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A homogeneous bivariate decomposition of a univariate polynomial f 1s of the form
f = g(h, k) with polynomials g, h, k, where ¢ is bivariate and homogeneous. Such
decompositions are of interest in robotics applications. This paper gives a Structure
Theorem relating these decompositions to certain block decompositions of the roots
of f, decomposition algorithms, and a classification of all constellations of degrees
for which “almost all” polynomials f have such a decomposition.

1. Introduction

Let F be a field, f € Flx] have degree n, and r,s,t € N. An (r, s,1)-decomposition of
fis a triple (g, h, k) consisting of polynomials h, k € Flx] of degrees s, t, respectively,
and g = Yocic, giy'z"~" € Fly, 2] such that

F=glh k)= 3 gh'k™".

0<e<r

A general form of polynomial decomposition is

fi:gi(hlv"'vhm)v (11)



with fi, hy, ... hy, € Flay, ..., 2] and ¢; € Flyy, ..., y,,] for 1 <7 < wu: an m-variate
decomposition of several [-variate polynomials. Our decompositions are the special
case of homogeneous bivariate decompositions of univariate polynomials, where u =
[ =1, m =2, and ¢ is homogeneous.

Our main results are:

o a Structure Theorem characterizing decompositions in terms of certain block
decompositions of the roots,

o a decomposition algorithm,

o a complete classification of those degrees where (almost) all f have a decom-
position.

The paper is organized as follows. In Section 2, we describe the applications
in robotics which provided the original motivation for this work. Section 3 defines
an operation on decompositions that leads to the notion of a normal decomposi-
tion; each homogeneous bivariate decomposition is equivalent to a normal one. In
Section 4, we give some rather simple examples of decompositions derived from fac-
torizations; later we show that this is the best one can do in general. We also exhibit
polynomials with exponentially many inequivalent decompositions.

Section 5 presents a case study for degree four; all homogeneous bivariate decom-
positions of quartic polynomials are found. In Section 6, we define block decomposi-
tions of the roots of f, generalizing a notion introduced by Kozen & Landau (1989).
A Structure Theorem characterizes those block decompositions which correspond
to homogeneous bivariate decompositions. An appropriate extension in Section 7 of
Capelli’s Theorem to our homogeneous bivariate decompositions is used in Section 8
to show that certain decompositions of f lead to factorizations of f; this is sort of
a converse to the examples of Section 4.

From the Structure Theorem, we obtain in Section 9 a “decomposition algo-
rithm” to find all homogeneous bivariate decompositions. It examines each block
decomposition of the roots, and has exponential running time. FExample 4.3 shows
that any procedure based on exhaustive search will suffer from this problem. If the
polynomial is irreducible of degree n, then there are only O(n!°¢"™) block decompo-
sitions, and the algorithm is correspondingly faster. In Section 10, we report on
implementations of our algorithms; they are considerably slower than algorithms for
ordinary decompositions of polynomials or rational functions.

In Section 4, we have exhibited normal (2, s, t)-decompositions for arbitrary poly-
nomials f, and in Section 5, we have studied these in detail for degree four. In
Section 11, a Classification Theorem states that the examples given cover all possi-
bilities for generic (r, s,t)-decompositions; in particular, we always have r = 2.

Section 12 relates our decompositions to a special type of decomposition of a
polynomial with rational functions.

Ordinary decompositions of the form f = g(h), with g,k € F[z], have several
pleasant properties described by Ritt’s theorems: (essential) uniqueness, and ratio-
nality: when a decomposition exists over an extension field, then one exists already



over the ground field. Both properties go awry for our homogeneous decomposi-
tions: in Section 4, we exhibit polynomials with exponentially many inequivalent
decompositions, and Section 5 shows that field extensions may be necessary.

For possible applications of homogeneous bivariate decompositions, this paper
has a mixed message. On the one hand, we present some interesting decompositions,
in particular in Section 5. On the other hand, we show that as a general tool,
homogeneous bivariate decompositions are not available except via factorizations, as
in Section 4; as a tool for specific polynomials, they seem to lead to very complicated
equations.

2. Applications to robotics

In this section, we demonstrate the usefulness of bivariate homogeneous decompo-
sitions in robotics. Paul (1981) explains the fundamental notions of robotics, and
much of this section is based on Kovacs & Hommel (1992). In fact, a question posed
by Peter Kovacs to the first author was a starting point for this investigation.

A non-degenerate manipulator with six joints—typical in industrial robots—is
described by six 4 x 4 arm matrices A; for 1 <1 <6, and its kinematic equations

AI‘AQ“‘AGZT.

T is the effector matrix, containing position and orientation of the effector. 12 of
these 16 equations are nontrivial. Each arm matriz A; is fully determined by a tuple
(0;,d;,a;,0;) of Denavit-Hartenberg parameters. For manipulators with only revo-
lute joints the angles 8, describe the joint displacements. The remaining Denavit-
Hartenberg parameters are structural constants of the manipulator. The kinematics
equations exhibit the functional dependence of the effector matrix on the angles 6,
explicitly. The inverse kinematics, that is the dependence of the angles 8; on the
effector matrix, is only implicitly given. In general, the equations are rather difficult
to solve.

A computational solution of the inverse kinematics problem may proceed in two
phases: a pre-processing phase, done in the design laboratory on large computers
and using considerable resources (time etc.), and a production phase, where a small
amount of computation must be carried out quickly (in a few microseconds) on the
processors installed in the robot.

Ideally, one would like to precompute a closed-form (or, at least an easy-to-
evaluate) solution for general (indeterminate) effector parameters, which then simple
processors in the robot have to evaluate. Often these processors cannot do more,
given the real-time constraint, than evaluate numerically a few square roots and



some arithmetic operations; even solving an polynomial equation of degree four
may be too costly.

A complementary approach proposed by Manocha (1992) and Ghazvini (1993)
uses high performance RISC processors for the production phase. The kinematic
equations are preprocessed to yield an eigenvalue problem. During the production
phase the symbolic matrix elements are numerically evaluated and the eigenval-
ues and eigenvectors of the resulting matrix are calculated by standard numerical
algorithms.

It we restrict ourselves to simple processors in the robots, the cost of solving
the kinematic equations is a limiting factor in the design of robots. Finding new
classes of equations that can be solved within the robotics constraints means—at
least potentially—that new types of robots can be designed.

Typically, the kinematic equations are triangulated into the form

fl(xl) = fZ(xlvxZ) == fn(xlv"'vxn) = 07

where fi,...,f, are polynomials with coefficients which depend on the effector
matrix. The parameters z; are related in a simple way to the original Denavit-
Hartenberg parameters 6;; for example, 2, = tan(3/2), etc.

In general, for manipulators with 6 revolute joints such a transformation is non-
trivial to find and would lead to a univariate polynomial f; of degree 16, with each
other f; being linear in z; (Lee & Liang 1988). So only robot designs are considered
for which such a transformation is known. In these cases f; is typically of degree
2 or 4, and for 1 > 2, f; gives a simple (linear or quadratic) dependence of x; on
the previous parameters z,...,z;_y. Obviously the existence of such a triangu-
lation with polynomial degrees < 4 places restrictive algebraic constraints on the
Denavit-Hartenberg parameters.

Then the “remaining” task is to find manipulators with triangulations containing
univariate polynomials f; such that their roots are easy to calculate, preferably just
by square root extractions. One is particularly interested in the case of quartic
polynomials, and then an ordinary decomposition

f:g(h)v (2'1)

with ¢, h quadratic, solves the problem. One only has to find the two roots ay, ay
of g, and then the two roots of h — «;, for each 7 € {1,2}.

