C. GRABBE, M. BEDNARA, J. SHOKROLLAHI, J. TEICH & J. VON ZUR GATHEN (2003). A High Performance VLIW Processor for Finite Field Arithmetic. In Proc. of The

10th Reconfigurable Architectures Workshop (RAW—03).

This dacu

and lam

osted elsewhere without the explicit written per-

(Last update 2016/05

Abstract

5

Finite field arithmetic forms the mathematical basis for

variety of applications from the area of cryptography
ad coding. For finite fields of large extension degrees (as
¥ cryptography), arithmetic operations are computation
rﬁenswe and require dedicated hardware support under
f/en timing constraints. We present a new architecture of
1|gh performance VLIW processor that can perform basic
ld operations in parallel as well as complex instructions
s needed for elliptic curve cryptography. The control path
microcoded, so the instruction set can easily be modi-
igd or extended. The modular data path structure along
ith an FPGA-optimized design facilitate adaption to vari-
s resource and timing requirements.

z
o
2
<
E
al
)

hmmg‘

afergy d

y (»f-ﬂ\es?ncwntq-_vﬁ_ll
ht holdef/And GD p

opy-CeackSop

that Qing

I ntroduction

5z : Algorithms from the areas of cryptography and coding
‘rmke excessive use of finite field arithmetic operations. Due
@fundamental differences in finite field and integer arith-
[mgtic, pure software solutions are usually inefficient since
@éneral purpose processors are designed for integer arith-
metic. This holds especially for fields with large prime ex-
fensions.
, [1] we have presented a modular processor architec-
ure for elliptic curve operations based on the finite field
EF(2191) which was designed using bit serial multipliers.
1 rfuthis work, we present a new processor architecture that
de5|gned as coprocessor for efficiently computing finite
igld operations in GF(223%). (This finite field is advised
NIST for future designs of elliptic curve algorithms and
arded to be secure for next years.) The main characteris-

s of the new processor design are

thesdwo

P

ans l"ﬂ!\m tin
menczu b&

Functional data path units can be used independently
and in parallel (VLIW architecture)

provide
rk ona

This work has been supported by DFG Sonderforschungsbereich 376
assive Parallelitat.”

A High Performance VLIW Processor for Finite Field Arithmetic

C. Grabbe, M. Bednara, J. von zur Gathen, J. Shokrollahi, J. Teich
University of Paderborn, Paderborn, Germany
{grabbe, bednara, teich} @date.upb.de, {gathen, jamshid} @upb.de

e A single pipelined parallel hybrid-Karatsuba multi-
plier that performs a multiplication in GF(2233) in 9
clock cycles

e A large crosshar switch as flexible interconnection
structure between all functional units

e Hierarchical microcoded control path with VLIW-style
low-level instructions as well as complex elliptic curve
instructions

The processor design is optimized for FPGA designs,
especially the control path makes use of dedicated on-chip
memories of modern FPGAs (for our design, we used a
Xilinx Virtex-1I-E FPGA). The data-path design is kept
modular and can be adapted to various timing and area
constraints, since the implementation of finite field opera-
tions allows for many degrees of freedom (see Section 3).
Furthermore, the microcoded control path can easily be
extended with new instructions.

The main operation in elliptic curve cryptography appli-
cation is the operation £ x P, i.e. the multiplication of
a curve point P with a large integer & (in our case, K is
a 233bit integer). This operation is much more complex
than a normal integer multiplication and is performed on
different abstraction levels. In contrast to other approaches,
which allow the programmer just to access the highest
(algorithmic) level, our processor provides an interface
to each abstraction level. That means, on the algorithmic
level, we provide a system call of the form curve_mult
(param) which performs a complete k£ x P operation. On
the curve level, the basic curve operations can be accessed
via the curve_add (param), curve_double (param) and
invert_point (param) system calls. On the finite field level,
the user can access low-level field operations provided by
system calls as gf_add (param), gf_square (param) etc.

For the low-level field operations we use VLIW instruction
words since the data path can perform up to three different
field operations in parallel (except for field inversion which
is decomposed into a sequence of other field operations).
All instructions of the higher levels use complex non-VLIW
instruction codes that are translated into a sequence of basic

field operations by the internal microcoded control path.

