factored with
nPMpl/2 operations in [F,. From now on, we assume
that f is irreducible.

The projection 7 : C = {f = 0} — [, onto the first
coordinate is called separable if and only if Ay, # 0
for each irreducible factor h € Flz, y] of f. A simple
example of an inseparable projection is given by f =
z—y’ € Fyl,y]. The curve C = {& = y*} is smooth,
and all tangents to C are vertical.

Let ¢:F, — IF, denote the absolute Frobenius map,
with ¢(a) = af. (We will only use ¢ = p.) For our al-
gorithms, it is convenient to have = separable, and the
next lemma describes a simple procedure for achieving
this by factoring out ¢.

LEmMaA 3.1. Let f € F,[x,y] be irreducible. We can
compute in polynomial time g € F,[x, y] and an inte-
ger k < log,(deg, f) such that

idx pF:F2 — T2

gives a bijection between {f = 0} and {g = 0},
deg, g = deg, f,deg, g < deg, f, and 7:{g = 0} — T,
is separable.

Proor. We write f =3, fij2'yl , with each f;; €
IFy, and p = charlF,. Then

fy=0=Vij(fi; Z0=>p]Jj).
If f, =0 and
h=Y" fia'ylr,
oy

then f(a,b) = h(a,b?) for all (a,b) € F2, and thus

q 3
id x go:Ef — IF; gives a bijection between {f = 0}



and {h = 0}. We repeat this process until we obtain
a polynomial g € F,[z,y] and k € N with g, # 0 and
id x ©* a bijection between {f = 0} and {g = 0}. O

ALGORITHM 3.2. Finding all points.
Input: f € Fy[x, y] of degree n, where p is a prime.
Output: A list of all points (a, b) € F.? with f(a,b) = 0.

1. Set h = 288n*[log, p]?.
. For alla € F, do steps 3 through 7.

. Compute fo=f(a,y) € F,[y].

. Compute f¥ = ged(y? —y, fa) € Fply].

S S U )

. For 0 <t < h compute the two factors
Ga,t = ng<(y - t)(p—l)/2 - 1) f;);

9o =ged(y —t, f7) € [y
of f*.

6. Compute the common refinement of the partial
factorizations from step 5.

7. If step 6 returns only linear factors y — b, then
add all these (a,b) to the list. Otherwise com-
pletely factor fi with the deterministic algorithm
of von zur Gathen & Shoup (1992), and add all

resulting (a,b) to the list.

THEOREM 3.3. Let p be a prime and f € TF,[z, y] non-
exceptional. Then the algorithm correctly computes
all points on C = {f = 0}. It uses

O(n®plogn loglog nlog(np)log® p)
or O"(n®p) operations in IF,.

Proor. Forall a,b € [F, we have

flab) =0 fi(b)=0<=y—0b| f;.

Since step 7 returns all linear factors of fi, the final

list correctly contains all points of C = {f = 0}.

It remains to analyze the running time. The cru-
cial point is to understand when step 6 succeeds in
completely factoring f;. Denote by S C F, the set
of all a for which this is not the case, and s = #G5.
Furthermore, C, = 7(C N ({a} x Fp)) consists of all
b € T, with (a,b) € C. Thus

S = {a€l,:3bceCyb#c;bc>h,
and Vt < h (y—b|gat <= y—clgar)}

Furthermore, let M(n) be a multiplication time,
i.e., such that the product of two polynomials in
F,[z] of degree at most n can be computed with
O(M(n)) operations in F,. Then we can choose
M(n) = nlognloglogn, and a ged can be computed
with O(M(n)logn) operations. The refinement cost
in step 6, if done along a binary tree, is O(M(n)logn)
for each t, or O(hM(n)logn) in total. For a € S,
an application of the algorithm from von zur Gathen
& Shoup (1992) costs O(M(n) p'/? log(np)) operations
in [F,. The geds in steps 4 and 5 are computed by re-
peated squaring for the required power of y and y — ¢,
reducing after each multiplication modulo f, and f},
respectively.

