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ABSTRACT

For many applications from the areas of cryptography and coding,
finite field multiplication is the most resource and time consum-
ing operation. We have designed and optimized four high perfor-
mance parallelGF (2233) multipliers1 for an FPGA realization and
analyzed the time and area complexities. One of the multipliers
uses a new hybrid structure to implement the Karatsuba algorithm.
For increasing performance, we make excessive use of pipelining
and efficient control techniques and use a modern state-of-the-art
FPGA technology. As a result we have, to our knowledge, the
first hardware realization of subquadratic arithmetic and currently
the fastest and most efficient implementation of233 bit finite field
multipliers.

1. INTRODUCTION

Finite field arithmetic plays a major role in cryptography and cod-
ing theory. Among different operations in finite fields, multiplica-
tion is the most resource and time consuming task in hardware and
software implementations as well. (Division, however, is much
costlier than multiplication but there are efficient techniques to de-
compose a division into a sequence of multiplications (see [1]),
or to avoid division in many cases). This work is intended to
help a hardware designer to make the best selection for an FPGA
based parallel field multiplier for a given finite field. Especially
for the area of cryptography where the extension of the finite field
GF (2n) is fairly large, sayn > 160, the selection of the multipli-
cation algorithm has a major impact on the overall system perfor-
mance.
In this work we analyze FPGA implementations of four known
parallel multipliers inGF (2233). The selection of the finite field
is based on theFIPS 186-2standard ([2]) concerning with the
digital signature algorithms and proposed by NIST2. This stan-
dard suggests 5 binary fields, mainly the extension degrees163,
233, 283, 409, and573, which are all prime extensions. We have
selectedGF (2233) to satisfy the security requirements in ellip-
tic curve cryptography for the next years, but our results can be
adapted to finite fields with other prime extensions as well.
For cryptography, the requirements with respect to performance
and security may change depending on the application. For this
reason we use FPGAs as target technology in order to avoid the
flexibility lacking in ASIC designs. It turns out that many opti-
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1Galois field
2National Institute of Standards and Technology

mizations of field multipliers proposed for ASIC design do not
hold for FPGA. The main differences are

• Influence of routing on the FPGA performance.

• 4-input lookup table technology instead of 2-input logic
gates.

• Treatment of high-fanout nets on FPGAs.

So we decided to create completely new FPGA optimized de-
signs for the multipliers.
The paper is organized as follows. In the next section we give an
overview over related work. Section 3 gives a short introduction
into the theory of operation of the classical, Karatsuba, Massey-
Omura and Sunar-Koç multipliers. The architecture and FPGA
implementation of these multipliers is described in detail in Sec-
tion 4. The performance results and a comparison is given in Sec-
tion 5 and a summary in Section 6.

2. RELATED WORK

Several works concern the comparison of different hardware based
multiplier architectures in the binary finite fields. The authors of
[3] have compared three known serial multipliers, namely Berle-
kamp, Massey-Omura, and a polynomial basis multiplier, and im-
plemented them for a small finite fieldGF (28) in VLSI. [4] con-
siders VLSI implementation of parallel multipliers for a class of fi-
nite fieldsGF (2n) with extension degreesn = 8, 16, 24, and32,
which are not prime extension degrees and are believed to have se-
curity weaknesses ([5]). [6] considers different parallel multipliers
in GF (24) which is suitable for coding applications. This work
also considers hardware optimization techniques to improve the
performance of multipliers and make some estimates which hold
only for small finite fields. [7] gives a detailed comparison of dif-
ferent VLSI implementations of parallel multipliers inGF (24).
Indeed all of the above works (except [4]) correspond to small
finite fields and the results can not be easily extended to larger
fields. With the development of new FPGA families with large
gate counts, however, it is possible to realize parallel finite field
multipliers on a single chip which performs the total multiplica-
tion operation in a few clock cycles. So it becomes necessary to
have a performance analysis of the multipliers for large field ex-
tensions (withn > 160) to select the best multiplier for a certain
application.