The paper is organized as follows. Section 2 discusses
some related work. In Section 3 we give a very short intro-
duction into the ideas of elliptic curve cryptography. In Sec-
tion 4 we show the architecture of our processor in detail,
while Section 5 describes the instruction set. In Section 6
we give an overview of the current project status and some
performance results. Section 7 is a summary.

2. Related work

There are some other works concerning the pro-
grammable or microcoded implementations of elliptic curve
coprocessors. Three of these works are [6], [4], and [3]. [6]
uses the normal basis to represent the finite field. It uses
the Massey-Omura multiplier with n clock cycles to mul-
tiply two elements of GF(2™). [4] uses triangular basis
and [3] the polynomial basis. All of these implementations
are based on small area implementations and use all of the
arithmetic modules in a iterative manner.

The goal in our implementation is using the resources
of large FPGAs for the best performance. To achieve this,
our design uses a fast multiplier which performs the total
multiplication in a few clock cycles. This multiplier and
other arithmetic units can be used in parallel to achieve the
best performance. Generally, the whole processor design is
optimized to exploit the inherent parallelism of the elliptic
curve multiplication algorithm. To our knowledge, this is
the first FPGA based parallel processor for 233bit operands.

3. Elliptic Curve Cryptography

This section gives a short introduction into the applica-
tion of elliptic curves in the area of cryptography [2].
The points of an elliptic curve defined over a finite field
form a finite group, and the group operation is point addi-
tion. The basic operation in elliptic curve cryptosystems is
the computation of m®P, where P is a point and m a (large)
integer. The computation of mP is done as a sequence of
repeated point additions and doublings. Elliptic curve cryp-
tosystems (ECCs) rely on the fact that solving the discrete
logarithm problem on an elliptic curve is a hard task. That
means, for a given P and m, computing mP is of polyno-
mial complexity, but computing m from only P and m® is,
in general, assumed to be infeasible in polynomial time [7].
Some care has to be taken in order to avoid special curves
with easy discrete logarithms. For a field of characteristic
two, the minimum number of bits required to represent the
finite field elements is recommended to be larger than 160 to
resist "generic” attacks. ECCs defined over such fields are
assumed to be as secure as RSA systems with 1024 bits [2].

The short keys make elliptic curve cryptosystems attractive
in communication systems with tight bandwidth limitations.
Fig. 1 shows that the point multiplication naturally decom-
poses into a hierarchy of three levels. The upper levels
use essentially the subroutines provided by the lower lev-
els. Each level can be optimized in order to meet the given
area/performance constraints.

Point multiplication:
Double and add method, addition subtraction chains.

Point addition and doubling:
Selection of point representation method.
Affine, projective, Jacobian, or mixed representation.

Finite field arithmetic:
Selection of basis, multiplier and inverter structures.

Figure 1. Hierarchical levels of elliptic curve
point multiplication.

There are several ways to implement the two topmost
levels of the hierarchy. There are several point representa-
tions, which can influence the performance of point addition
and doubling. Windowing methods based on precomputa-
tion can also be used to improve point multiplication per-
formance. A hardware which is required to use all of these
possibilities, should have a flexible structure. Such a flexi-
bility can be achieved using a microcoded architecture.

4. Processor Architecture

An architectural overview of the processor design is
given in Fig. 2. The host processor communication is
done via two memories. The program memory holds the
sequence of instruction words to be executed. Each in-
struction word is 64 bits wide, independently from its type
(VLIW/non-VLIW).

The operand memory holds all parameters necessary for ex-
ecution, i.e. the finite field elements for the low-level oper-
ations and the curve parameters for the elliptic curve opera-
tions, respectively.

Both memories can be accessed by the host processor via
memory mapped i/o or i/o-channel, depending on the host
processor system.

