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Abstract. This paper provides an algorithmic approach to some ba-
sic algebraic and combinatorial properties of algebraic curves over finite
fields: the number of points on a curve or a projection, its number of
absolutely irreducible components, and the property of being “excep-
tional”.

1. Introduction

Let F, be a finite field with ¢ elements, f € E,[z,y] a bivariate polynomial of
total degree n over Fy, and C = {f = 0} = {(u,v) € F’: f(u,v) =0} C F? the
plane curve defined by f over [,. In this paper we present some algorithms to
compute approximations to the curve size #C and to the number r} of points
with exactly ¢ preimages under the projection to a coordinate axis. Since this
task generalizes Weil’s estimate of #C, it might be called a “computational
Weil estimate”.

In von zur Gathen et al. (1996), a “strip-counting” method was introduced.
It is based on the general principle that the behaviour of a curve can be deduced
from its behaviour over a wide enough vertical strip.

To be specific, let S C F,, i € N and C(S) be the set of (u,v) € S x F,
with f(u,v) = 0. Furthermore, R;(S) is the set of u € S for which there are
exactly ¢ values v € F, with f(u,v) =0, r;(5) = #R;(S), M(S) is the number
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of (u,v,w) € §* x F, with f(u — v,w) = 0, and ¢,(.S) is the number of pairs
(u,v) € S? for which there are exactly ¢ values w € F, satisfying f(u—v,w) = 0.
The basic idea now is that for some properties of curves, we can find reason-
ably small sets S such that the above parameters are not too hard to compute,
and give information about some of the global parameters we are interested in.
A completely different approach, pioneered by Schoof (1985), leads to deter-
ministic algorithms for computing the size of C C IF; with time polynomial in
log p (and exponential in the degree); see Pila (1990), Huang & Ierardi (1993).
If the set S is given in some reasonable sense, e.g., if we have an efficient
way to enumerate all elements of S, then one can compute #C(S) and all
ri(S), for 0 <4 < n in time O°(|S|nlog q) (see Lemma 2.5 below). Thus #C
and r¥ may be computed in exponential time of order O7(ng) by this ‘brute
force’ algorithm. Here, we use the ‘soft-Oh’ notation: A = O7(B) if and only
if A= B(logB +2)°0).
Continuing the work in von zur Gathen et al. (1996), we show that for
certain sets S, the numbers g#C(S)/#S or ¢M(S)/#S?, and qr;(S)/#S or
qt;(S)/#S? are rather good approximations to the curve size #C and the pro-
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jection statistics r¥, respectively. (The quality of these approximations is de-
scribed in detail below.) In particular, to estimate #C, this is true for random
sets of cardinality of order n®, for any set of size of order n?¢'/?, and for a
random shift of any set of size of order n*. The latter is a positive answer on
Question 7.2 of von zur Gathen el al. (1996) and is an example of reducing
the number of random choices required in probabilistic algorithms. These re-
sults motivate the “strip counting” terminology, in that it is sufficient to count
points in the “strip” S x F, over 5.

We consider mainly the case of finite prime fields, but we also show how
some results can be generalized to the case of general finite fields, and outline
some difficulties that do not allow us to generalize all results.

From r;(S) and ¢;(S), for 0 < i < n (or their approximations) we can

compute (or estimate) the numbers #C(.5) and M(S5), respectively, as

#C(S) = Y r(S)i, M(S)= > t(S)i.

1<i<n 1<i<n

A connection in the opposite direction is given in Lemma 2.2 below.

The more general problem about the number of u € F; for which the poly-
nomial f(u,y) € F,[y] has a given ‘factorization pattern’ can be reduced to
calculating analogues of ] in extensions of the ground field F,.

For a curve of the form f(z,y) = = — h(y), with h(y) € F,[y], r§ = 0 is
equivalent to h being a permutation polynomial over F,.
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Throughout the paper, we use the following terminology. Let K be an
algebraic closure of F,, and X C K™*! an algebraic curve over K, defined over
F,,andC = X OE;mH the F,—rational points on &X’. Since we are only interested
in set—theoretic (counting) properties of C (and not sheaf-theoretic ones), we
assume that A" is reduced and without embedded points; X may be reducible
and have singular points. Most of our results deal with the case m = 1, where
we assume that C (and X') are given by some polynomial f € F,[z,y], as
C = {f = 0}. Since the curve is reduced, f is squarefree. In the proofs, certain
fibre products of C occur. A further assumption, without loss of generality,
is that C C Fq2 contain no vertical lines; this is defined in Section 2. We
denote by o the number of absolutely irreducible components, i.e., the number
of irreducible components of C over K that are defined over F,, and we use
parameters J\; defined in (2.3), via the fibre power of the curve. Lemmas 2.1
and 2.3 show that we automatically get approximations of order O(ql/Q) (for
n fixed) to #C and r}, respectively, from approximations to o and X;. So
we shall mainly concentrate on algorithms to compute the latter parameters.
Moreover, it also follows from those lemmas that in order to determine ¢ and
r7, it is enough to get approximations to #C and to r} with absolute errors less
than ¢/2 and ¢/2n!, respectively. We consider the following three important
special cases: o = 0 (‘exceptional curves’), o = 1 (‘almost absolutely irreducible
curves’) and Ag = 0 (‘almost permutation curves’).

Our algorithms address a fairly difficult problem, and have the following
properties:

o they are easy to state and implement,

o their proofs of correctness rely on deep results from arithmetical algebraic
geometry.

Table 1 below summarizes our algorithmic results.