We already noted that the coefficients of the polynomials depend on the effector
matrix. A successful “modular” approach is to substitute random constants for all
these parameters, solve the univariate problem, and “lift” this back to the multi-
variate problem. This tool for decompositions was introduced in von zur Gathen
(1990a), Section 5, and has found its way into robotics under the name of “special-
ized analysis technique” (see Kovacs & Hommel 1992).

Over the real or complex numbers only few polynomials f have an ordinary
decomposition (2.1). More generally, when F is a field of characteristic not equal to
two, then the set (in fact, algebraic variety) of decomposable quartic polynomials
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has dimension only three, but the space of all monic polynomials has dimension four.
Thus a random polynomial has a decomposition with negligible small probability,
and this approach is, in general, not applicable.

However, in Section 5 we prove that the quartic monic polynomials [ € Flx]
have, with few exceptions, a bivariate homogeneous decomposition

f=g(h,k), (2.2)

with ¢ and h quadratic and k linear. In the exceptional cases, such a decomposition
also exists, but with smaller degrees. The coefficients of the components lie in a field
extension K of T of degree at most three, and if F = R, then usually K = R. Just as
(2.1), this allows us to find the four roots of f by factoring ¢ as ¢ = (v —ayy)(x—ayy),
and then finding the two roots of h—a;k, for each ¢ € {1,2}. Thus thisis a universally
applicable tool for decomposing quartic polynomials.

For the inverse kinematics, this result allows us to replace the calculation of the
roots for one fourth degree polynomial by the calculation of the roots for one poly-
nomial of degree 3 and two polynomials of degree 2. The new polynomials depend
on the effector matrix. Therefore they have to be treated during the production
phase. So the problem is simplified but not reduced to square root extractions only.

This leads us to consider homogeneous bivariate decompositions f = ¢g(h, k)
where all components are defined over the ground field F. This is the more traditional
Computer Algebra point of view. Using the “modular” approach discussed above
a decomposition over the rationals may potentially be “lifted” back to the original
problem which depends on the effector parameters. This “lift” will not introduce
algebraic functions in these parameters. Though not a universal tool, it generalizes
the ordinary decomposition and makes additional classes of manipulators accessible
to algorithms relying on square root extractions only. Indeed, some subclasses have
already been discussed in the robotics literature, for example in Smith & Lipkin
(1990) and reciprocal polynomials in Mavroidis & Roth (1992).

Instead of constructing a triangulation with ordinary polynomials it may be
convenient to use trigonometric polynomials f(cos#,sin@). In this context the de-
composition of trigonometric polynomials becomes relevant.

f(cos 0,sin0) = g(h(cosh,sinf)) (mod (cos®f + sin*f — 1))

Though this decomposition may be reduced to the homogeneous bivariate decom-
position by introducing x = tan(8/2), there exists a direct, polynomial time decom-

position algorithm (Weifl 1994) based on the ideas of Kozen & Landau (1989) for

the decomposition of univariate polynomials.



3. Normalization

We want to classity all homogeneous decompositions of a polynomial which are
equivalent in a certain natural sense described below. Let F denote an arbitrary
field. First we define the topic of this paper.

DEFINITION 3.1. A homogeneous bivariate decomposition of a univariate polyno-
mial f € Flz] consists of a a homogeneous bivariate polynomial g € Fly, z] and two
univariate polynomials h, k € F[z|, such that

7= glh k). (3.1)

Ifdegg =r, degh = s, and deg k = t, then we call (g, h, k) an (r, s, t)-decomposition
of f.

Next we examine the conditions under which the left factor ¢ is uniquely de-
termined by the right factors h and k. We use the following observation, which is
probably well known.

LEMMA 3.2. Let h,k € F[x] be linearly independent over F. Then for every r € N,
the r+1 polynomials h™, h" "k, ..., k" are linearly independent over F. In particular,
given f € Flx| there is at most one g € Fly, z] with f = g(h, k).

PrOOF. Let gg,...,9, € F with
Y gih'k T =0,

0<i<r
Let g, b, k' € F[z] such that ¢ = ged(h, k), h = ¢h’, and k = ¢k’. Then ged(h', k') =1
and
S gk kKT = 0. (3.2)
0<i<r
By the linear independence, we may assume that degh’ > 0. Let p € F[a] be an
irreducible factor of A’. Then p divides all summands of (3.2) except gok”", which
implies g; = 0. The claim now follows inductively from

S gnh T h=0. O

0<i<r—1

Certain trivial decompositions always exist, as the following corollaries to Lemma
3.2 indicate.



COROLLARY 3.3. Let f € Flx]| have degree n, let hy, ky € F be distinct, h = x + hy,
and either k = 1 or k = x + ky. Then there exist unique gq,...,q, € F with

[ =0cicn gih' k"
PrOOF.  The polynomials & and k are linearly independent over F. The n + 1

polynomials A" A" 'k, ... k" form a basis of the (n + 1)-dimensional vector space
over F of polynomials in F[z] with degree at most n by Theorem 3.2. O

COROLLARY 3.4. For any n,s,t € N, every polynomial in F[z] of degree n has
(i) an (n,1,1)-decomposition and an (n,1,0)-decomposition, and
(ii) an (1,s,t)-decomposition if s > n.

The next two results allow us to relate different decompositions of a polynomial f.

LEMMA 3.5. Let (g,h, k) be an (r,s,t)-decomposition of f € F[x], u € F nonzero,
and A € GLy(F).

(i) The polynomial uf has the (r,s,t)-decomposition (ug, h, k).
(ii) (goA™, A(h,k))isa(r,s' t')-decomposition of f, with max{s’,t'} = max{s,}.

PRrOOF. (11) Let A = (Ai])lﬁiJSQ S GLQ(IF), and B=A"1= (Bi])1§i71§2 S GLQ(IF)
Then

(9 o B)(A(hv k)) = Q(Bnl' + By, Byx + Bzzy)(Anh + Ak, Aprh + Azzk)
=g(h, k)= f.

Denoting this operation of GL,(F) on the homogeneous bivariate decompositions by

A(g, h,k) = (go A™', A(h, k)), one checks that for any A, B € G'Ly(TF),
(B-A)g,h, k) = B(A(g, h, k). O

We use this operation of GCL,(F) to normalize homogeneous bivariate decompo-
sitions. By (i) we may restrict our considerations to monic polynomials f. From
each orbit of the operation of G'Ly(F) on the set of decompositions of f we choose
a unique representative in the following way: Firstly, we enforce degh > degk by
interchanging them if deg h < deg k, and if deg h = deg k, by subtracting an appro-
priate multiple of A from k. Secondly, we make h and k& monic. Thirdly, if £ # 0
and ¢ = deg k, we can enforce that the coefficient h, of 2" in A is zero, by subtracting
an appropriate multiple of k& from h. All this can be expressed by applying certain
matrices from G'Ly(F) to the decompositions.

As a consequence of Theorem 6.3 below, which links homogeneous bivariate
decompositions with certain block decompositions, for most monic polynomials the
operation of GGL,(F) on the set of decompositions divides this set into only a finite
number of orbits. The only exceptions are polynomials f which are the rth power
of a univariate polynomial ¢. Let us have a closer look at this degenerate case.



LEMMA 3.6. Suppose that f has an (r,s,t)-decomposition [ = g(h, k) with ¢ =
9o(g1y + 922)" € Fly, 2] and go, 91,9, € F. Then f = goq” with ¢ = g1h + g2k € Flx].

Thus we define equivalence classes on the set of decompositions of a polynomial
not only by the operation of GGL,(F), but by Lemma 3.6 also. Furthermore, we rule
out the trivial decompositions of Corollaries 3.3 and 3.4.