For each a in step 2, we find the following number
of operations in [Fp:

o step 3: O(n?),

o step 4: O(M(n)log(np)),
o step 5: O(h M(n)log(np)),
O(

o step 6: O(h M(n)logn),

o step 7: 0if a € T, \ S, and O(M(n) p'/?log(np))
ifaesS.

The total cost 1s

O (p-(n+n*M(n) log(np) log” p)+5 M(n)p/* log(np)

(14)
operations, and we now show that s is O(n?(n? +
logp)p'/?). This will imply the claim about the run-
ning time. We let

Q = {uel el u=1"}
= {uEF;:u(”_l)/zzl}

be the set of nonzero squares in [,, and x the
quadratic character on IF,, with

1, ifbeq,
0, ifb=0.

For the time being, we work with an arbitrary in-
teger parameter h; only at the end will we substitute
the value from step 1. Set H = {0,...,h— 1} C F,,
where we identify F, with {0,...,p — 1}. Two dis-
tinct elements b, c € I, are h-separated if and only if
x(b—1t) # x(c—1t) forsomet € H. Aset BCT, is
h-separated if any two distinct elements of B are.

With this notation, we have for a € I,

a € S = C, is not h-separated.



The reverse implication is true if the non-h-separated
b,c € C, are both at least h. If a € S, then for at least
one pair of distinct elements b, ¢ € C,,

h= Z x((t— b)(t—c)).

0<t<h

Now we let £k € N and

wo= 3 3|3 x-ve-o)”

a€l, bcgca 0<t<h

POEED DD DR

0<ty,...,tax<h a€l, bcica
. ~(t2k — b)(tQk — C))

Then, by the above, sh?* < w. We consider the set

tl—b) tl—C)

Do = {(a,b,c) € ]Fl;o’:f(a,b)

The fibre product D = € x, C is the closure of Dy
in F2; it has degree at most n(n — 1) < n? and is
dlscussed in detail in Section 4. Then

w= Z ZX%P

te H2k PeD

where the inner sum is over all [F,-rational points P =
(a,b,¢) € D with b # ¢, ¢4 is the polynomial
Y= (y—t1) -

(y—ta)(z—t1) (2 —tax) € Fp[y, 2]

in indeterminates y and z, and ¥ ((a, b, c)) is obtained
by substituting b and ¢ for y and z, respectively.

Theorem 4.4 says that there are at most
(12kn>h'/?)** values of t € H?* for which p(1;) is a
square in the global ring O 4 of some irreducible com-
ponent A C F3 of D, where p: F[z,y, 2] — O4 is the
restriction map.

For other vectors t € F2* we may apply the bound
on character sums along a curve from Perel’'muter

(1969) that gives

> x(we(P)) <

PeD

d- (n*(n” + 2k)p'/?) (15)

for some constant d. Perel’'muter’s bound holds for
each irreducible component of D. Since their degrees
sum to degD < n?, (15) follows. Therefore

w < (12kn2h" %)% p 4+ d - n?(n® + 2k)h2Fp!/2,

s < (12kn2h~ V2% p 4 d . n?(n? + 2k)p'/2.

=f(a,c)=0,b#c} CF2.

Now, using k¥ = [log, p] and h as in step 1 of Algo-
rithm 3.2, we find

(12kn2h—1/2)2k < 2—Ic < 2—log2p — p_1.

Hence
s = O(nz(n2 + logp)p1/2).