2. Some general results

We start by collecting some facts about curves over finite fields. The follow-
ing inequality is a consequence of the famous Weil result and Lemma 2.2 of
von zur Gathen et al. (1996), which gives a bound for the number of points on
intersections of absolutely irreducible curves and for the number of points on
irreducible but not absolutely irreducible curves.
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parameter time random q > cond | Alg
comp n*logd~tlogq | nlogd™t n? 3.2
comp n?6~?*log g 1 nt 4.9
comp n3q'/? 0 n* A 4.7

i (n!)*logd~'logq | n!*log 6= | (n!)*n*" 3.8

by (n!)2n*"6~tlogp 1 (n!)?n*n p | 4.13

by n!n?mp!/? 0 (n)?n* | p | 411
except n*logdé~'logq | n*logd™! n? 3.4
one comp | n3logd~'logg | n*logd=! n? 3.6
Ao =0 nllogd='logq | nllogd=" | (n!)*n*" 3.10

Table 1: Computing various parameters for a curve in Fq2 of degree n: absolutely
irreducible components, A; (see (2.3)), exceptional, one component, and g =
0. The time is the number of operations in F,, and random the number of
random elements; both in the O -sense. If random is 0, we have a deterministic
algorithm. For all probabilistic algorithms, the error probability is at most 4,
and g > indicates the lower bound on ¢, in the O -sense. The condition is
either Condition A from Section 4, or that the field size be a prime p.

LEMMA 2.1. Let C C E™*! be a curve of degree n over B, with o absolutely
irreducible components defined over ,. Then

#C — og| < n’q'"%.

Proor. Let C4,...,C; be the irreducible components of C over F,, with C;
absolutely irreducible if and only if + < 0. From the proof of Lemma 2.2 in
von zur Gathen et al. (1996), we find

#C—oql < |- D #al+ D [#e-d
1<i<o 1<i<o
< Z nin; + Z n?/4+q1/2+ Z n?
1<i<j<o o<i<T 1<i<o
2
< (X w)Prswen o
1<i<r

Let C C qu+1 be a curve. Throughout this paper, we assume that C
is withoutl vertical components, i.e., no absolutely irreducible component of C
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is contained in a hyperplane {a} x F™, for some a € F,. For a plane curve
C={f =0}, with f =>, fiy' € Fz,y] and all f; € F,[z], this is the case
if and only if ged(fo, f1,...) = 1. In that case, we also say that C is without
vertical lines. For the computational problems we consider, the general case is
easily reduced to this (slightly) restricted one.

Let furthermore ¢ € N, and S C F,. We consider the difference map §: S —
F, with d(u1,us) = u1 — ua, and denote by id the identity on F™. We define
the following.

C(S) = CN(SxE"™) = {(u,v):(u,v) €C, ue S} C Iqu"'l,
Ri(S) = {u€ S:#C({u}) =1},

ri(S) = #R(S),

Cé(S) = (6 xid)™H(C) = {(u1,uz,v): (w1 — uz,v) €C, ui,uz € S},
M(S) = #C(9),

ti(S) = #3T(Ri(9))

We also set ¥ = r;(F,) and ¢7 = t,(F,). All these definitions coincide with the
ones in the Introduction if C is plane. For a plane curve C given by f € F, [z, y]
and 1 < k < n, we define the curve C C Ef"’l as the closure of

Sr = {(u,v1,...,0) € ]Fqk"'l :

fluyv1) =+ = flu,v,) =0, v; #vjfor 1 <u <5<k} (2.1)

To define this closure of S, we take the set X of all points in K**! satisfying
the equations and inequalities in (2.1), its (Zariski-)closure X (i.e., all points
satisfying all polynomials over K that vanish on X), and then C;, = X N IF;]“H.
The geometry of C; and the equations defining it as a complete intersection are
described in detail in von zur Gathen & Shparlinski (1995a) and an example
is given below. Cj is the k-fold fibre power of C along the first projection; it
may be empty. Applying Bézout’s Theorem to the equations in (2.1), we find
deg Cr < n*;in fact, degCy < n(n—1)---(n—k+1). It can, of course, also be
defined for curves in F**' with m > 1. The following statement is essentially
Lemma 3.2 of von zur Gathen el al. (1996).
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LEMMA 2.2. For a plane curve C C qu without vertical lines and of degree n,
S CF, and 0 < < n, we have

Ti(s) _ L' Z z+k #Ck( )7 (2'2)

1<k<n

t(S) = q Z " #C( )

1<k<n

In view of these expressions, we consider the number o3 of absolutely ir-
reducible components defined over F, of Cy, with o9 = 1, and for 0 <1 < n
set

1 (=1)trgy
il (k—1i)!

1<k<n

N = cQ. (2.3)

LEmMmA 2.3. Let C C ]Ef be a curve without vertical lines given by f € F, [z, y]
of degree n, and Ag,..., A, as above. Then for 0 <1 < n, we have nl\; € Z,
and

Irs — Mig| < 2n27¢'/2. (2.4)

PROOF. Noting that Cp is of degree at most n* and using o4 as above, we
find from Lemmas 2.1 and 2.2 that

_ ! 3 (—=1)**(#Ch — orq)
itl 2= (k — )]
1/2 2k 1/2(, 2\n+1 _
q n q'"*(n?) 1 0
Tz(zf;—i)!S o S

1<k<n
for n > 2; the case n = 1 is trivial. Furthermore i!(k — ¢)! divides n! for all

0<:<k<n. O

EXAMPLE 2.4. We take the (irreducible) elliptic curve C = {f = 0} of degree
n =3 given by [ = y* — 2° + z € F,[z,y|, where ¢ = 1019 is prime. Figure 1
gives the picture over R. Then C, is given by the equations