3. MULTIPLICATION IN THE BINARY FINITE FIELDS

There are several algorithms to multiply two finite field elements
and each of them has its benefits depending on the finite field size,
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the implementation type (hardware or software), and the time and
area requirements. One of the main differences between these al-
gorithms is the finite field representation basis. In this section we
give a brief introduction of different hardware based finite field
multipliers inGF (2n) along with their space and time complex-
ities. When the Hamming weight of the irreducible polynomial
plays a significant role, we assume the existence of an irreducible
trinomial of degreen when considering the multiplication inGF (2n).
This is a reasonable assumption since our special finite field is
GF (2233), and the polynomialx233 + x74 + 1 is irreducible. On
the other hand it is conjectured that a trinomial of degreen ex-
ists for a large amount of valuesn (see [1]). Multipliers will be
categorized depending on the finite field basis.

3.1. Polynomial Basis Multipliers

In this basis, each element is represented as a linear combination
of different powers of a root of an irreducible polynomial. Indeed
multiplication in this basis consists of a polynomial multiplication
followed by a modular reduction. There are different possibili-
ties to multiply two elements in this basis like the Mastrovito, the
classical, and the Karatsuba multipliers. Since there is only small
difference in time and space complexities of the Mastrovito and
the classical multipliers we select the classical multiplier because
of its regular structure and the possibility of pipelining which is
difficult to apply to the Mastrovito multiplier.

3.1.1. Classical Multiplier

The most straightforward method to perform finite field multipli-
cation is to multiply the polynomials and then reduce the result
modulo an irreducible polynomial to achieve the final result.

The school method polynomial multiplication requiresn2 AND
gates and(n − 1)2 XORgates (2-input each). The combinato-
rial propagation delay across a school method multiplier isT =
TAND + dlog2 neTXOR. Reducing modulo the polynomialf(x)
can be done using(r − 1)(n − 1) two inputXORgates, wherer
andn are the Hamming weight and the degree of the polynomial
f(x), respectively.

3.1.2. Karatsuba Multiplier

An approach to reduce the number of gates in the polynomial ba-
sis multipliers is the Karatsuba method (see [8] and [9]). In this
method the number of multiplications is reduced but at the cost of
increasing the number of additions and the total propagation de-
lay. This method decreases the total number of gates fromO(n2)
to theO(n1.59), which is very effective when the polynomials be-
come large. To achieve a tradeoff between the area and propaga-
tion delay which is long in the Karatsuba multipliers, we have used
a hybrid structure by using the Karatsuba multiplication formulas
(see [10]) for the polynomials of degree 1 and 2 in a hierarchical
manner above school method multipliers of degree39. This struc-
ture requires28800 ANDand31183 XORgates, and a total propa-
gation delay ofTAND +14TXOR. The costs for a pure Karatsuba
multiplier are6561 AND, 37320 XOR, andTAND + 26TXOR and
for a school method multiplier are54289 AND, 53824 XOR, and
TAND + 8TXOR.

3.2. Normal Basis Multipliers

An elementα in GF (2n) is called a normal element, when the el-

ements of the setΓ = {α2i |0 ≤ i < n} are linearly independent.
In this case, the setΓ is called a normal basis. One great advantage
of the normal bases is that squaring in this basis consists of only a
cyclic shift (which requires no logic elements and can be done in
nearly zero time). There are two types of normal bases for which
there exist effective multiplication methods, namely optimal nor-
mal bases of type I, and II.

3.2.1. Massey-Omura Multiplier

The Massey-Omura multiplier is one of the most famous multi-
pliers that work in the normal basis representation. It consists of
similar blocks which can work in parallel to generate output bits
simultaneously. One great advantage of this multiplier is its flex-
ibility as a serial-parallel multiplier. This means that the designer
has the ability to select an arbitrary number of similar blocks to
achieve different numbers of output bits in one clock cycle, de-
pending on the given area constraints. For the case of optimal
normal bases inGF (2n) one requires(2n − 2)D 2-input XOR
andnD 2-inputXORgates, whereD is the number of output bits
per clock cycle. The minimum combinatorial propagation delay is
TAND + dlog2 neTXOR. (See [4].)

3.2.2. Sunar-Koç Multiplier

The Sunar-Koç multiplier is a fully parallel multiplier which gen-
erates all output bits simultaneously, see [11]. It uses a normal
basis representation and requires significantly less gates than a full
parallel Massey-Omura (5

2
n2 − 3

2
n 2-input gates). The minimum

combinatorial delay is the same as of the Massey-Omura multi-
plier.