DEFINITION 3.7. A homogeneous (r, s,t)-decomposition (g, h,k) of f is normal if
and only if r;s > 2, f and h are monic, and either k is monic with s = degh >
t = degk and the coefficient h; of ' in h is 0, or k = 0. In the case that ¢ is the
scalar multiple of the rth power of a linear homogeneous polynomial, ¢ must be
9(y,z) = g.y" and k = 0. We call all decompositions equivalent, which reduce (as
above) to the same normal form.

4. Decompositions from factorizations

We exhibit two types of decompositions that correspond to factorizations in an
easy way and yield examples of exponentially many inequivalent decompositions.
They are polynomial analogues, tuned to our point of view, of the correspondence
between factorizations of integers and representations by z? —y? in elementary num-
ber theory.

EXAMPLE 4.1. So suppose that f € F[x] is monic of degree n and the product of
the monic polynomials f; and f, with s = deg f; > deg f, = n — s.

(i) If s # n/2, that isdeg f; > deg fy, then f = f, f; is an (2, s, n—s)-decomposition
with g, = g = 0.

(ii) If s=n/2, let h = fi, k= f,— fi and ¢, the leading coefficient of k. Setting
k= gk and g, = 1, we have

=gk + g1 hk.

This is an (2,n/2,t)-decomposition with t < n/2 — 1, and “in general” t =
n/2—1.

In both cases the conversion to the equivalent normal form preserves the type of the
decomposition.



We now demonstrate that all (2, s,?)-decompositions, not only those coming from
factorizations, can be brought into the form

[ =g:h* — gok*.

LEMMA 4.2. If char F # 2 and f € Flz] has a (2, s,t)-decomposition with t < s,
then it has a (2, s,t')-decomposition with ¢; = 0 and t' < s.

PROOF. Given [ = g,h* + g1 hk + gok?, we first assume that ¢, # 0, and set

> gk N g1
+5,, € [2], Go = —go + 0
Then )
[ = g2h* — Gok?.

If g, =0, then f =Fk-(g1h+ gok). Set h=gh+ (9o + 1)k and k=gh+ (g0 — 1)k.
Then

1s 1=
= —h?— —k%
/ 4 4
If s =1¢=n/2 we may have to swap h and k to satisfy ¢ < s. O

We now give an example of polynomials with exponentially many different normal
decompositions, using Example 4.1(ii).

THEOREM 4.3. For every even n € N with n > 4 there exists a field F and [ € Flx]
of degree n with (n72) many different normal (2,n/2,n/2 — 1)-decompositions.

Proor.  Let K be a field, A = {ay,...,qa,} a set of n indeterminates over K,
F=1K(A), and
f=1(-a)
a€A

For any B C A with #B = n/2, Example 4.1(ii) and Theorem 3.5 yield the following

normal (2,n/2,n/2 — 1)-decomposition:
[ =h*+ gihk + gok?,
where
B = A\B,
v = o(B)—o(B)eF,
v = o1(B)eeF,

g = v—2u€el,

g = —uv4u’eT,

ko= v—l-(H<x—a>—H<x—a>)ew‘[x],
a€eB! a€eB

h = J[(z—a)+uke Fal.

a€EB



Here 0,(B) = Y ,cp« is the first elementary symmetric function on B, and o(B’)
is defined correspondingly. In particular, oy(B) # o,(B’). The coefficient ¢(B) of
™?2in h is

o8) = (B B) = o (Bl B) )™

where o, denotes the second elementary symmetric function.

For every C' C A with #C =n/2 and C & {B, A\ B}, we claim that

e(B)—¢(C) #0. (4.1)
n72
generalization of Example 4.1(ii) which gives “in general” three decompositions for
n =4.

To check (4.1), we choose

This claim implies a total of at least 1(,",) different decompositions, and thus is a

aeBNC', peBNC,yeBNC,

and set all other indeterminates in A to zero. Then

o(B) = ¢(C)=apfy/(B+7—a)

is nonzero, which proves (4.1). O

Theorem 4.3 also holds for F = Q or F a sufficiently large finite field, since we
only need the product p of all polynomials in (4.1) for C' # B, A\ B to be nonzero
(after clearing all the denominators v). Since p is a nonzero polynomial of degree
d=4-%- (n72)2, this will hold with probability at least 1/2 when the elements of A

are randomly chosen from a set with 2d elements.

5. Decompositions for degree 4

In this section, we show that “almost all” polynomials of degree 4 have a normal
(2,2, 1)-decomposition, possibly over a field extension of degree at most 3, and that
the polynomials without such a decomposition have a normal (2,2, 0)-decomposition.
In general the results of the last section would direct us only to such decomposition
over extensions of degree 6.

Let F be a field, f = fo + fiz + fox? + fsa® + 2* € Flx]. We want to determine
for which ¢y, gg, ho, ko € F we have

f=h*+gihk + gok?, with h=ho+2* and k = ko + . (5.1)
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Let

Ay = 4f,fs—f3 —8fi €F,
A = (fofd =)+ (=8fofs +4f1fa— [1f5)z
+ (2fifs +16fo + fof 3 — 4f3)2* + Asz® € Fl2],
p = 256f, —16f2fs +5f5 €T,

and

A(ko) =0, g1 =[5, 9o = f2 — 2hg — f5ko,

5.2

ho = 2k — 20k — 1,)/(~ o + 1) (52)

A3 =0, g1,90 are as in (5.2), p is a square in F, 59
and hg = —f5 — \/p, (5.3)

g1, are as in (5:2), fy = 0, fo+ B3+ fuk3 =0, (5.4)

THEOREM 5.1.

(i) If 4ky # f5, then (5.1) is equivalent to (5.2).

(ii) If 4ky = f5 and char F # 2, then (5.1) is equivalent to (5.3).
(iii) If f3 = 0 and char F = 2, then (5.1) is equivalent to (5.4).

The proof is a calculation which is easily done on a computer algebra system like
MAPLE.

COROLLARY H.2.

(i) (5.1) has a solution if and only if there is a root ky of A in F with 4kq # f3 or

p is a square in F.

(ii) Let F =R. Then (5.1) has a solution if and only if A3 # 0 or p > 0.
If char F # 2, then A has the following Taylor expansion around f5/4:

A = —A3/64 4 (3f3/16 — fo/2)A5(2 — f3/4)
+ (4f3 s — 4SS5+ 1600 = 3f5 /4 — 4f3) (= — f3/4)?
—I‘ A3(Z — f3/4)3
In particular, A(f3/4) = 0 is equivalent to Az = 0.
Over the real numbers, there are “in general” either one or three solutions.
Not unexpectedly, the exceptional polynomials with A; = 0, for which over
R Theorem 5.1 does not always give an (2,2, 1)-decomposition, have an (2,2,0)-

decomposition, i.e., an ordinary decomposition with degrees 2,2. Let f € F[z] be as
above, go, g1, hy € F, and consider the three conditions

f=h*4gihk + gok*, h=2*4+hz, k=1, (5.5)

11



g0 = fo, 91:f2—h%7 fs—2hy =0, Az=0, (5-6)

go and ¢y are as in (5.6), f3=0, h{— foh;+ f1 =0. (5.7)

THEOREM 5.3.
(i) If char F # 2, then (5.5) holds if and only if (5.6) holds.
(ii) If char F = 2, then (5.5) holds if and only if (5.7) holds.

The proof is again a simple calculation.

For an arbitrary monic f € F[a] of degree 4, we can find a quadratic monic factor
g € Klz] of f in the splitting field K of F with [K : F] < 24. Example 4.1(ii) says
that f has a (2,2, 1)-decomposition over K. If the Galois group GG = Gal(K/F) is 5y,
then one can choose two different roots «, 5 € K of f, and f has a quadratic factor
over L = F(a+ 3, af3). Since o € (& leaves L invariant if and only if either o(a) = «,
o(f)=porola)=7,0(0)=a, we have #Gal(K/L) = 4 and [L : F] = 6.