3 2
—u’ 4 u=vy,v; + vy =0;
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Figure 2.1: The elliptic curve y? = 2® — x over R, the sets Ry and R, for the
first projection, and the sets Ry and Rj for the second projection.
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the latter equation comes from eliminating v and dividing the result vi —v3 by
vy — vy. Thus Cy is isomorphic to C and irreducible, and oy = 1. Furthermore,
Cs =0 and 03 = 0, so that

For the two sets S; = F, and S; ={0,1,2,...,49} we find

i ri(S1) =1 #Ci(S1) i —Xig ri(S2)  #Ci(S2)
0 508 1019 -1.5 26 50
! 3 1019 3 2 2
2 508 1016 -1.5 22 22
3 0 0 0 0 0

Of course, (2.2) could have been used to predict the r’ approximately. The
pessimistic bound (2.4) actually holds with the error term 3 < 46541.95 =~
2n?mq 2. As expected from the picture of the curve {y* = 3% — 2} over R,
there are (almost) no points with 1 or 3 preimages under the first projection.
The other two possibilities, of 0 or 2 preimages, occur equally often. The three
points with one preimage are 0,1, —1.

It is instructive to also look at the projection of C onto the y—axis. To
preserve terminology, we thus take f = x* — y* +y. Then C; is

Co = {(u,vr,v3) € Ilfzf(u,v]) = 0,1)12 + vyvg + vg —1=0}. (2.5)

C, is irreducible, as witnessed by its projection onto the plane 7, which is given
by the irreducible polynomial res(f(z,y),y* + yz + 2> — 1) € F, [z, y] of degree
6. Thus oy = 1.

For C3, we have to add the equation

vy +vy+v3=0
to those in (2.5); thus C3 2 Cy and 03 = 1. We find

1
)\0: )\1257)\2:07)\3:

1
3’
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and with S, and S, as above, we have

'i T‘Z'(Sl) = 7“;‘ #02(51) T‘;‘ — )\Z-q T‘Z'(Sg) #CZ(SZ)
0 340 1019 0.33 14 50
1 508 1019 -1.5 24 60
2 2 1020 2 0 72
3 169 1020 -0.83 12 72

Again, (2.4) holds with the bound 2 < 46541.95. This example shows
how the \/'s comprise in a concise way reasonably good information about
the projection statistics of the curve. Note that in the picture over R the set
corresponding to Ry is empty.

We denote by M(n) the Boolean complexity of multiplication of two n-bit
numbers. The currently best estimate (Schonhage & Strassen 1971) of this
function is

M(n) = O(nlognloglogn).

As in the proof of Lemma 2.5 of von zur Gathen et al. (1996), we find the
following result.

LEmMmA 2.5. Let C C Fq2 be without vertical lines and given by f € F,[z,y] of
degree n, and u € F,. Then #C({u}) can be computed with O(M(n)log(ng))

arithmetic operations in [, .

3. Counting with random elements

Throughout this section, C is a plane curve without vertical lines. We extend
our notions C(5), R;(S), ri(S5) to a sequence S = (s1,...,s;) of elements of
F, in the obvious way; e.g., we set #C(S5) = Elgigh #C({s:}). In particular,
when S is a sequence of random elements of F,, #C(5) and r;(.5) are random
variables. We state our algorithms in this Section for a sequence of h random
elements, because for a computer implementation such a sequence is slightly
more natural than a random subset of size h; the results also hold for such a
random subset.

The following bound on the difference between a sample mean and the true
expected value is a direct consequence of the general result of Karp et al. (1989)
(see also Theorem 7.2 of von zur Gathen et al. 1996), and the trivial bounds
#C <ngand rr <q.
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LEMMA 3.1. Let S be a sequence of h independently and uniformly distributed
random elements of F,, 0 < i < n, and § > 0. Then the following hold with
probability at least 1 — §:

[#C — q#C(S)h™'| < (2n(n + 1)g#C log(2n/5)h_1)

1/2

< nq(2(n+1)log(2n/8)h)"?,

1/2

I — qri(S)A™| < 2 (qrilog(2/8)h™1)"? < 2 (log(2/6)h™") 2.
ALGORITHM 3.2. Components.

Input: f € F,[z,y] of degree n, and & > 0.

Output: An estimate of the number of absolutely irreducible components of

C ={f =0} defined over F,.

1. Set h = [72n*(n + 1) log(2n/d)].

2. Choose a sequence S of h random independently uniformly distributed
elements of F,.

3. Compute #C(S).
4. Return the nearest integer to #C(S)/h.

THEOREM 3.3. Assume that q¢ > 36n*. Then the probabilistic algorithm
above outputs the number o of absolutely irreducible components correctly
with probability at least 1 — §. It uses O(n®log(n/d)) random elements and
O(n*M(n)log(n/d)log(ng)) arithmetic operations in F,.

Proor. The cost bound follows from Lemma 2.5, and Lemmas 2.1 and 3.1
show that

1/2
lo — #C(S)h7Y < n?¢7V 40 (Q(n + 1)10g(2n/5)h_1> <1/6+1/6=1/3

with probability at least 1 —4§. 2

We call a curve C over E, exceptional (over F,) if and only if none of the
irreducible components of C defined over F, is absolutely irreducible. In par-
ticular, a plane curve C = {f = 0} with f € F,[z,y] is exceptional if and only
if none of the irreducible factors of f over F, is absolutely irreducible. This
notion plays a central role in the study of permutation polynomials: g € F,[z]
is a permutation polynomial if and only if (g(z) — ¢(y))/(z — y) is exceptional
provided that ¢ > 16(deg ¢g)* (Cohen 1970, von zur Gathen 1991).
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ALGORITHM 3.4. Exceptional test.
Input: f € F,[z,y] of degree n, and é§ > 0.
Output: YES if f is exceptional, and NO otherwise.