4. FPGA IMPLEMENTATIONS OF PARALLEL
MULTIPLIERS

In this section we present the architectures of the parallel multi-
pliers we have implemented. All multipliers are synthesized for a
Xilinx Virtex-2 FPGA (xc2v-6000-ff1157-4). The interface logic
is the same for all multipliers so we can use the same testbench
and the designs are interchangeable.

4.1. The Classical Multiplier

The implemented classical multiplier consists of a polynomial mul-
tiplier followed by the modular reducer (Figure 1). Assuming that
the polynomialc = c2n−2x

2n−2 + c2n−3x
2n−3 + · · ·+ c1x + c0

is the product of two polynomialsa = an−1x
n−1 + an−2x

n−2 +
. . . a1x+a0 andb = bn−1x

n−1 +bn−2x
n−2 + . . . b1x+b0, then

the different coefficients ofc can be computed using the equation
(1).

c0 = a0b0
c1 = a0b1+ a1b0

. . .

cn−1 = a0bn−1+ a1bn−2+ . . .+ an−2b1+ an−1b0
(1)

. . .

c2n−3 = an−2bn−1+ an−1bn−2

c2n−2 = an−1bn−1
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Each of the rows of (1) has some elements which must be com-
bined in a XOR tree to generate a single bit of the result. The
rows ci andc2n−2−i for 0 ≤ i < n − 1 are generated with tree
structured XOR-circuits of identical length, but with different in-
puts. So we have a total of 465 XOR trees, where 464 of them are
pairwise equal in size3.
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Fig. 1. Classical multiplier for 233 Bit

An earlier design of ours which used only 233 trees but addi-
tionally 232 multiplexers required more clock cycles and exceeded
the FPGA resources, so we decided to use the full number of XOR
trees.

4.2. The Hybrid Karatsuba Multiplier

We have used a hybrid structure to combine the Karatsuba algo-
rithms (see 3.1.2) with 2 and 3 coefficients respectively to generate
a Karatsuba algorithm with 6 coefficients. Furthermore, we have
used a new distributed control structure to implement the poly-
nomial multiplication. The combination of these two Karatsuba
methods has already been proposed in [12] for composite exten-
sion finite fields and [10] for the Optimal Extension fields. But to
our knowledge, it is the first time that such a combination has been
implemented in hardware for prime extension finite fields. The
block diagram of the complete multiplier is shown in Figure 2.
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Fig. 2. Hybrid parallel Karatsuba multiplier for 233 Bit

The multiplier in the upper level consists of three 80-bit mul-
tipliers, six 80-bit adders, and the overlap circuit. Each of the mul-
tipliers will be used twice during a polynomial multiplication to
cover the total six 80-bit multiplications. The control circuit starts
the multipliers at the suitable time to make use of the pipeline
stages in the multipliers. It also controls the timing of the adders.

3Indeed the XOR trees corresponding with the first and the last equa-
tions consist of only AND gates, but we have used the general word XOR
tree.

Since outputs of the different multipliers have some powers ofx in
common, the overlap circuit XORs the overlapping powers. The
same structure is used in each of the 80-bit multipliers. Each of the
40-bit multipliers is a classical polynomial multiplier and has the
same structure as used in Section 4.1, but of much smaller size.

4.3. Massey-Omura Multiplier

If implemented fully in parallel, the resource requirements of the
Massey-Omura multiplier are very large (exceeding the LUT4 re-
sources of our FPGA by about 7 percent), but it can be realized
with any degree of parallelism between fully parallel and fully se-
rial. So we use a semi-parallel implementation where a multipli-
cation is performed in two steps.
As shown in Figure 3, Massey-Omura consists of two cycshift-
stages5 with 117 outputs each. Outputn is the same as output
n − 1 but cyclically rotated by one bit. The117 rotated operand
pairs are passed in parallel to117 identical XOR trees (XOR1
... XOR 117) that compute the lower117 bits of the result. The
last outputs of the cycshift stages are fed back to the inputs via an
operand register, so the second set of rotated operands as well as
the higher part of the result is generated one clock cycle later.