4.1 Control Path Architecture

The control path (Fig. 3) consists of two subunits:

e (1) level _O_ctrl is responsible for instruction fetching,
parts of the instruction decoding and program memory

‘ host interface ‘

instruction
memo

control path r—

operand memory

datapath

ec extension

Figure 2. Processor architecture

addressing. All non-arithmetic instructions like jump
and host data transfer are handled by level _0_ctrl. Each
instruction fetched is analyzed with respect to its type
(data transfer, VLIW arithmetic, curve arithmetic) and
forwarded to the appropriate unit.

e (2) level_1_ctrl is a microcoded control unit that trans-
lates all instructions for curve arithmetic and finite
field inversion into a sequence of micro instructions.
The complex instruction set of the processor can be
extended by modifying the level _1_ctrl microcode.

Generally, the code sequences stored in the microcode
memory could also be executed from the program memory.
In this case, each micro instruction becomes a VLIW in-
struction. Decoding of these instructions, however, requires
some clock cycles while the micro instructions do not need
to be decoded. So, for long instruction sequences (as re-
sulting from the curve operations) are executed much more
efficient as microcode than from the instruction memory.
On the algorithmic level of the curve multiplication, we use
the double&add method, where each bit of the integer & de-
termines the curve operations that has to be performed in
a certain step of the computation. An additional unit called
ec_extension holds the integer k and allows for a subsequent
examination of all bits of k.

4.2 Data path Architecture

The data path of our processor consists of 3 arithmetic
units:

e A hybrid Karatsuba multiplier unit that multiplies two
field elements. A complete multiplication requires 9
clock cycles and the multiplier has a pipeline rate of 2,
i.e. each two clock cycles new operands can passed to
the multiplier, so a single input port for both operands
is sufficient.

e An adder unit which performs a complete addition of
either two or three operands in one clock cycle

instruction

level _0_ctr

]

control vector

datapath

ec_extension

level_1_ctrl ¢

control path !

Figure 3. Control path architecture

e A squarer unit that performs a squaring in one clock
cycle

Furthermore, we have two independently addressable
register files (rfA and rfB) with four 233bit registers each.
One of the rfA registers is connected to a comparator that
generates a flag if the operand stored in this register is zero.

N N 7x7 crossbar
, | ¢ | . .
| Z P
=] L
=S
(] >
=
o
c >
[
(7]
Q v vy v v v v v
° j
’multHadstqr‘ ’rfA:rfB‘
——— | \ ‘

Figure 4. Data path architecture

As shown in Fig. 4 these units are interconnected via
a 7x7 unidirectional crossbar switch that can connect the
output of each data path unit to the input of any other (or
the same) data path unit in parallel. The crossbar is also
connected to the read interfaces (memA and memB) of
the operand memory. This memory stores 64 operands of
233bit each, so the crossbar can read two operands from the
memory and pass directly to any data path unit. For simpli-
fying the crossbar design, we restrict that each input of an
arithmetic unit or register file can be connected only to one
memory interface instead of both. With a proper operand
memory addressing scheme, this restriction does not result
in a performance loss. Write access to the memory is possi-
ble only via a single write port that is connected to the out-
put of register file rfB (the second write port of the operand
memory is reserved for host communication).

Each arithmetic unit contains an output register that stores
the result of the operation as long as no new operands are
loaded (for adder and squarer) or for two clock cycles (for
the multiplier). Thus, operands for any arithmetic unit can
be read directly from another (or the same) arithmetic unit
without storing the result in the register file (which can be
done in parallel, however). *

The data path is controlled via a 50bit control vector gener-
ated by the control path. The control vector is described in
Section 5.

5. Instruction Set

The instruction set of the processor is divided into 3
groups:

e control instructions like jmp and host communication
instructions

e complex instructions for curve operations and field in-
version

o low-level VLIW instructions

T 7 7]

header multiplier —adder squarer register memory memory
slot slot slot slot port A port B
slot slot

Figure 5. Instruction word

51 VLIW Instructions

For the VLIW instructions, each instruction word con-
sists of a number of so called slots (Fig. 5), where each slot
is assigned to a data path unit. As an example, the adder
slot consists of the following bits:

e doa (do addition): indicates that an addition has to be
done

e addmode: selects the number of addition operands (2
or 3)

e add_cba, add_cbb, add_cbc: crossbar addresses for the
operands A, B, and C. Each address consists of 3 bits
and selects one data source for the adder. If only 2
operands are needed, add_cbc is ignored.