1. Set h = [16n(n + 1)log(2n/d)].

2. Choose a sequence S of h random independently uniformly distributed
elements of .

3. Compute #C(S).
4. If #C(S) < n?/4 then return YES else return NO.

THEOREM 3.5. Assurne that q > 4n*. If f is exceptional, the algorithm
answers correctly. If f is not exceptional, the algorithm answers correctly
with probability at least 1 — §. It uses O(n*log(n/d)) random elements and
O(n*M(n)log(n/d)log(ng)) arithmetic operations in F,.

PROOF. Let o be the required number of components. If ¢ = 0, then #C <
d?/4; see Lemma 5.2 (ii) of von zur Gathen et al. (1996) for example. Thus
the algorithm answers correctly in this case. It is sufficient to estimate the
probability that #C(S) < n* when ¢ > 1. From Lemma 2.1 we get

#C > q—n?q"? > q/2.

Assuming that 6 < 1, Lemma 3.1 implies that with probability at least 1—4§
we have
h#C

#C(S) > e g (2n(n 4 1)g#Clog(2n/6)h™")

h#C KRRV hitr Ly _ b o
ClGe ) zs(-@r) =g 2

ALGORITHM 3.6.

Input: f € E,[z,y] of degree n, and § > 0.

Output: YES if C = {f = 0} has exactly one absolutely irreducible component
defined over I,, and NO otherwise.

1/2

v

1. Return NO if f is exceptional, using Exceptional Test with input (f,d/2).
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2. Set h = [90n(n + 1)log(4n/d)].

3. Choose a sequence S of h random independent uniformly distributed
elements of .

4. Compute #C(S).

5. If#C(S) < 17h/12 then return YES else return NO.
THEOREM 3.7. Let ¢ > 16n*. With probability at least 1 — ¢, the algorithm
decides correctly whether C has exactly one absolutely irreducible component

defined over F,. It uses O(n*log(n/d)) random elements and O(n*M(n)log(n/J)

log(nq)) arithmetic operations in .

PROOF. Let o be the number of components. The cost estimate follows
from Lemma 2.5. We may assume that ¢ > 1, and have to bound the error
probability. If o = 1, then we get from Lemma 2.1 that

#C < g+ n*q'? < 5q/4,
and from Lemma 3.1 that
h 1/2
#C(S) < h#tClq+ a(Qn(n + 1)q#C]og(4n/5)h_]>

5h h( 5 )1/2: 17h

< - _
445 12

- 4
with probability at least 1 — §/2. Otherwise,
Tq/4 < 2q —nq'? <HC < 2q+n?¢'? < 9q/4,

and with probability at least 1 — /2

h#C h 1/2
so(s) > M —(zn(n +1)g#C - 10g(4n/5)h_1>
q q
h ( 1/2 —2V5)h 17h
> 7__h.(_9 ) :(35 \/g) > 7. 2
4 445 20 12
Our next algorithm computes the rational numbers Ay, ..., A,. In view of
(2.3), this is equivalent to calculating oy,...,0,, up to a triangular system of

linear equations; we do not know a direct easy way to compute these o;’s.
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ALGORITHM 3.8.
Input: f € F,[z,y] of degree n, and § > 0.
Output: The parameters Ao, ..., A, of C = {f = 0} as defined in (2.3).

1. Set h = [144(n!)*log(2/4)].

2. Choose a sequence S of h random independently uniformly distributed
elements of .

3. Forv=1,...,n do steps 4, 5, 6.
4. Compute r;i(S).
5. Compute the nearest integer A; to nlr;(S)/h.

6. Return A;/n!.

THEOREM 3.9. If ¢ > 144n*"(n!)?, then the above algorithm computes the

parameters Ao, ..., A, of C = {f =0} correctly with probability at least 1 — 4.
It uses O((n!)?log(6™")) random elements, and O((n!)*M(n)log(6=")log(nq))

arithmetic operations in .

Proor. From Lemmas 2.3 and 3.1, we find that with probability at least
J)

X — r(S)ATY < 2mPgT? 4 2(10g(2/5)h_1)1/2 < 1/6n!+1/6n! < 1/3n!,

and in this case the output is correct. The cost estimate follows from Lemma

2.5.2

Let us now consider the special case of testing if Ay = 0. For a curve of
the form f =y — g(z) with ¢g € F,[z], the condition Ay = 0 implies ry = 0 (at
least for ¢ large enough), i.e., that h is a permutation polynomial (see von zur

Gathen 1991 for details).
ALGORITHM 3.10.

Input: f € E,[z,y] of degree n, and § > 0.
Output: YES if A\ =0 for C = {f = 0}, else NO.

1. Set h = [256(n!)*log(2/0)].
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2. Choose a sequence S of h random independently uniformly distributed
elements of F,.

3. Compute #C(S).
4. Return YES if #C(S) < h/4n!, else NO.

THEOREM 3.11. If ¢ > 256n*"(n!)?, then the output of the above algorithm is
correct with probability at least 1 — §. It uses O(n!log(é~')) random elements
and O(n!M(n)log(671)log(ngq)) arithmetic operations in F,.

Proovr. The cost estimate follows from Lemma 2.5. To bound the error
probability, we have from Lemma 2.3 that

Xog — q/8n! < Xog — 202 qM? <k < Nog + 2077¢M 2 < Nog + q/8n.
If A\yp = 0, then we find from Lemma 3.1 that with probability at least 1 — ¢
ro(S) < hrtJq+ 2(hlog(2/8))* < h/8n! + h/8n! = h/4n!.