One checks that also for G # Sy, there will be a quadratic factor of f in an
extension of degree at most 6, and for some polynomials, say over @, 6 is the
smallest such degree. Thus Example 4.1(ii) guarantees a (2,2, 1)-decomposition
over an extension of degree 6. In contrast, Theorems 5.1 and 5.3 provide a (2,2, 1)-
decomposition over an extension of degree at most 3. In particular, it shows that
Ritt’s Theorem on the rationality of ordinary decompositions does not hold for
homogeneous bivariate decompositions.

Although Theorem 11.3 below classifies all possible values of n, r, s, ¢ with generic
homogeneous bivariate decompositions, the above example shows that we have not
classified all such (individual) decompositions.
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6. A Structure Theorem

Kozen & Landau (1989) exhibit a bijection between ordinary decompositions
f = g(h) of a polynomial f € Flz]|, with g,k € Flz] and a special type of block
decompositions of the roots of f. We will examine the structure of block decompo-
sitions for polynomials with homogeneous decompositions. We will find that there
is a similar bijection between inequivalent homogeneous bivariate decompositions
of a polynomial and its block decompositions of a special type. This shows that
there are only finitely many inequivalent such decompositions, and we will obtain
an algorithm for the homogeneous bivariate decomposition of a polynomial. The
running time is exponential in general, and quasi-polynomial if the polynomial is
irreducible.

We denote by A = {ay,...,a,} the multiset with elements a4, ...,a,. We use
the usual set-theoretic notations also for multisets; the only difference is that an
element may occur several times in a multiset. (Formally, the set of multisets with
n elements from a set F'is the set F'™ of sequences modulo the action of the symmetric
group S,.)

The following definition of a block decomposition is a slightly generalized version
of the one given by Kozen and Landau.

DEFINITION 6.1. Let f € Flz] be monic, K O F the splitting field of f, and G the
Galois group of K over F. A block decomposition for f is a multiset A of multisets
of elements of K, such that

(i) [ =Tlaealloealz — a),
(ii) if A€ A and 0 € G, then B = {o(v)|y € A} is in A.
Ifr = #A and for all A € A, s = #A, then we call A an r x s-block decomposition.

We dismiss Kozen and Landau’s condition that for any a € A € A, € B € A and
o € G with o(a) = 3, we have

B={o()h e A}. (6.1)
The following example clarifies this. Let
f=(-1)(z-2)eQ] (6.2)

Then A = {{1,1},{1,2}} is a block decomposition for f by our definition. The
identity in G maps 1 € {1,1} to 1 € {1,2}, but does not map the block {1,1}
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to {1,2}. So A is not a block decomposition in the sense of Kozen and Landau.
In fact f has no nontrivial ordinary decomposition, but we will exhibit a (2,2, 1)-
decomposition below.

Let (g,h, k) be a normal (r,s,t)-decomposition of the monic polynomial f €
Flz]. Let p = degg(y,1) and g(y,2) = z°g(y/z,1). Thus g(y,z) = 2"g(y/z,1) =

Z"7Pg(y, z) has a factor z"~” and
[ = kg (h, B,
Let +4,...,7, be the roots of g(y,1) in a suitably chosen field extension of F. Then
9(y,2) = Tli<i<,(y — 7:2), and
f=87 I (b= k).

1<i<p
Let

A - {roots of h — vk} for 1 <i < p,
v {roots of k} for p <o <,

A = {A,... A}

We show that this partition A of the roots of f is actually a block decomposition
for f. Let G be the Galois group of the splitting field K of f over F, ¢ € G, and
A; € A. We will show that o(A4;) € A.

If p <i<r,then o(A;) = o({roots of k}) = {roots of o(k)}} = {roots of k} =
A; e A If1<z<pand%€IF then again o(A;) = A;.

So now assume that 1 < ¢ < p and v; € K\ F. Since A; = {roots of h — ~;k}
and o(A;) = {roots of h — o(;)k}, it is sufficient to find a j with 1 < j < p such
that o(v;) =, since then o(A;) = A, € A.

Let ¢ = ged(h, k) € Flx] and h = ¢h' and k = ¢k, so that A/, k' € Flx] are

relatively prime, and
h—xik = q(h" =k,
A; = {roots of ¢} U {roots of h' — ~;k'},
o(A;) = {roots of ¢} U {roots of b — a(7;)k'}.
Let a be a root of &' — v;k". Then a is a root of [Ti<4<, (A" — k") € Flz]. Thus

= o(a) is a root of the same polynomial, and there is a j with 1 < j < p such
that 3 is a root of A" — ~,;k". In particular, § € A;, and

Wk (B) = M(B)=o(h'(a))
= o(yik(@)) = o(%)K(B).
So v; = o(7;), provided that £'(8) # 0. But £'(4) = 0 implies 2'(#) = 0, which is
inconsistent with A’ and &’ being relatively prime.
In this way, we have obtained a block decomposition A from an (r, s,t)-decompo-

sition of f. This decomposition A consists of r blocks A; and satisfies the following
additional properties.

14



CONDITION 6.2. Let p = (deg f —rt)/(s —t). There are monic polynomials h,k €
Flz] with s = degh >t =degk and h, =0, and 7y, ...,7, € K such that

(i) for the r — p equal blocks A,q,..., A,
o #A;, =1,
o k=Tloes(r—a),
(ii) for the p blocks A;,..., A

P
o] #Az =S,
© h_’yik:HaeAi(x_Oé)‘

If deg f = rs, then p = r and all blocks contain s roots.

Given A = {A,..., A, }}, this condition may be checked constructively as follows.
Suppose that #A;, = s for 1 <i < pand #A; =1 for p < <r. Then if r # p, the

blocks A,41,..., A, must be equal and define k. For 1 <: < j < p, write
I[ (z—a)— I] (z = B) = 6k,
a€A; BEA;

with & € Flz] monic (and independent of ¢,7) and 6,; € K. If no such & and ¢,
exist, A does not satisty Condition 6.2. If all differences are 0, that is, all blocks are
equal, set £ = 0. Because both products are monic, t = degk < s. Then h and the
~; are determined by the Condition.

Next we will derive from a block decomposition of f satisfying Condition 6.2
a homogeneous decomposition of f. In the example (6.2), we gave a block de-
composition for f whose corresponding polynomials are b; = (@ — 1)(x — 1) and
by = (x — 1)(x — 2). Then b — by = x — 1 defines k, and h = 2* — 1. The block
polynomials are expressed as by = h — 2k and by, = h — 3k. Condition 6.2 is satisfied.
And with ¢(y,z) = (y — 22)(y — 3z) we get the decomposition

f=g(h k)= (2> —1)* =5(2* = 1)(x — 1) + 6(x — 1)*.

Now let A be a block decomposition for f € F[z] satisfying Condition 6.2, so
that f = [Taea [Taea(ez — a). Since

H(:L‘—oz):{ =ik forlsisop,
SEA, k forp<e <,

we have f = k""" [Ti<;<,(h—7ik). Let g(y,2) = 2" [li<ic,(y —7i2) € Fly, 2]. Then
f = g(h, k) is a normal decomposition. The coefficients of ¢ are in F, because by
Theorem 3.2 they are solutions to linear equations in F.

From these two constructions we obtain the following Structure Theorem.
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THEOREM 6.3. Let f € Flz] be a monic polynomial. The above gives a bijection
between the inequivalent homogeneous decompositions of f and the block decom-
positions for f satisfying Condition 6.2.

The Structure Theorem for ordinary decompositions of polynomials in Kozen &
Landau (1989) is an immediate consequence of this theorem by requiring the “right
factor” k to be the constant 1, so that ¢t = 0. In particular, Definition 6.1 and
Condition 6.2 with ¢ =0 imply (6.1).