L1t should be noted that it is in the programmer’s responsibility to pro-
ceed with the results of arithmetic units as long as they are available in the
result register, since they will be overwritten when the next result becomes
valid.

The slots for the multiplier and squarer are similar,
while the memory and register file slots consist of mem-
ory/register addresses, crossbar addresses and write enable
bits.

Example 5.1. Consider an addition of 3 operands, with one
operand from memory port B, one from register file rfA, and
one from squarer output register. The doa bit must be set in
order do perform an addition, the addmode bit must be set
accordingly for 3 operands. All crossbar addresses must be
set to select the operand sources.

Furthermore, in the rfA slot the address of the required
operand register must be set as well as the port B address in
the memory slot. 2 The VLIW assembler instruction would
be

add nenb, rfa, sqr; rfa(3); nmenb(0x10);

The add opcode indicates an addition instruction, the three
operand mnemonics give the crossbar addresses, and the
rfa and memb keywords give the register and memory ad-
dresses, respectively. Additionally to the add instruction,
the same instruction word could also contain one multipli-
cation, one squaring and two load/store operations. Here,
the according slots are not used and the assigned data path
units perform a NOP operation.

The header slot is required by level 0_ctrl for instruction
decoding. All bits except for the header are used directly as
control vector for the data path without further decoding.
The data path structure allows for the execution of one
VLIW instruction per clock cycle, but it must be taken into
account that a multiplication requires 9 clock cycles. Dur-
ing the multiplier latency, of course, other VVLIW instruc-
tions (also multiplications) can be started. Furthermore it
must be taken into account that the multiplier has only one
input which requires the operands to be loaded serially. The
first step of a multiplication is loading the first operand, the
second step is loading the second operand and triggering the
multiplication.

5.2 Complex Instructions

The complex instructions for curve operations are
e ec_nul t (curve multiplication)

e ec_add (curve point addition)

e ec_dbl (curve point doubling)

e ec_i nv (curve point inversion)

2Actually, the memory address must be set in the previous instruction
word due to a 1-clock cycle output latency of the operand memory.

Additionally, we have a complex instruction gf _i nv for the
inversion of a finite field element. Although this is a finite
field operation, it is so complex that it must be realized as a
level_1_ctrl microprogram.

Curve instructions expect the required operand sets in a
fixed order of addresses in the operand memory. The ad-
dress space of the operand memory is sufficient to hold two
complete parameter sets for a ec_mul t instruction. Thus,
the only argument to ec_mul t is the parameter set base
address, which results in a much simpler instruction word,
most of the bits are not used. The ec_add and ec _dbl also
require a base address as single parameter.

6. Project Status and Performance Results

Currently, the data path and operand memory of our pro-
cessor is completely simulated and synthesized for a Xil-
inx XC2V6000 FPGA. With a slightly timing optimization
and placement constraints, we could achieve a clock pe-
riod of about 100MHz. The design requires 19440 LUTs
(28%) and 16970 slice flipflops (25%). The control path is
a VHDL simulation model which is currently being opti-
mized for FPGA synthesis. Since the control path complex-
ity is much less than the data path complexity, we expect
lower delays and thus a clock frequency of about 100 MHz
(limited by the data path) for the complete design.

The host interface highly depends on the host processor sys-
tem. For prototyping purposes, we use a very simple in-
terface connecting the coprocessor to a Texas Instrument
C6701 DSP via an 8 bit serial interface. This interface al-
lows not for memory mapped i/o.

We will finish the complete implementation of the proces-
sor design including the micro code for the final version of
this paper.

6.1 Elliptic Curve Performance

On the algorithmic level of the elliptic curve k& x
P operation, we use the double&add method and the
Affine/Jacobian hybrid coordinate representation (For an
analysis of different hybrid coordinate representations see
[1]).