Now suppose that Ag # 0. Then |X\o| > 1/n!. Furthermore, Ay < 0 would imply
that 0 < rj < —¢/n! 4 q/8n! < 0. Thus Ao > 1/n!, and with probability at
least 1 — ¢

ro(S) > hriJq — 2(hlog(2/8))* > Th/8n! — h/Sn! = 3h/4nl. 2

4. Counting in additive strips

In this section, we continue to study properties of curves in ‘additive strips’.
Our main tool is Bombieri’s (1966) bound on exponential sums along a curve.
For integers a and h, we denote by A(a, h) the interval

Afa,h) = {(a+ ) mod pi0 < j < b} CE,
where p = charF,, and for a curve C C ]F;m"'l, we write
Clah) = C(A(, ), rifa,h) = ri(Ala, ),
M(a,h) = M(A(a,h)), tila,h) = ti(A(a, h)).
It follows from Lemma 2.1 of von zur Gathen et al. (1996) that if z is not a

constant along any absolutely irreducible component of C and n = deg C, then
for any integers a and h < p

#C(a, k) — h#C/p| < 2% log p. (4.1)

Let K be an algebraic closure of F,. We will repeatedly use the following
assumption on a curve C C Ezm"'l, which arises in Bombieri’s work:
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HypPOTHESIS A. For every absolutely irreducible component D of C and every

rational function g on K™z is different from g* —g on D, where p = charF,.

In general, given the equations for C, it seems not easy to check whether C
satisfies hypothesis A or not. If 1 = ¢? — g = Huer(g — u), then each g — u
has the same poles as x, and in particular the degree of the pole divisor of z is

divisible by p. Thus
degC <p = C( satisfies hypothesis A; (4.2)

see also Lemma 4 of Bombieri & Davenport (1966).
Below we show that for the parameter #C‘S(S) a slightly stronger result
than (4.1) holds for an arbitrary set S C [F,.

LEMMA 4.1. Let C = qu+1 be a curve without vertical components and of
degree n satisfying hypothesis A, S C K, and h = #5. Then

#CO(S) — *HC g < 2n*hq'/”.

Proor. Let x be a nontrivial additive character of F,. Then

#C*(S Z Do > x(Ma—u+tv)=h#C/q+t]q,

ab €C uweS AeR,

where a € F;, and b € F™ in the sum, and

= Z Z x(Xa) Z X(Au —v)).

AeFX (a,b)eC u,vES

The bound of Bombieri (1966), Theorem 6, implies that for A € F,

DIETe

(a,b)€C

< (n* —n)q V2 4 n? < on?q'/?

Therefore

t < 2n? I/Z‘Z Z u—v ‘

AEFX u ZWES

= QanI/Q‘Z Z (u—wv))—h?|.

u,vES A€,
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Since the inner sum equals 0 when u # v and g otherwise, we get
1< 2n2hq3/2. 2

Note that this lemma is non-trivial for sets of cardinality h > 2n2¢'/2, while

the above mentioned result from von zur Gathen el al. (1996) works only in
case of a prime field F, = F, and needs h > 2n%p'/?log p.
For w € F, and S C [, we denote by 5, the w-shift of S:

Sw={w+u:ueS}

The following lemma shows that ¢#C(5,)/h is a good approximation to #C
for almost all w-shifts of any set S C F, with #5 > n°.

LEmMA 4.2, Let C C ]F:}m‘H be a curve without vertical components and of
degree n satisfying hypothesis A, w € F,, S CF,, h = #5, and

= - Z (#C(S.) — h#C/q)".
u/EF
Then s < 4n*h, and if ¢ > n?, then s < n*h.

PrOOF. Let x be a nontrivial additive character on F,. We have, as in the
proof of the previous lemma,

#C(Sy) — h#C/q = — Z > x(a) ) x(=Aw + u))

/\eFX (a,b)eC u€S

where a € [, and b € qu. Hence

D I#C(Sw) — h#Clq* = tq7?,

wEFy,
where
2
D 51D olD ST} st
wely AR} (a,b)€C u€S
= > S xva = daan) Y x(=Arun + Ayu)
A Az el (a1,b1),(az2,b2)€C uy,ux €S

: Z X(w(=A1 + Ag)).

weFy
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Since the last sum equals 0 when A\ # A, and ¢ otherwise, we find from

Theorem 6 of Bombieri (1966) that

t = qz Z X(A(ar — ay)) Z X(A(—ur + uz))

/\qu>< (“1751)7(<l2,bz)EC uy,uz€S
2
-1 Z ‘ Z X(/\a)‘ Z X(A(—u1 + ug))
AER (a,b)eC uy,uz €S
< (P =ma' )’ Y Y (M — wa))
AEFX u1,uz €S
< Mug — ug)) — hQ‘_

AEFq uU,U2 GS

We can replace 4 by 1if n? < ¢g. The sum is zero when u; # uy and q otherwise,
so that
t < 4n'q*(gh — h*) < 4n'hqg®. 2

COROLLARY 4.3. Let C C qu‘H be a curve without vertical components and

of degree n satisfying hypothesis A, 6 >0, S CF,, and h = #5. Then
HC(S,) — hClq| < 25712212

holds with probability at least 1 — ¢ for random a € ;.

LEMMA 4.4. Let p be a prime, C C IF;DQ be a plane curve without vertical lines
of degree n satislying hypothesis A, 0 <1 < n, p > n", and a,h € N with
h < p. Then

ti(a,h) — B*r7[p| < 3n*hp'/?,
ri(a,h) — hrf/pl < 3n%"p'*logp.