Fig. 3. Semi-parallel Massey-Omura multiplier

4.4. Sunar-Koç Multiplier

Like Massey-Omura, Sunar-Koç is a multiplier that works on ope-
rands represented in a type-II optimal normal basis. Due to resolv-
ing the redundancies in a parallel Massey-Omura multiplier, the
required number of logic gates reduces approximately to 75 per-
cent. Sunar-Koç, however, is a full-parallel multiplier and cannot
be serialized efficiently.
Fig. 4 shows the structure of the Sunar-Koç multiplier. Theperm-
stages permutate the operand bits und thus realize the basis trans-
formation as described in [11]. The next stage calledpreprocessor
generates all non-redundant terms of the formaibi andaibj +ajbi

of the operand bits. These 27261 terms are combined to the 233 bit
result in 233 parallel identical XOR trees (XOR1 ... XOR 233).
The iperm-stage computes the inverse permutation of theperm-
stages and transforms the result back to the normal basis repre-
sentation. Perm and iperm stages are very similar and thus imple-
mented in a single component which drastically reduces synthesis
time. 6

4Look up table
5cyclic shift stages
6The synthesis time for perm stages however is still extremely long, so

we decided to omit the perms from synthesis. Since the perm stages contain
no logic elements but only routing, we expect no influence on timing and
area.
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Fig. 4. Parallel Sunar-Koç multiplier

5. RESULTS

In this section we give the performance comparison of the FPGA
synthesis results. All multipliers are synthesized for a Xilinx xc2v-
6000-ff1517-4 FPGA without pin mapping and area constraints.
In subsequent synthesis iterations, we specified timing constraints
with slightly increasing stringency in order to converge to an op-
timal timing. It should be noted that the clock cycle time is com-
puted including the pad delays since all multipliers are implemented
as ”stand alone” designs.

Multiplier LUT/FF equivalent
gate count

clock period
(Frequency)

Classical(estmd.) 37296 / 37552 528427 ∼13.00ns
(∼77 MHz)

HybridKaratsuba 11746 / 13941 182007 11.07ns
(90.33Mhz)

MasseyOmura 36857 / 8543 289489 15.91ns
(62.85MHz)

SunarKoç 45435 / 41942 608149 10.73ns
(93.20MHz)

Table 1. Area requirements and minimum clock periods of multi-
pliers.

Table 1 gives a comparison of the number of 4-input LUTs, the
number of flipflops, the equivalent gate count (as reported by the
vendor synthesis tools), and the clock period for each multiplier.
Due to a misoperation of our synthesis framework, we could not
complete the synthesis of the classical multiplier, thus the values
are estimated.7

Fig. 5. AT (left) andAT 2 (right) comparison of the multipliers

Fig. 5 shows theAT andAT 2 criteria. The areaA we define
as the sum of the LUTs and flipflops.It should be noted that the
majority of the flipflops are used for internal pipeline stages and
it is possible to design all multipliers with a significantly smaller
number of flipflops (e.g. about 700 for Sunar-Koç). In fact, in our

7The number of LUTs and FFs, however, can be estimated fairly exact.

architectures, all pipeline flipflops can be removed without chang-
ing the functionality.Routing resources are not taken into account,
since VIRTEX-2 FPGA have plenty of routing resources so that
the totally occupied chip area is spanned by the slice count of the
design and not the routing. The time T is the product of clock
periods and number of clock cycles for a complete multiplication
in GF (2233). This allows to evaluate the multiplier performance
independently from the number of pipeline stages.

6. SUMMARY

We have analyzed our own high performance FPGA implementa-
tions of parallelGF (2233) multipliers, namely Classical, Karat-
suba, Massey-Omura, and Sunar-Koç, with respect to area and
time complexity. Especially for Karatsuba, we used sophisticated
control structures the first time for prime degree extension field
multipliers. It turned out that for polynomial basis representation,
Karatsuba is the best choice while for normal basis the Sunar-Koç.
All parallel multipliers can operate at high clock rates and require
only few clock cycles for a complete operation, but have extraor-
dinary resource requirements. We have shown, however, that they
can be implemented efficiently on modern FPGAs which allows
for high performance FPGA based cryptographic applications. To
our knowledge, we have currently the fastest FPGA designs for
parallel finite field multipliers of that size.
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