7. A generalization of Capelli’s Theorem

Homogeneous decompositions of irreducible polynomials and homogeneous de-
compositions of reducible polynomials with irreducible “left factors” ¢ have addi-
tional structure.

Let f € Flz] be monic, irreducible, and separable. The Galois group G of f
acts transitively on the roots of f. All roots have multiplicity one. Let A be
a block decomposition for f, and suppose that there is one block A € A with
b=Tloeale —a)=h—~k, h,k € Flz], degk =t and h; = 0. Then b & Flx|, because
it is a proper factor of f and f is irreducible over F. Hence v € F, and h and k are
uniquely determined.

Let B € A, g€ B, and a € A. There exists o € G with o(8) = a. Since the
roots have multiplicity one, we find o(B) = A, and G acts transitively on the blocks.
Now

[[z-a) = [[@E-a(a)

acA beB

= o(h(x) = 7k(x) = h(x) - o(y)k(x).

We conclude that if [T,cq(x — o) = b — vk for any block A, then this is true for
every block B with appropriate =, the 4’s being conjugates under §.

LEMMA 7.1. Let f € F[z] be monic, irreducible, and separable with deg f = n. Let
A be a block decomposition for [ such that there are A € A and h, k € Flx] with

s =degh >t =degk and
[[(z—a)=h—~k

aEA

Then f has an (n/s,s,t)-decomposition.

Let f be monic and irreducible, and « a root of f. There is a bijection between
the intermediate fields between F and F(«) and the block decompositions for f
(Wieland 1964, van der Waerden 1960). So an (r,s,t)-decomposition f = g(h, k)
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corresponds to an intermediate field K with F C K C F(a). K is generated by a root
v of g(y,1), that is K = F(v) and [K : F] = r. Furthermore « is a root of h — vk, so
that [F(«) : K] = s. The coefficients of the minimal polynomial h — vk of o over K
lie in the F-vector space of dimension 2 generated by {1,~}. As can easily be seen,
this condition is not only necessary but also sufficient.

Part of these results for irreducible f may be extended to the reducible case. Let
f have a homogeneous decomposition f = g(h, k) with irreducible left factor g. Let
v be a root of ¢g(y,1), and a a root of f. The field K = F(~) is an intermediate
field between F and all the fields F(«). Because f is reducible, the fields F(«) are
not necessarily isomorphic. To get some information about the factors of f, we will
extend Capelli’s theorem (Schinzel 1982, p. 89) to homogeneous decompositions.

Following Schinzel, for f € Flx]
f=F"const [ f©

1<i<l
means that fi,..., f; € Fla] are irreducible over F and pairwise relatively prime,
and that eq,...,¢; € N are positive. As usual, Ni/y denotes the norm of K over F.

Capelli’s Theorem is the special case k =1 of the following result.

THEOREM 7.2. Let g € Fly, z] be homogeneous and irreducible over F, ¢g(y, 1) sep-
arable, v a root of g(y,1) € Fly| in an extension field of F, and h, k € Flx] relatively
prime. If

(v

!
h —~k =53y const I1 o,
=1

then l
g(h, k) =" const [] Ny r®{.

i=1

PROOF. We extend Schinzel’s proof to the homogeneous case. Denote by ~*) be
the distinct conjugates of v over F. Thus for v # pu, ged(z — 4",z —~®) =1 and
by Schinzel (1982), p. 10, h—~"k is relative prime to h—~y® k. Hence any factor of
h — 4"k is relative prime to any factor of h — 4k, provided v # p. In particular,
the conjugate CI)EU) of ®; under Gal(K/F) which is a factor of h — vk is relatively
prime to CI);“), where K = F(~).

Let p; € F[z] be irreducible over F and such that ®;|p; in K[z]. The conjugates

<I>§”) of ®; under Gal(K/F) divide p;. But, as shown, ®; is relative prime to CI)EV). So
Nigr®; =11, <I>§”) | p; in Flz] and Ng,p®; = p; is irreducible.

Now let us show that the norms are coprime as well. For ¢ # j and for all v, g,

ng(q)gy), (I)(M)) = 1, so that ng(NK/]F(I)MNK/]F(I)]) =1. |

J
So given a homogeneous decomposition f = g(h, k) with ¢ € Fly, z] irreducible
and v a root of g(y,1), the factors of f that are irreducible over F are the norms
of the irreducible factors of h — vk over K. This shows that each irreducible fac-
tor of f has a block decomposition which corresponds to the intermediate field K.
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These block decompositions may be trivial (one block containing all roots or each
block containing just one root). Condition 6.2 on the blocks in the Structure The-
orem 6.3 may not be satisfied for the blocks of each factor separately, but only for
corresponding blocks of the factors of f combined.

EXAMPLE 7.3. Let f € Q[z] be given by [ =g" fif, with
fH = 82 + 122% + 2227 + 292° — 62° + 94x* — 252° + 4522 + 54,
fo = :1:6—2:1;5—|—:1;4—x3—l—3:1;2—|—:1;—|—1,

Both factors of f do not have a nontrivial homogeneous bivariate decomposition,
but f has the following one:

o= g(h,k),
g = 8y® —dy’z + ldy2? + 2527,

oo s Tz 3
- YTy T T
322 z 3

_ 4_ 3 i - -
k = =z x° + 5 —|—2—|—2.

Let ~ be a root of the irreducible polynomial ¢(y,1) € Q[xz]. Between Q and each
field Q[x]/(f;), for « = 1,2, there is the intermediate field K = Q(~) which can be
deduced from the factorizations of f, and f, over Q(v):

2 2 2
sy (- 3_7_3) LA B
8( 2 <2+2 )T T T

23 19 23 )
N

I
S
+
|
+

S

2 2 8 2 4 4
157% Ty 61\ , 3y 33 9y 9
H(5 - Trm)t (TrF)r- 1)

b

1 vl
2 —_— _— —_— = .
($+<7 2)‘“2 8)
3 v 3 72 11
4 = 3 Sl - 2 Sl -
(:1: —|—<7 2):1: —|—<2 7—|—8):1; :Jc—l—2 7—|—8).

The blocks corresponding to the intermediate field K do not satisfy Condition 6.2,
as can be read off these factorizations. Multiplying the first factors of both f; and
fo together, we get

1 3y 1 v 1 3y 3
_ 5_ 4 = 3 o= 2 = o=
b= 7$+<7 2)x+< 2 4)x+< 2 4)“' 2 1

which defines a block of a block decomposition for f and satisfies Condition 6.2.

18



8. Factors and decompositions

Collecting our results from the last two sections, we state the following two the-
orems, which describe all possible origins of factors of a decomposable polynomial.

THEOREM 8.1. Let (g,h,k) be a normal (r,s,t)-decomposition of f € Flx] with
deg, g =r.

(i) Suppose that g is irreducible, g(y, 1) separable, and ged(h,k) = 1. Let v be a
root of g(y,1) € Fly] and h — vk =5y const [li<ic ;. Then

f =F" const H Ny r®;"

1<i<l

That is, for every irreducible factor of f there exists a block decomposition
(maybe a trivial one) and the corresponding intermediate field is the splitting

field of ¢g(y, 1).

(ii) Suppose that ¢ is irreducible, and that ged(h, k) = g # 1. Write h = ¢gh’ and
k = qk'. Then
f= ng(hlv k/)
The structure of g(h', k') is determined by case (i). The polynomial ¢ may be
reducible over T.

(iii) Suppose that g is reducible, say

g(y,z) =5 const ] ¢(y,2)™.
1<i<l
Then
f=const [[ gi(h,k)".

1<i<l

The structure of the g;(h, k) is determined by case (ii).