PrOOF. For 1 < k < n, we have degC, < n* < p, and thus C; satisfies
hypothesis A, by (4.2). Lemma 4.1 implies that

[#Ci(a, h) — K*4Ci/p| < 20**hp!/2.

Let 0 < < n. From Lemma 2.2, we have

[#Ci(a, h) — h*3#Ci/pl
[ti(a, h) = 7 /p| <
DN
o2kl /2 2
g Z Goar S :zn?“hpl/?—f R e

n_
1<k<n
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Using (4.1), the second bound follows in a similar way. 2
We next show that for “almost all” @ a much stronger bound than the

second estimate in Lemma 4.4 holds.

LEMMA 4.5. Let p > n™ be a prime, C C Il?;)2 a plane curve without vertical
lines and of degree n, 0 <1 < n, and h < p. Then

! Z (ri(a,h) — hrj-‘/p)2 < 8n*"h.
P

0<a<p

PROOF. For 0 < k < n, we have degCp < n* < p, and Cj, satisfies hypothesis
A by (4.2). Using Lemma 4.2, we find

S it k) et/ < (2 <#ck<a,(z>—h'#ck/p>)2

! —1)!
0<a<p 0<a<p <k<n )

< Z Z (#Cx(a, k) — h#-Cr/p)*

i<k<n 0<a<p

COROLLARY 4.6. Let p > n" be a prime, C C IF;DQ a plane curve without vertical
lines and of degree n, 0 < 6 < 1, and h < p. Then

[ri(a, k) = hrf [p] < n*"(8hé~1)/2
holds with probability at least 1 — ¢ for a random element a € F,.

It was proved in von zur Gathen et al. (1996) that for a plane curve C C Fp2
of degree n, one can find the number of absolute irreducible components with
O(n*M(n)p'/?log”® p) arithmetic operations in F,. A similar result is true for r;,
namely, one can find the parameters ; as in (2.3) with O(n!n?*M(n)p'/? log” p)
arithmetic operations in F,. Indeed, choose

h = HSn!nQ”p]/2 log p].
Setting A; = \;n! € Z, we find from Lemmas 4.4 and 2.3
In!r;(0,R)R™" — A;] < R ri(0,R) — hefp” |+ nlpT et — Ap

n!h=' - 32 p  logp + nlp~' - 202" p!/?

<
< 1/6+1/6 = 1/3,
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if p > 144n*(n!)®.. Thus we may determine A; as the nearest integer to
nlr;(0,h)R™1.

Below we show how to improve this method and partially generalize it to
the case of arbitrary finite fields.

ALGORITHM 4.7. Deterministic Components.

Input: f € F,[z,y] of degree n < q'/*/4, and a basis wy,...,w; of F, over E,,
where p = char F, and ¢ = p*.

Output: The number of absolutely irreducible components of C = {f = 0}
defined over .

1. Set H = [12n%¢"/?].
2. Compute integers [, hg, and h such that

PN S H<p, (ho—1)p7TN S H < hop'™',  h=min{(p—1)/2, ho}.

3. Set
S={awr + ...+ aquwpar,...,ai—1 € E,, a; € A0, h)}.

4. Compute M(S).
5. Return the nearest integer to M(S)/#S>.

THEOREM 4.8. Let g > 256n*, and C C IF:IQ be a plane curve without vertical
lines and of degree n satistying Hypothesis A. The above deterministic algo-
rithm correctly computes the number of absolutely irreducible components of
C. It uses O(n®’M(n)q'/?log q) arithmetic operations in F,.

PROOF.  Since H < 8n%¢"? + 1 < 16n%¢"/? < ¢, we have | < k. Using
§: 5% = F,, and that [ > 1, hg > 2, we find

H/2 < #5 < #6(5%) <245 < 4H,
and for any a = a1w; + ... + qu; € 5(52), with —h < a; < h, the number
#67({a}) of (ui,us) € S* with a = uy — uy is equal to pl_l(h — |er]). Using
Lemma 2.5, one can compute M(S) in O(M(n)#Slog ¢) or O(n*M(n)q¢'/?log q)

arithmetic operations in F,. From Lemmas 2.1, and 4.1, we get

o = M(S)/#5°] o = #C/ql + 1#C/q — M(S)/#5]

<
< PV ot P #S < 1/164+1/3 = 19/48. 2
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ALGORITHM 4.9. Components.

Input: A curve C C IF;z without vertical lines, given by f € E,[z,y] of degree n
satisfying hypothesis A, and § > 0.

Output: An estimate of the number of absolutely irreducible components of C

defined over ;.

1. Set H = [2886~*n*].

2. Determine the set S C F, as in Algorithm 4.7.
3. Choose a € F, at random.

4. Compute #C(S,).

5. Return the nearest integer to #C(S,)/#S*.

THEOREM 4.10. If ¢ > 36n*, then the above probabilistic algorithm computes
the number of absolutely irreducible components of C correctly with probability
at least 1 — §. It uses one random element and O(n*M(n)é~?log q) arithmetic
operations in [F,.

PROOF.  The cost estimate follows from the fact that #C(S,) can be com-
puted in O(M(n)#5S -log q) or O(6~*n*M(n)log ¢) arithmetic operations in F,.
Corollary 4.3 implies that

#C(Sa) — #S - #C/q| < 207 n?(#8)1/?

with probability at least 1 —§. From Lemma 2.1 we obtain

o = #C(Sa)[#S] < o —#C/ql+ |#C/q — #C(5.)/#5]
< nPgVP 25 WA (#S)T? < 1/641/6 = 1/3.

with probability at least 1 —4§. 2

ALGORITHM 4.11. Parameters J;.