Together with (14), this proves the estimate of the
total cost. O

4 Squares on the fibre product

Let F be an algebraically closed field, f € Flz, y]
irreducible of degree n > 1, C = {f = 0} C F?
the associated plane curve, and m:C — T the first
projection. We assume that 7 is separable. Then
D =C x, C C 3, the fibre product over w, can be
defined as the closure in I3 of

= f(a,e) = 0,b # c}.
)y —z) €

Do = {(a,b,c) € F3: f(a,b)

Furthermore, let ¢ = (f(z,y) — f(z,
Flz,y, 2]

A smooth point P = (a,b) € C is critical for = if
and only if the tangent line Tp¢ is vertical. This is
equivalent to fy(a,b) = 0, where f, = 0f/0y € Flz, y].

THEOREM 4.1. Let f € Flz,y] be irreducible and «
separable.

() D={f(z,y) =g =0}.
(ii) D = Do U {(a,b,b):(a,b) € C is singular or

critical}.

(iii) (a,b,¢) € D with b # ¢ is singular on D if and
only if either (a,b) or (a,c) is singular on C, or
both (a,b) and (a,c) are critical on C. All points
of D\ Dy are singular on D.

(iv) degD < n(n — 1) < n2.

ProoF. Let A = {(a,b,b) € F3:a,be F} be the di-
agonal. Clearly D \A = Dg,and D C Dy = {f(z,y) =
g = 0}. By definition, D is the closure of Dg, and thus
D C D;. We prove that (ii) is valid with D; instead of
D. Thus D1 N A is finite, and D = D; follows, hence
(i), (i), and (iv).

So let u, v be indeterminates over I [z, y]. Then the
Taylor expansion of f around (u,v) of order 1 is

fz,y) = f(u,0) + fo(u, v)(z —w)+ fy (u, 0)(y —v) + h



in [z, y, u, v], with some h € (z—u, y—v)*. Therefore

9(2,y,2)
oy i P (fy(u,v)(y —v) = fy(u,v)(z —w)
+h(z,y,u,v) — h(z, z,u,v))
= fy(u,v)+ H,

with some H € (z —u,y—v,z—v). Thus for (a,b) € C

(a,b,0)e D <= fy(a,b)=0

<= (a,b) is singular or critical on C.

For (iii), let (a,b,¢) € D with b # ¢. The Jacobian
of D at (a,b,c) is

fo(a,b) — fu(a,c)

fx(a:b) b—oc
J(a,b,c)=1| fy(a,b) %
0 —fy(a,c)

b—c

After multiplying the second column by ¢ — b and
then adding the first column to the second, we obtain

the matrix
( fx(a:b) fx(a:c) )
A= fy(a,b) 0 .
0 fy(a,c)
Thus

(a,b,¢) is singular on D
< rank (J(a,b,¢)) <1
<— rank (4)<1
<= (a,b) or (a,c) is singular on C,

or both are critical on C. O

The condition that « be separable is necessary,
since otherwise all points on C are critical. Recall
the example C = {z = y”}, where p = charTF, from
Section 3. Then f, = 0, C is smooth, and all tan-
gent lines to C are vertical. Furthermore, Dy = @,
9= —2P)/(y—2) = (y—2)P~1, and C x, C equals
{(a,b,b) € F3:a = bP}, counted p — 1 times.

We define

S = {(a,b,c) € D:(a,b) or (a,c) is singular

or critical on C}.

We now let A be an irreducible component of D,
and want to estimate the number of ¢ such that ; is

a square in Q4. We let p:Flz,y,2z] — O4 be the
restriction map.

Let t € F2* and T = {1,...,2k}. The overall goal
of this section is to show in Theorem 4.4 that only few
p(1y) are squares, when ¢ is chosen from a finite subset
H of F2¥. We will assume throughout this section that
for every hyperplane y = ¢; or z = #; defined in F3 by
t, the intersection with A is a nonempty finite set.
Such an intersection is empty only if the projective
closures of the curve and the hyperplane meet only at
infinity. We only have a finite number of hyperplanes,
and hence our assumption will be satisfied after an
appropriate linear transformation.

