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Abstract. Using the result of Heintz and Sieveking [1], we show that the polynomials
Li<j<d 57X’ with b positive real different from one, and Y1<jeql X" with r rational not integer,
are hard to compute.

We use the following variant of the main result of Heintz and Sieveking [1]:
Letf=%, <4 b X" e C[X], ko asubfield of C such that all b; are algebraic over k,

and N the number of conjugates of (by, ..., bs) over kg (i.e. the size of the orbit of
(bi,...,bs)in C¢ under the action of the Galois group of C over ko).
Let g1,..., 8 €ko[Th, ..., T4] be polynomials of degree <M such that {x ¢ C*:
g1{x)=---=g,(x)=0}is finite and contains (b1, ..., bs). Then
- (_E)EL) 1/2
24 log(dM)

Here L(f)is the minimum number of nonscalar multiplications/divisions sufficient to
compute f over Cu {x} by a straight-line program. (So arbitrary preconditioning is
allowed.)

Application 1. Let b be positive real and different from one. Then

(,2,0x)=(550)

1sj<d log d

1/2

(Here u(d)= v(d) means that there is a positive constant ¢ such that u(d)=c - v(d)

- for large d. Roots of positive real numbers are understood to be positive real unless
-7 otherwise stated.)

Proof. Let ko= Q(b, exp(2mi/3), ..., exp(2wi/d)) = Q(b, exp(2wi/l)), where I=
lem(1,...,d), and let g; = T,’f—b forj=1,...,d. Then deg g; <d =: M. Moreover
K :=kob"?, ..., bl/d) is a Galois extension of k and the orbitsof (b, "2, ..., b"%)
under Gal(C/ko) and Gal(K/k,) are the same. Since only the identity element of
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Gal(K/ ko) fixes (b, . . . ,b"%), we have
N =size of orbit of (b, 5%, ..., 5"/*) under Gal(K/k,)
= #Gal(K/ko) =[K: ko).
Hence,

lOg[K: k()]> 12

bl/in'>2(
L<1 2 log d

=fj=d
We write [K: ko]l=[K: Q(b)]/[ko: Q(b)]. If b is transcendental, then [k,: Q(b)]=
[Qexp2mi/D)): Ql=@(]). If b is algebraic, then [ky: Q(b)] divides

[ko: Q] =(!) - [ko: Q(exp(2mwi/1))).

Since ¢ (1) has only prime divisors <14 and [ko: Qlexp(2mi/1)]<[Q(b): Q], which s
independent of d, we obtain that in either case

P/f[koi Q(b)]

for all primes p between 3d and d, provided d is sufficiently large.
On the other hand, we claim that

pllK:Q(b)]

for d sufficiently large and all primes p such that 3d <p =d. This claim implies

log(K: k0]210g< 11 p> =d
ld<p=d
by the Prime Number Theorem, and therefore Application 1.
To prove the claim it is sufficient to show

[Q("?): Q(b)]=p

for large primes p.

Let p be a prime and assume [Q(5'/"): Q(b)]<p. Then T? — b has a nontrivial
factor h e Q(b)[T]. Since T*~b=(T—¢"a) - (T~¢"'a) over C, where a =
b'?eR and { =exp(2wi/p), the constant term of 4 is of the form t'a™ with
l=m<p. Thus 'a™ € Q(b). Writing 1 =um + vp we get {"“a € Q(b), and therefore
a e Q(b), since a and b are real. If b is transcendental, this cannot happen. If b is
algebraic, consider the factorization (b)=¢q7i" -+ - q; of the fractional ideal (b),
where the g; are prime ideals in the ring O of integers of Q(b), and ¢; € Z\{0}. The
corresponding factorization of (a) yields that p divides every ¢;. For large p this
cannot happen unless r = 0. In this case @ and b are units of . By Dirichlet’s unit
theorem, there is a unique representation b = i - vy - - - v’s, where u is a root of unity
in Q(b), {v1,..., v} is a set of fundamental units of Q(b), and fi,...,f.€Z. The
corresponding representation of a yields that p divides every f;. For large p this
cannot happen, unless all f; are zero. But then b = 1, which is excluded. This proves
the claim.
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Remark. We have stated Applicatioh 1 for positive roots of positive real b. Actually,
the proof goes through for any nonzero complex b not a root of unity and arbitrary
roots b/ If b is a root of unity, say b = exp(2mi/¢) for simplicity, the polynomial is
hard (see [1, Corollary 1]) if one takes b = exp(2wi/tj). However, for any such b
one can also choose the '/ in such a way that the polynomial becomes easy:

To any j we associate the unique natural numbers f, g such that f = ged(j, ') for
large [, 1<g<t, and g-(j/f)=1(mod ). We set b;= exp(2wig/ft). Then b=
exp(2wi/t)=b. If 1 has s different prime divisors, there are at most (logd) -t
possibilities for the f, g associated to the je {1, ..., d}. We splitup ) AP bX' into
subsums according to the value of f, g. Each subsum is a geometric sum and can be
computed in O(log d). Therefore L(¥;-, bX")=0((log d)*™).

Application 2. Let r€ Q\Z. Then

L( Y j'X") =d"?/logd.

1=<j=<d

Proof. Let r=s/t with se€Z, tcN relatively prime, p a prime divisor of ¢ {=
exp(2mi/p), ko =Q(¢{), and g; = Tij—j forj=1,...,d. Furthermore let qi,..., qm
be the prime numbers <d. Then

N = # conjugates of (17, 2",...,d") over kg
= # conjugates of (q1, ..., qm) over kg
= # conjugates of (A (qfn)”") over ko

=[kol(g)"", ..., (@h)""): ko).

The last equality follows as in the previous proof, since the extension is Galois. We
claim that for every | <m

(@11)"2 kol(g)"'"s ... (@D)"'").

Then we have N =2™ and therefore

L( 5 j'X’)?(m/?A log(dt))">= d"?/log d

l=sj=d

by the Prime Number Theorem. The claim follows from a general fact:

Letay, ..., a, a be positive rational numbers with av?ekolal’?, ..., al’?). Then
there are we Q, ey, ..., e, € N such that
a= wpa‘l’l Ce a?.

We prove this by induction on /. For [/ = 0, we have

[Q(a l/p): Q] = [k(): Q]: P 1.
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This implies, as in the previous proof, w:=a'/? € Q. Inductively, we may assume
a'’"ekolal’”, ..., alt)=K.
Put 6 =a}’", n=a'’®. Then K(9) is a Galois extension of K and1,0,...,6% is a

K-basis of K(8) forsome z<p—1.(Infact z=p—1.) Let
n=bo+b0+--+b,0°

with b; € K, and let o € Gal(K (6)/ K') with o(8) # 8. There exist natural numbers u, v
such that

o(0)=¢"¢ and (u,p)=1,
a(n)={"n.
Comparing coefficients of
o(m)=bo+bia(0)+- - -+b,0(8)°
=bo+b {0+ - -+ b,l"6°
and
o) =¢{n=bol"+b:{°6+ - +b,L6",

and observing that the *' are pairwise distinct, we find that there is exactly one / with
b; #0. Thus

(a/a))’?=m/6'=b;c K.
Using the induction hypothesis we conclude

[ [4
a/a;y=wat -+ a7y,

Remarks. (1) For reN we have L(Z,sdj'X’) =O(logd). To see this, put
fr=Yi<j<ai’X'. From f,=x-(d/dx)f,_; it follows inductively, that
fi=x g +h)/(x-1)"" with polynomials g and h of degree <r. Hence L(f,)=
O(log d).

(2) Since the highest complexity of polynomials of degree d has order 4'/?
(counting nonlinear operations only), the lower bounds of this paper cannot be much
improved. Of course, analogous results hold in the case where all operations are
counted. Slightly weaker bounds also follow from the method of Strassen [3] (taking
into account the improvement of Schnorr [2]). However, the method of Heintz-
Sieveking [1] is much more elegant.
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