Input: A curveC C IF;Q without vertical lines and given by f € F,[z,y] of degree
n, and 6 > 0.

Output: The parameters A; for 0 <1 < n.

1. Set h = [12ln?"p!/2].
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2. For 0 < i < n, compute t;(0, h).

3. For 0 < i < n, let A; be the nearest integer to ¢;(0,h)n!/h*, and return

THEOREM 4.12. Let p > 576(n!)*n*" be a prime. Then the above determin-
istic algorithm computes \; for 0 < i < n. It uses O(n!n*M(n)p'/?log p)
arithmetic operations in [,.

Proor. Set S = A(0,h), and let 0 < < n. It follows from Lemmas 2.3 and
4.4 that

[Ai = (0, h)/R*| <N = r[pl 4 [r7/p = (0, h) /7]
< 2n2np—1/2 _|_3n2np1/2h—1
< 1/24n!' 4 1/4n! = 7/(24n!).

Thus the algorithm works correctly. Since 12n!n?"p'/? < p/2, we have h <
(p+1)/2, and for —h < a < h the number of uj,uy; € N with a = u; — uy
and 0 < wy,uy < h is equal to h — |a|. Using this fact and Lemma 2.5, one
can compute #;(0,h) in O(M(n)hlogp) or O(n!n*M(n)p'/?logq) arithmetic
operations in F,. 2

ALGORITHM 4.13. Parameters \;.

Input: A curveC C FqZ without vertical lines and given by f € F,[z,y] of degree
n, and 6 > 0.

Output: An estimate of the parameters \; for 0 <1 < n.

1. Set h = [288(n!)*n*"6~1].
2. Choose a € F, at random.

3. For 0 < ¢ < n, compute ri(a,h), determine the nearest integer A; to

nlri(a, h)/h, and return \; = A;/n!.

THEOREM 4.14. Let p > 144(n!)*n*" be a prime, C C IF;)Q a plane curve of
degree n without vertical lines, and 6 > 0. The above probabilistic algorithm
computes A; for 0 <1 < n correctly with probability at least 1 — d. It uses one
random element and O((n!)*n**M(n)d~" log p) arithmetic operations in F,,.
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PROOF. The algorithm uses O(M(n)hlogp) or O((n!)*n*"M(n)dé~"log p)
arithmetic operations in F,. Let 0 < : < n. It follows from Corollary 4.6
that

[ri(a, h) — hr} /p] < n®"(8hd™H)"/?

with probability at least 1 — 4. If this inequality holds, we find from Lemma
2.3 that

|Ai = ri(a, h)/h| \Xi =7 /pl + |7 /p —ri(a, k) /R
2?1/ 4 0?0 (8/h6)1/?

1/6n! +1/6n! =1/3nl

VAN VANVAN

Then A\; = A;/n!is the correct answer. 2

5. Distribution of points in multiplicative strips

In the previous sections we did not succeed in computing the projection distri-
bution parameters r; in an arbitrary finite field, as we have to know the behavior
of z along absolutely irreducible components of the fibre product curves Cy. In-
stead of ‘additive strips’, we consider in this section ‘multiplicative strips’ that
may help us in some cases.

Our main tool is Perel'muter’s (1969) bound on multiplicative character
sums along an algebraic curve, rather than Bombieri’s (1966) bound used be-
fore.

For A € FX and integers a and h, we denote by M(A, a, k) the ‘multiplicative
interval’

M(Xa,h) ={\**1 <t <h} CFr,

and given a curve C C ™!, we let
C(A,a,h) =C(M(X, a,h)).

We prove some analogues of Lemma 2.1 of von zur Gathen et al. (1996) and
Lemma 4.2 of this paper.

The following condition on a curve C C F™*! is used in Perel’'muter’s The-
orem.
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HyproTHESIS B. The first coordinate function x is not a power ¢° of a rational
function g on any absolutely irreducible component of C, where g is defined over
an algebraic closure of F;, and e > 2 is an integer.

THEOREM 5.1. Let C C E™ be a curve of degree n without vertical compo-
nents and satisfying hypothesis B, A € F be of order 7, and a and h < 7 be
integers. Then

[#C(X, a, h) — h#C/q| < 2n°q'*log q.

Proor. Let 8 € F, be a primitive element such that A = fla=1)/7,
Denote by indu the index of u € F in base 0, i.e., the smallest nonnegative
integer ¢ with u = 6, so that

ind(\**") = (¢ — 1)(a + )77 mod (g — 1).

Then

#C(A,a,h) = Z Z Z eXp(Qms (indu — (¢ — 1)(a + t)T_1)>

— 1 —1
4q uv EC 1<t<h 0<s<g—-2 q

= Z Z Xs(u) Z exp(—2mis(a+t)/7),

0<s<q 2 (uw)€C 1<t<h

where v € F; and v € F™ in the sums. For 0 < s < ¢—2, define a multiplicative
character y; on F, by

Xs(u) = exp[2misindu/(q — 1)],

for u € Y, and set x5(0) = 0. Separating the term corresponding to s = 0 we
get

h
#C(Nah) = 1(#6 )
1 . 5.1
+j Z Z Z exp(—2mis(a +1)/7), (5:1)
q 1<s<9-2 (u,w)€eC 1<t<h
where
E = l=#(CNn{z=0})<n
(0,w)ec

by Bézout’s Theorem. Theorem 2 of Perel'muter (1969) implies that for any s

< (n2 — 3n)q1/2 + n?.
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Since h < g — 1, we have

[#C(A,a,h) — h#C/(q — 1)

h 2 1/2 2
< q_nl n (n Z%qn)_q1 +n Z ‘ Z exp(2mis(a +1)/7)
1<s<g-2 1<t<h

(n2 — 3n)q1/2 + n? ‘ .
< E g —2mist
< n+ = exp( mLS /T)

1<s<7 1<t<h

Using the following well-known inequality

Z ‘ Z exp(2mist/7)

1<s<r 1<t<h

< 7logr,

we get
HO( a,h) = h#C/(g — 1)] < n + ((n* = 3n)g"2 4+ n?) log 7.