In the sequel, we define several combinatorial ob-
jects on 1T'. We first collect pairs of equal values of ¢; in
a systematic way. Namely, we take the lexicograph-
ically first maximal matching on the directed graph
with vertex set 7', and where (i,j) are connected if
and only if « < j and ¢; =¢;. Then T} C T is defined
as the set of these first coordinates i, and 7: 7y — T is
defined by 7 (i) = j if (4,) occurs in that matching.
As an example, if t3 = t5 = tg = t11 = t13 and no
other t; equals these, then 77 = {3,8}, 71 (3) = 5, and
m(8) = 11.

Next, we set

TQ = {zET\(TlLJTl(Tl))Aﬂ{y:tz}gS
or An{z=1t;} CS}.

Then the t; for
1€z =T\ (Thun(Th)UTy)

are pairwise distinct, and (77, 7 (7}), T2, T3) is a par-
tition of T'. Next, we let

SOIT3>< {0}, 51:T3>< {1}

be two disjoint copies of T3, and define a bipartite
undirected graph G = (Sp U S, E) as follows. For
i,j € T3, (1,0) and (j, 1) are connected in G if and
only if there is some (a,b,¢) € A\ & such that b =1,
and ¢ = t;.

LEMMA 4.2. Ift € F2* is such that p(v;) € O4 is a
square, then each vertex in G has degree at least one.

Proor. By symmetry, it is sufficient to show the
claim for a vertex (z,0) € Sq.

Since i € T», we can choose some P = (a,t;,¢) €
A\ S; then ¢ #t;. Let

UOI{jETZtJ‘:tZ’}, Ulz{jETZt]'IC},

p:Flz,y,z] — O4 the restriction to A, R = Op4
the local ring at P, which is a Unique Factorization



Domain, and A = (O4 — Op 4) o p the composition
of p with the localization at P. Then ¢ € Uy, and
Up, Uy CT\Ts.

For every j € T\(UgUt (Up)U{i}), we have t; # t;,
and thus A(y —¢;) is a unit in R. Similarly, each
A(z —t;) with ¢; # ¢ is a unit in R.

Since (a,t;) € C is not critical for m, we have
fy(a,t;) # 0, and therefore A(y —t;) € R is a local
parameter in R. Similarly, each A(z —¢;) with ¢; = ¢
is a local parameter in R.

By the above, there is a unit u € R such that

M) = T[Mw=1)- T -1

we JI Ay—=ti)- JT M=)

jEUUT1(Uo)U{i} JEUL

is a square in R. Thus the total number of local pa-
rameters in the product is even. We have #U; =
#71(Up) and i ¢ Uy U7 (Up). Thus in the left hand
product, the number of local parameters is odd, and
therefore also in the right hand product. Thus there
exists some j € T3 with¢; = ¢; then {(4,0),(j, 1)} € E.
O

We now take a maximal “disjoint” matching
(Vo, V1) in G of the following type. The sets V5, Vi C
T3 are disjoint, G induces a perfect matching on
(Vo x {0} U (V1 x {1}), and this matching is maximal.
Furthermore, let o : Vo — Vi be the corresponding
bijection, with u(i) = j if and only if {(¢,0),(4,1)}
occurs in the matching.

For every i € Vo = T3\ (Vo UV), (4, 0) is connected
to some (j, 1) € T3 x {1}, and by the maximality of
the matching, we have j € Vo U V;. We take p: Vo —
Vo U Vi such that u(i) = j for some such j. We note
that (Vp, V1, V2) is a partition of T5.

Finally, we indicate how to describe ¢; for 7 € Vj
succinctly if {(7,0),(j,1)} € E and ¢; is known. For
this, we take an arbitrary total order < on IF. For
each t € F, C N {y = t} has a most n points, say
(ar,t),...,(ai,t) withl < mand a1 < -+ < a;. If
J = p(i) and t = t;, then (a,,t;,t;) € D\ S for one of
those points, with 1 < r < l. We choose the smallest
such r; then C N {x = a,} consists again of at most n
points. We let v be the number of (a,,;) in this list,
ordered according to <, and set 73(i) = (r,v). Then
t; is determined by j = u(i), t;, and 73(2).