THEOREM 8.2. Let (g,h, k) be an (r,s,t)-decomposition of f € F[z], and let p =
deg, g. Then

f=k""g(h,k),
where g(y,z) = z°g(y/z,1) is p-homogeneous. The structure of g(h, k) is determined
by Theorem 8.1.

Unfortunately in constructing decompositions for a decomposable polynomial
these two theorems fail to give the origin of a factor a prior:.
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9. Decomposition Algorithm

The overall structure of this homogeneous decomposition algorithm resembles
the algorithms for decomposition of polynomials (Kozen & Landau 1989) or rational
functions (Zippel 1991).

(i) Calculation of the “right” candidates h and k,
(ii) determination of the “left factor” g,
(iii) verification that f = g(h, k).

First we consider the last two steps. By Lemma 3.2 the left factor ¢ is uniquely
determined by linear algebra, if it exists. We adapt an algorithm from Dickerson
(1989) for the calculation of left factors. It solves the following problem:

Given f € F[z] with deg f = n and h, k € Flz] with s = degh >t = deg k. Does
a homogeneous polynomial g € Fly, z] of degree r exist such that f = g(h, k)?

Let g(y,2) = Yo giy'2" % For 1 <i < r, the product A'k"~* has degree tr+(s—
t)i < rs. In order for a decomposition to exist we must have deg f < rs. Furthermore
the coeflicients of 2"*~(=DU+D+L yp to 27 in f only depend on Do j<i<r gih kT
Hence we are able to determine the coefficients ¢; of ¢ by iteration. Besides we may
simultaneously verify the decomposition.

=Rk fori=0,...,r
p=1r
for:=0tordo
if degp > rs — (s — t)i then fail end
coeff(p,rs — (s — t))
coeff(m,_;,rs — (s —1)1)
P=DP = Gr—iTr—;
end

Gr—i =

if p <> 0 then fail end

where coeff(p, j) is the coefficient of 27 in p. The number of arithmetic operations
in [ is polynomially bounded in the degree of f. There are asymptotically faster
methods for this problem (von zur Gathen 1990a), but the real bottleneck is the
first step.

We will apply the Structure Theorem 6.3 to determine the candidates h and
k for the decomposition in step 1. First we restrict ourselves to the decomposi-
tion of irreducible polynomials. Because of the Structure Theorem a homogeneous
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decomposition of an irreducible polynomial f exists if and only if there is an r x s-
block decomposition for f and an arbitrary block of roots satisfies the hypothesis of
Lemma 7.1.

Therefore we compute all block decompositions for f. For each block decompo-
sition we check the conditions of Lemma 7.1. Equivalently we may determine all
intermediate fields between F and F(«), a being a root of f.

The algorithm BLOCKS from Landau & Miller (1985), Kozen & Landau (1989),
and Yokoyama et al. (1990) provides all block decompositions of f. The algorithm
gives a single block decomposition in polynomial time. The number of block decom-
positions for f is bounded by n!°8", where n = deg f. Alternatively, the algorithm
EQNFIELD from Lazard & Valibouze (1993) determines all intermediate fields by
symmetric resolvents.

Both algorithms expect an irreducible polynomial f € F[z] as input. Let « be a
root of f. The result of the algorithms is a finite set of polynomials B C F(a)[z]. In
the block decomposition picture each polynomial b € B defines a block decomposi-
tion for f. The roots of b form a block of this particular block decomposition, namely
the block which contains the root . Hence the coefficients of b are, up to sign, the
elementary symmetric functions of the roots in this block. In the intermediate field
picture each polynomial 6 is the minimal polynomial of & over the intermediate field.
In order that there be a homogeneous decomposition, these coefficients of b have to
satisfy the condition of Lemma 7.1. This may be checked as follows:

s=degb
fori=sby —1to0do
if coeff(b,i) ¢ F then

v = coeff(b, )
break
end

end
forv=0tosdo
h; = coeff(b, i) mod v
k; = coeff(b, 1) div v
if h; ¢ For k; ¢ F then
NO DECOMPOSITION
end

end

We assume that the polynomial b € F(«)[x] is given by b € Fly][x] with the coeffi-
cients from Fly] being reduced by the polynomial f(y). Because f is assumed to be
irreducible, b must have at least one coefficient not in F. The division with remain-
der which determines h; and k; is to be calculated in the polynomial ring F[y]. The
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calculation of the “left factor” ¢ from f, h and k cannot fail, since we have satisfied
sufficient conditions for the existence of a homogeneous decomposition.

Now let us have a look at reducible polynomials. Assume that f =§" []; f; has
a decomposition. FEach factor f; of f may be

o a factor of k& (Theorem 8.2),
o a factor of ged(h, k) (Theorem 8.1 (ii)),

o the norm of a factor W of h — ~vk over F(v) (Theorem 8.1(i)). Let a be a
root of f;. There is an intermediate field (maybe trivial) between F and F(«)
or, equivalently, f; has a block decomposition. This block, maybe only when
combined with corresponding blocks of other factors of f belonging to the
same intermediate field, satisfies the condition of the Structure Theorem.

As already noted, we do not know sufficient a priori criteria which help to classify a
factor f;. So we have to consider all possibilities, which will result in an exponential
algorithm.

There seems to be some kind of trade-off between “few factors = much structure
= few homogeneous decompositions, easy to compute” and “many factors = little
structure = many homogeneous decompositions, hard to compute”.

10. Implementation of the Algorithm

We discuss our experience gained from implementing the decomposition algo-
rithm for an irreducible polynomial f. The implementation of the algorithm for
the determination of the “left factor” ¢ is straightforward. We compare different
approaches for the determination of all block decompositions or equivalently all
intermediate fields which give the “right factors” h and k.

Let a be a root of f. As described in the last section, a block decomposition for
f is determined by a polynomial b € F(«)[z] whose roots just form this block. This
polynomial b is actually a factor of f over F(«).

The main steps of the algorithm BLOCKS (Landau & Miller 1985, Yokoyama
et al. 1990) are

(i) the complete factorization of f over F(«),

(ii) the determination which products of those irreducible factors describe a block.
This is achieved by the calculation of geds between those factors over algebraic
extensions of F(a).
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In practice, using Trager’s algorithm (Trager 1976), the factorization of f over F(a)
is technically feasible approximately up to polynomial degree 10. Trager’s algorithm
factors the norm Ny(.y/5(f) € Flz], a polynomial of degree (deg f)*.

Empirically the cost of the algorithm is dominated by the second step, the cal-
culation of gcds over algebraic extensions of F(a). It is beneficial to avoid this step
altogether. This can be achieved in the following way. We consider all possible prod-
ucts of irreducible factors of f over F(a). Every polynomial b describing a block
of a block decomposition is among those products. For each product we check the
condition of Lemma 7.1. If this condition is satisfied, we try to calculate the “left
factor” ¢ from the polynomials A and & defined by this product. If we succeed, the
product defines a block of a block decomposition for f and the polynomials ¢, & and
k form a homogeneous decomposition of f.

So we may exchange the costly ged calculations for an exponential number of lin-
ear algebra problems. But given the limits by the polynomial factorization over F(«)
the number of products poses no problem. This variant of the algorithm has been
implemented in MAPLE and AXIOM. The factorization time dominates at least by
an order of magnitude the whole computation. On a typical workstation, MAPLE
calculates the decomposition of a polynomial of degree 12 in about 30 minutes.