Taking into account that #C < nq and thus

RAEC  h#C| _ h#C (52)
q—1 q glg—1) = '

finally we obtain

|#C(X,a,h) —h#C/q] < n+n+((n2—3n)q1/2—|—n2)logr
< 2n+ ((n2 — 3n)q1/2 + n2) log 7
< 2n2g'/? log g. 2

THEOREM 5.2. Let C C F™ be a curve without vertical components and of
degree n > 2 satisfying hypothesis B, A € ) be of order 7, and h < 7. Then

3" (#CO\a,h) — h#C/q)* < 8n'qh.

0<a<g—-2

PrOOF. Using the notation of the previous proof, we have

#C HC—FE| |—#C
q  q-1 ‘:‘ q
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Y (#C(Aa,h) - h#C/q)?

0<a<g—-2

<2 Y [#cOah) 7(#6_1@)}2” 3 {h#c—h(#c_mﬂ?

0<a<g-2 q—1 0<a<g—2 7 q—1
< 2W 4 2n%R* /(g — 1),

where
wo= Y [#eOan) - WF
0<a<g-2
= (¢—=1) Z ‘ Z Z Z exp(2mis(a+t)/7) 2,
0<a<q—2 1<s<5q9-2 (u,v)eC 1<t<h

by (5.1). Using |a|?* = aa for a € C, we have

W= (¢-1)77 Y D e (w)xs(uz)

1<51,52<9=2 (uq,v1),(uz,v2)EC

Z exp(2mi(sity — sat2)/7) Z exp(2mia(sy — s2)/7).

lsfl,tgsh OSaSq—Z

Noting that the inner sum equals 0 when s; # s5 and g — 1 otherwise, we get

W= (¢-D)7 > > wlung') Y exp(2ris(t —1)/7)

1<5<59—=2 (u1,v1),(u2,v2)€C 1<t1,t2<h
2
= (¢—1) Z ‘ Z Xs(u ‘ ‘Z exp(2mist/T)
1<s<q=2 (u,w)eC 1<t<h

Theorem 2 of Perel'muter (1969) yields

2 1/2 2)2 9

qg—1
1<s<q—-2 1<t<h

Taking into account the equality

‘ Z exp( 27rzst/7' Z Z exp(2mis(ty —12)/7) = h(qg—1),

0<5<g—2 1<t<h 1<ty,t2<h 0<s<g—2

we obtain

w < (02 =3n)g'/2 + n?)"
qg—1

+(h(g—1) = h?),
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" (#HC(Nah) = h#C/q)* < 20202 (g — 1) +2((n* — 3n)q"/? + n?)*h

0<a<g—2

< 2n2h(1 + ((n — 3)q1/2 + n)2) < 2n2h(nq1/2 + n)2 < 8n'hg. )

We now show that hypothesis B is not a severe restriction, in that it is
satisfied after a generic linear transformation. This is most naturally shown for
a projective curve over an algebraically closed field K.

So let X C Pt be a reduced curve of degree n, possibly reducible or
singular, H = P/*" the space of hyperplanes in Pt and for H € H, let
[ be the rational linear function whose zero set is H. We say that H € H
intersects X transversally if and only if #(X NH) = n. The following facts are

well known.

Fact 5.3. Let X be as above, and ‘H € H.
(i) If no component of X is contained in ‘H, then #(X NH) < n.

(ii) If H does not contain a tangent line to X' or a singular point of X', then
‘H intersects X transversally.

(iii) There is a proper closed subvariety E C H of degree at most n(n — 1)
such that H intersects X transversally it H € H \ E.

(iv) if H intersects X transversally, then ly is not a power g° of a rational
function g on any absolutely irreducible component of X', with e > 2.

For a plane curve, (iii) follows from, e.g., Proposition 5.2.2 of Brieskorn &
Knoérrer (1986).

For a curve C C [qu"'l, Fact 5.3 implies that almost all linear transforma-
tions of C satisfy hypothesis B. We only make this explicit for m = 1. We need
the fact that there exist a line (over K) through the origin which is not a tan-
gent to C; this is true for all curves except the “strange” conic in characteristic

two (see Hartshorne 1977, Theorem IV.3.9).

ProrosiTION 5.4. Let f € F, [z, y] be squarefree of degree n, with either n # 2
or char[F, # 2, and for o € F,, let

Co ={f(z,y+ azx) =0} = {(a,b) EIF;2:f(a,b+aa) =0}.

Then there exists E C F, with #F < n(n — 1) and such that C, satisfies
hypothesis B for all a € F, \ E.
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In order to design algorithms from the above results, we have to construct
wide enough multiplicative strips or, equivalently, to find elements A € F; of
sufficiently large order (von zur Gathen & Shparlinski 1995b); certainly a prim-
itive root is sufficient. Results about the construction, distribution and density
of primitive roots can be found in Lidl & Niederreiter (1983); see Shparlinski
(1992b) for a survey and also von zur Gathen & Giesbrecht (1990), Perel'muter
& Shparlinski (1990), Shoup (1992), Shparlinski (1992a) for the currently best

results in this area.
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