The data flow graph for an elliptic curve point doubling
operation is shown in Fig. 6. The inputs z, y and a are curve
parameters, m and M denote a multiplication, A an addi-
tion and S a squaring. Executed by the level 2_control unit,
the complete point doubling operation requires 31 clock cy-
cles, while a complete point addition operation (which is
much more complex) requires about 42 clock cycles. The
double&add method subsequently evaluates all bits of the
integer k£ and performs a point doubling operation in each
step and a point addition if the currently evaluated bit of is
one. In the average case, half of the bits of k£ are one, so we

@ WD ®
w2 e
@ & / w3
NG
5y
33

Figure 6. Data flow graph of an elliptic curve
point doubling operation

have a total of 233 point doublings and 117 point additions.
Assuming a 100MHz clock rate, this requires 120usec with
our processor. At the end of the complete & x P operation,
a coordinate transformation of the point coordinates back to
the affine representation is necessary. This requires a finite
field inversion which is the most complicated field opera-
tion and thus realized as a level 2_ctrl microprogram.

For field inversion, we use the algorithm presented in [5]
which is based on addition chains. This algorithm requires
15 subsequent field multiplications which are all dependent,
thus we can not exploit the pipelining structure of the Karat-
suba multiplier. This causes additional time of 1.35usec.
To our knowledge, this is the first FPGA based field arith-
metic processor for 233bit operands, to a comparison of
these results to other approaches is currently difficult.

7. Summary

We have presented a new high performance processor
architecture for finite field operations in GF(22%?3) and el-
liptic curve operations used for cryptography. Since these
operations are very computation intensive, our goal was the

exploit the inherent parallelism of these algorithms as far
as possible. So we have designed a VLIW-style processor
with a data path that can compute up to 3 different finite
field operations in parallel. We use a very fast hybrid Karat-
suba multiplier for field multiplication and a large crossbar
switch for interconnecting the data path units. The hierar-
chical control path is microcoded and can execute low-level
VLIW operations as well as complex elliptic curve opera-
tions. Changing the microcode of the control path can be
easily extended by new instructions.

We have implemented parts of the design on a VIRTEX-1I
FPGA and achieved a clock rate of about 100MHz allowing
for a complete 233bit elliptic curve multiplication in less
than 130usec.

In contrast to other processors, we provide the program-
mer with functions for the high levels of elliptic curve al-
gorithms as well as for the low-level finite field operations.
So, the processor can also be used for efficient implementa-
tions of other finite field based algorithms from the area of
cryptography or coding theory.

References

[1] M. Bednara, M. Daldrup, J. Shokrollahi, J. Teich, and J. von zur Gathen. Re-
configurable implementation of elliptic curve crypto algorithms. In Proc. of The
9th Reconfigurable Architectures Workshop (RAW-02), Fort Lauderdale, Florida,
U.S.A., April 2002.

[2] lan Blake, Gadiel Seroussi, and Nigel Smart. Elliptic Curves in Cryptography.
Number 265 in London Mathematical Society Lecture Note Series. Cambridge
University Press, 1999.

[3] James Ross Goodman. Energy Scalable Reconfigurable Cryptographic Hard-
ware for Portable Applications. PhD thesis, Massachusetts Institute of Technol-
ogy, August 2000.

[4] M.A. Hasan and A.G. Wassal. VIsi algorithms, architectures, and implementa-
tion of a versatile GF'(2™) processor. |IEEE-TC, 47(10):1064-1073, October
2000.

[5] T. Itoh and S. Tsujii. A fast algorithm for computing multiplicative inverses
in GF(2™) using normal bases. Information and Computation, 78:171-177,
1988.

[6] K.H. Leung, K.W. Ma, W.K. Wong, and P.H.W. Leong. FPGA Implementa-
tion of a Microcoded Elliptic Curve Cryptographic Processor. In Proceedings
of the IEEE Symposium on Field-Programmable Custom Computing Machines
(FCCM), pages 68-76, Napa Valley, California U.S.A., 2000.

[7] Alfred J. Menezes, lan F. Blake, XuHong Gao, Ronald C. Mullin, Scott A. Van-
stone, and Tomik Yaghoobian. Applications of finite fields. Kluwer Academic
Publishers, Norwell MA, 1993.