As a second approach we may determine all intermediate fields between F and
F(a). By the algorithm EQNFIELD (Lazard & Valibouze 1993) all intermediate
fields M of index k in F(a) may be found by calculating k-symmetric resolvents
of f. In the simplest case, a factor of degree (deg f)/k of a k-symmetric resol-
vent is the minimal polynomial for a generator of the intermediate field M. The
k-symmetric resolvents are polynomials over F of degree (dekg ! ). So in general their
degree is higher then (deg f)*, the degree of the norm in Trager’s algorithm. We
are interested in factors of low degree only, but without a special factorization al-
gorithm, which generates factors of low degree fast, this approach is more costly.
This was verified by translating algorithms for handling symmetric polynomials and
calculating resolvents originally implemented in MACSYMA (Valibouze 1989) to
AXIOM.

If the aim is to calculate intermediate fields and block decompositions for a poly-
nomial, and not only homogeneous decompositions, the second step of the algorithm
BLOCKS, that is the ged calculations over extensions of F(«), may no longer be
avoided. This additional cost may well balance the drawbacks of the algorithm
EQNFIELD.

The costs of these homogeneous decomposition algorithms are rather high. In
contrast our implementation of the algorithm described in Kozen & Landau (1989)
indicates that an ordinary decomposition of a polynomial of degree 100 can be
calculated in less than a minute. Gutierrez & Recio (1992) calculated decompositions
of rational functions of degree 20 in about 10 minutes. Theorem 12.2 seems to
indicate that computing homogeneous decompositions is intrinsically harder than
computing decompositions of rational functions, because fewer constraints are given.
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11. The classification of generic decompositions

In this section, we consider generic decompositions which give nontrivial decomposi-
tions for almost all polynomials, and show that none exist besides those in Section 4.

LEMMA 11.1. Let (g, h, k) be a normal (r, s,t)-decomposition of f € Flz]|, and n =
deg f.

(i) If rs > n, then g, = 0.

(ii) If rs > n+s—t, then k #0, g, = g,_1 = 0, and either k € F or f is not
squarefree.

PrROOF.  Writing ¢ = > o<i<, gy~ € Wy, 2], we have f = > 0<i<r ¢:R'E"", and

L i1r—iy ZS—|—(T—Z)t 1fk7é0,

di = deg(h'k™™") = { 18 otherwise.

Thus d, > d,_y > --- > dy. In particular, d, = rs, which proves (i). In (ii), we have
k # 0, since otherwise ¢ = ¢,y" and degg(h, k) = rs. Since d, > d,_; > n, we have
gr = ¢,_1 = 0, and thus k? divides f. O

We denote by P, C F[x] the (n + 1)-dimensional vector space of all polynomials
of degree at most n, and have P, C P, for n < m. We formalize the notion of
“almost all” polynomials having a decomposition as follows.

DEFINITION 11.2. Let F be an infinite field. For n,r,s,t € N, we say that P, has
a generic (r, s,t)-decomposition if there is no nonzero polynomial T € F[Fy, ..., F,]

such that for all fo + -+ f,2" € P, we have
f has a normal (r, s,t)-decomposition = 7(fo,...,f.) =0.

To explain this definition, we assume s > ¢ > 0 and rs > n, and make the natural
identification of a homogeneous bivariate polynomial of degree r with its coefficient
vector in "', and of a monic polynomial of degree k with its coefficient vector in
F*, leaving out the leading one. We consider the normal composition mapping 1:

p i Pt x Pt — P,DP,

(g, b, k) — g(h,k) =Y g:hik. (11.1)
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Here g, h, k are coefficient vectors of polynomials as in Definition 3.7. The image
of 1, intersected with P,, is the set D of polynomials in P, that have an (r,s,1)-
decomposition. The definition says that P, has a generic (r, s, t)-decomposition if
and only if the image is dense in the Zariski topology.

If this is the case and F is algebraically closed, then “almost all” polynomials in
P, do indeed have an (r, s,t)-decomposition. This follows since imy N P, is always
constructible and dense by assumption, hence there exists a nonzero polynomial

o € F[Fy, ..., F,] such that

U(va"'vfn)%O — Z fZl’ZGD

0<i<n

When T is not algebraically closed, the situation may be more complicated. The
case of finite fields is discussed at the end of this Section. Over Q and R, the general
situation is well illustrated in Corollary 5.2. The polynomial A € F[z] usually has a
root kg over R, and in general (if ky # f5/4) this leads to a decomposition. But over
Q, A will usually be irreducible, and a root will only exist in a (small) algebraic
extension of Q. In fact, it is a consequence of the classification in Theorem 11.3 and
the examples in Section 4 that whenever a generic decomposition of some format
exists and a specific polynomial is given, it is sufficient to factor the polynomial in
order to find a decomposition of this format.

Whenever there is no generic (r, s,1)-decomposition, then most polynomials ac-
tually do not have a decomposition, in the sense that the coefficients have to satisfy
a nontrivial algebraic relation, which we might call a “separating” test polynomial,
in order for an (r, s, )-decomposition to exist.

THEOREM 11.3. Let F be an infinite field, and n,r,s,t € N with n,r,s > 2 and
rs >n > s>t Then P, has a generic (r,s,t)-decomposition if and only if one of

the following holds:
L r=2s>n/2,t=n-—s,or
I r=2s=n/2,t=n/2-1.

PROOF. If F is algebraically closed, then Examples 4.1 (i) and (ii) exhibit a
homogeneous bivariate decomposition of type I and II, respectively, for every poly-
nomial. For an arbitrary infinite F, this implies that generic homogeneous bivariate
decompositions of type I and II exist, since otherwise there would be a nonzero test
polynomial 7 as in Definition 11.2 whose zero set {r = 0} contains imy over F, and
this would imply that the same holds over an algebraic closure of T.

Assume now that P, has a generic (r,s,?)-decomposition. First suppose that
rs > n+s—t. Then, by Lemma 11.1 (ii), each decomposition leads to a polynomial
f that either has an ordinary decomposition f = g(h,k) with & € F, or that is
contained in the zero set of the discriminant

T = resultant,.(F, F') € F[ I, ..., F,],
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where F' = 2, Fiz*. The polynomials with an ordinary decomposition form a proper
algebraic subset; allowing all ¢g(y, 1) € Fly] of degree p < r, the dimension is at most
p+l+s—1<n+4+1=ps+1.

For a similar reason, we may assume that ¢ > 0. According to Lemma 11.1 (i),
we have two possibilities:

(a) rs < n,or
(b) n<rs<n+s—1,and g, = 0 in any decomposition f = g(h, k) € P,.

In case (a), we have n = rs, and from the dimensions in (11.1) we obtain that
r+2s—1>r4+1l4+s—14+t>n+1. lfr=2 wefind s =n/2 and t =n/2 -1,
corresponding to II. If r = 3, then s = n/3 and 24+ 2n/3 > n+ 1, hence n < 3 and
s <1.Ifr >4, then s <n/4 and r +n/2 — 1 > n+ 1, which implies r = n since r
is a divisor of n, and hence s = 1, which is ruled out.

In case (b), ¢ as in (11.1) is actually a mapping from F" x F~' x F, so that
r+s—14+t>n+1. If r =2, the decomposition has the form

f = gihk + gok? = (g1h + gok)k.

If f has degree n, then deg(g1h + gok) = n—t. Thus t < n/2 implies that s = n —1,
which is I, and ¢ > n/2 implies that s < ¢, which is ruled out. If r > 3, we find that

s(r—=2)=rs—2s<n—t—s<r-—2,

and hence s < 1. This shows that I and II are the only possibilities. [

We next want to bound the degree of the separating test polynomial 7 implicit
in Theorem 11.3 when I and II are not satisfied. We start with the special case of
ordinary decompositions f = ¢g(h). We may assume that f, ¢, h are monic, and that

h(0) = 0.

LEMMA 11.4. Let r,s € N with r,s > 2, n = rs, and suppose that char I does not
divide r. Then there exists a nonzero polynomial 7 € F[F,_y, ..., Fy] of degree at
most s+ 1 such that for all polynomials f = 2™+ f,_j2" '+ -+ fy, and ¢, h € Flz]
with g, h monic, r = degg, s = degh, h(0) =0, and

f=g(h), (11.2)
we have

T(fn—lv'--afo) = 0.