Similarly, we define 73: Vo — {1,...,n}? so that
for 1 € V5, t; is determined by j = u(3), t;, and 73(%).

We have thus associated to any ¢ € F2* with p(t;)
a square the following data:

Tl,Tl,Tz,Vo,/,L,Tg, and t; for i€ Ty UTH U V7. (16)

LEMMA 4.3. If p(31) is a square in O4, then t is de-
termined by the data in (16).

Proor. (Ti,7(Th), T, Vo, Vi, V2) is a partition of
T, and t; = t,,(;) for each ¢ € T1. Thus it remains to
show that each #; with i € Vo U V5 1s determined by
(16). But that is precisely what the construction of p
and 73 achieves. O

We are now ready for the main result of this sec-
tion, an upper bound on the number of ¥; which are
squares. The bound is rather coarse, but sufficient for
our purposes.

THEOREM 4.4. Let H C T be a finite set with h el-
ements. The number of t € H?* such that p(i,) is a
square in O 4 is at most (12kn>h'/?)?k.

Proor. By Lemma 4.3, it is sufficient to give an
upper bound on the number of choices for the data in
(16).

The six sets Ty, 71 (7T1), Ta, Vo, V1, Vo form a parti-
tion of T, and there are at most 6>* choices for this

partition.
Suppose that these sets are chosen, with cardinal-
ities c1, ¢9, €3, C4, 5, cg, respectively. Then ¢; = ¢,

es < n?, and ¢4 = ¢5. The number of choices for 7 is
at most (2k)°*, for u at most (2k)°41° for 73 at most
(n?)estes and for all t;’s at most h® 5. (n?)%*, Since
e1 +e5 < 2k/2 =k, the total comes to

62k . (Qk)c1+c4+ce . (n2)ca+04+cs . peites

< (12kn”RY2)%k . g

5 Exceptional polynomials

In this section, we deal with the somewhat trouble-
some case excluded so far: exceptional polynomials,
for which ¢ = 0. No analogue of the deterministic
result of Theorem 3.3 is known for them, while the
probabilistic results of Section 2 carry over easily.

We first note that it is not surprising that they
are difficult to deal with, since any subset of ]Fq2 is
an exceptional curve. If ¢ € I, is a nonsquare and
f =22+ cy?, then f is exceptional and

{F=0}={00,0)}, (17)

and by translation and finite unions the claim fol-
lows. If char F, > 3, then (17) also holds for
f=a2"1 4yt Ifb e Iqu\]Fq with % € T,, then
b1 = (b*)@=1)/2 = 1. Thus f is the product of all
x — by with these b, and thus f is exceptional, too.



Now given an arbitrary f € [Fy[z,y] of degree
n, there are well-known probabilistic algorithms with
time polynomial in nloggq that factor f into its ir-
reducible factors over I, (von zur Gathen & Kaltofen
1985) and test each such factor for absolute irreducibil-
ity (Kaltofen 1985). For simplicity, assume now that f
is irreducible over FF,, and not absolutely irreducible.
Then Kaltofen’s algorithm can be used to find a field
extension K of F, with [K:TF,] < n and a proper fac-
torization of f over K. If ¢ and h are two distinct
factors, then the first coordinate of any common root
is a root of

resy(g,h) € K[z].

Thus it is easy to calculate all common roots of ¢ and
h, to check which ones are in ]qu, and to determine
whether they are indeed roots of f. All roots of f are
found in this way; there are at most n2?/4 of them

(von zur Gathen et al. 1993).

THEOREM 5.1. Let f € Fy[z,y] have degree n. There
is a probabilistic algorithm using (nlog q)°") opera-
tions in IF, that determines whether f is exceptional
and, if it is, finds all points of {f = 0}.
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