PrROOF. The decomposition algorithms in Kozen & Landau (1989) and von zur
Gathen (1990a) are based on the fact that f = g(h) implies that h,_;,..., hy are
determined by a triangular system of equations, linear in each “new” variable. One
checks that this gives polynomials

Mr—1s-++5"T GF[Fn—lv-"vFO]

26



such that h; = n(f._1,..., fo) and degn; = s —i. The coefficient at "% in (11.2)
determines g,_;, and the coefficient at z"~*~! gives a nonzero polynomial, in which
F,_,_1 occurs linearly, which we can take for 7. Its degree is at most s + 1. O

The “wild” case, where char F divides r, is computationally more difficult (von zur
Gathen 1990b), and we have not determined a test polynomial 7 for it.

The remaining cases of non-ordinary homogeneous bivariate decompositions are
dealt with in the following result.

COROLLARY 11.5. Let F be an infinite field, n,r,s,t € N with n,r,s > 2 and
n > s >1>1 and suppose that P, does not have a generic (r, s,t)-decomposition.
Then there exists a nonzero test polynomial

reWF,,... P

such that 7(fy,...,f,) = 0 for any f = Yocicn f;x* € Flz] that has a normal
(r,s,t)-decomposition, and

(i) degioy =11t >0, r <n/s+1 and r #n/s,
(ii) degipy T =2n—1ift = —ooorr>n/s+1,
(iii) deg¢pot T = (1 + )yt ifr =n/s.

PRrROOF. If r < n/s, then 7 = F), is sufficient. If n/s < r < n/s + 1, then
g- = 0 and deg(g(h,k)) < n for all (g, h, k), so that we can again take 7 = F,. If
r> (n+s—t+1)/s, then all f € imyN P, are not squarefree by Lemma 11.1(ii), and
we can take the discriminant for 7. Together these include all cases where r > n/s,
so that now we may assume r = n/s.

The homogeneous bivariate decomposition map ¢ : F'tstt — Tt as in (11.1),
is given by polynomials in ¢gq, ..., ¢, kg, ..., he_1, ko, ..., k1 of total degree at most
r+ 1, and m = dimim¢ < n. Pick some f € imy such that d = dim¢~'({f}) >0
is minimal, and an affine linear space L C F"**** of dimension r + s+t —d such that
LNy~ ({f}) is finite; such an L always exists. By the theorem on the dimension of
fibres (see Shafarevich (1974), e.g.),we have d+m =r+ s+t Let ' : [ — !

be the restriction of ¢ to L. Since 3’ has a finite fibre, namely over f, we have

dimimy’ = dim L. = dimimi, so that im¢’’ is dense in imy. Now Lemma 3.3 in
von zur Gathen (1985) provides a polynomial 7 as desired, containing imy’ and
hence im in its zero set, and with deg T < (r +1)"*'; one can also use the proof of

Lemma 1 in Heintz & Sieveking (1980). O

The easy cases (i) and (ii) of Corollary 11.5 cover all situations with n <7 and
t > 1 except forn =6,t =1 and (r, s) either (2,3) or (3,2). The symbolic resultant
7 in the first case is a polynomial of degree 10 with 27 terms in 6 variables, and
in the second case its computation strains a computer algebra system like MAPLE.
For larger values of n, it seems difficult to determine an explicit “separating” test
polynomial 7.
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Over a finite field F, with g elements, 7 = F/? — I, is satisfied by all polynomials,
and so Definition 11.2 would trivially imply that there are no generic decompositions
over a finite field. However, Corollary 11.5 states that if P, does not have a generic
decomposition, then we may replace “nonzero 77 by “nonzero 7 whose degree is at
most (r + 1)"t17. This notion is nontrivial also over F, with ¢ large enough—say,
q > 2(r + 1)""'—and when I and II of Theorem 11.3 are not satisfied, then with
high probability a randomly chosen polynomial does not have a decomposition.

12. Relations to decompositions of rational functions

In this section, we note two relations between homogeneous decompositions of
univariate polynomials and decompositions of rational functions.

Zippel (1991) reduces the decomposition of rational functions to the simultaneous
homogeneous bivariate decomposition of two homogeneous bivariate polynomials.
But the decomposition

f@y) = g(h(z,y), k(z,y))

with h, k € Flz, y] homogeneous of the same degree is related to the homogeneous
bivariate decomposition of univariate polynomials by substituting 1 for y. Vice
versa by appropriate homogenization the latter decomposition leads to the former.
At least in theory this results in an algorithm for rational function decomposition.

We find a second relation when we try to decompose univariate polynomials as
rational functions. Given a polynomial f € F[z], the naive approach of decomposing
the rational function f/1 € F(x) does not lead to any decompositions which could
not be obtained by the ordinary decomposition of f (Schinzel 1982, p. 10). So we
will try to decompose f/q € F(x) with arbitrary ¢ € Flx].

DEFINITION 12.1. A fractional decomposition of a univariate polynomial f € Flz]
consists of a univariate polynomial ¢ € F[z] and two rational functions G, H € F(x)
such that F
—=GoH=G(H).

q
The relationship between homogeneous decompositions and fractional decomposi-
tions of univariate polynomials is explained in the following theorem.

THEOREM 12.2. Let f € Flz]. To every fractional decomposition of f with ¢ rela-
tively prime to f corresponds a homogeneous decomposition of f. To every homo-
geneous decomposition of f corresponds a fractional decomposition of f.
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Proor. Let
i =GoH
q
be a fractional decomposition of f, with ¢ € F[z] and GG, H € F(x). Write G = ¢,/¢5
and H = hy/hy with gy, 92, hy, hy € Flz] and ged(gy,92) = ged(hy, hy) = 1. Let
r = max{degg;,deg g2}, §i(x,y) = y"g;(x/y) and gi(x,y) =y gi(x/y) in Flz,y]
for 1 = 1,2, so that
i 0 (hy/hy) o G1(hy, hy) (12.1)
q  g2(h1/hy)  Galhy, hy) '
By Schinzel (1982), p. 10, g1 (hy, h3), G2(hy, hy) and h, are pairwise relatively prime,
because hy and hy resp. g and g are relatively prime. Hence ¢y (hy, hq) and go(hy, ho)
are relatively prime. Since f and ¢ are relatively prime, both denominators and
numerators in (12.1) are equal separately, and f has the homogeneous decomposition

f :fh(hhhz)-

For the other direction, let
f=yg(h k)

be a homogeneous decomposition of f with ¢ € F[a,y] homogeneous of degree r.
With g(x) = g(x, 1), we get
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Open questions

1. The structure of homogeneous bivariate decompositions. Given f, we related
the set of all homogeneous bivariate decompositions of f to the set of certain
block decompositions for f. Is it possible to describe the structure without
recourse to block decompositions? It a decomposition exists over an algebraic
closure, what is the smallest field extension necessary? Section 5 discusses an
instance of this question.

2. A fast decomposition algorithm. In practice the proposed algorithm is quite
slow when compared to the algorithms for the ordinary decomposition of poly-
nomials and the decomposition of rational functions. Is there an algorithm
which avoids the costly factorizations over algebraic extensions? A new ap-
proach is required to handle the case of reducible polynomials more efficiently.

3. Other generic decompositions. For other instances of the general problem
(1.1), classify those values of the parameters for which generic decompositions
exists. One might want to start with multivariate decompositions of univariate
polynomials (i.e., [ = 1), and for decomposing multivariate polynomials, one
would begin with our homogeneous bivariate decompositions, say for bivariate
polynomials (i.e., [ = 2).
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