J. Symbolic Computation (1990) 9, 429-455

Analysis of Euclidean Algorithms
for Polynomials over Finite Fields

KEJU MA
JOACHIM VON ZUR GATHEN

Department of Compuler Science, University of Toronto
Toronto, Ontario M5S 144, Canada

This paper analyzes the Euclidean algorithm and some variants of it for computing
the greatest common divisor of two univariate polynomials over a finite field. The
minimum, maximum and average number of arithmetic operations both on poly-
nomials and in the ground field are derived. We consider five different algorithms
to compute ged(Ay, As) where Ay, A3 € Zs[xz] have degrees m > n > 0. Com-
pared with the classical Euclidean algorithm that needs on average %n + 1 poly-
nomial divisions, two algorithms involving divisions need on average %ﬂ + O(1)
and %n + (1) polynomial divisions; two other algorithms use an average of
%m + %n + 0O(1) and i-m + %n + O(1) polynomial subtractions and no divisions.

1. Introduction

y. It is understood that all persons copy- ~each copyright holder, and in particular use them only for noncommercial pur- mission of the copyright holder. (Last update 2016/05/18-14 :22.)

polynom.lal ged problem is to compute the greatest common divisor of any two non-
polynomials over a unique factorization domain. Many sequential and parallel al-

fS or byTther copyright holders, notwithstanding that ing any of these documents will adhere to the terms and constraints invoked by poses. These works may not be posted elsewhere without the explicit written per-

8023 1.

ere eleclmmcall

alysis of Egﬁlidean Algorithms for Polynomials over Finite Fields. Journal of Symbolic Computation 9, 429-455. URL

grfgghms for this problem—all based on the Euclidean algorithm—are well known in the
ﬁltﬁ*gm ure (e.g. Collins 1967; Brown 1971; Brown & Traub 1971; Aho et al. 1975, ch. 8;

b—'ﬁ

-
ham

1981, ch. 4; Borodin et al. 1982; Strassen 1983; von zur Gathen 1984).
Fhe classmal Euclidean algorithm for integers has been investigated in considerable
Lamé (1844) established an upper bound on the number of divisions. A much
] cnmplex analysis on the average number of divisions in the Euclidean algorithm was
d out by Heilbronn (1968) and Dixon (1970). Collins (1974) analyzed the computing
uf the Euclidean algorithm on multiple-precision integers. We refer the reader to
h (1981, ch. 4) for an excellent review.
tein (1967) discovered an interesting algorithm called the binary Fuclidean algorithm
gomputing the ged of two integers (Knuth 1981, p. 321). Unlike the classical Euclidean
ithm, this algorithm does not use divisions, but requires the arithmetic operations
btraction and right shifting (dwmmn by 2), and hence is faster than the classical
pyithm in each iteration. llowever, an exact analysis of this algorithm seems to be

gl

HEN (19
SE747-

%

ly

of séhelarl
alghis Tesein
o

RG
dn linati
nghgm

1

QACHIM YQN.ZU
& 19"
it

&l or
das 3 means (o ensue i
mr&ﬂmb@;p

gork o5 nofor

Ma & J
i
s documentis p«@e

i
m%ca

K
h
I'hi

This work was partly supported by National Science and Engineering Council of Canada, grant 3-650-
126-40, and Fundacion Andes, beca C-10246. Part of the second author’s work was done during a visit
to Pontificia Universidad Catdlica, Santiago, Chile, and as a Visiting Fellow at the Computer Science
Laboratory, Australian National University, Canberra, Australia.

0747-7171/90/040429 + 27 $03.00/0 © 1990 Academic Press Limited

430 K. Ma and J. von zur Gathen

very difficult to obtain. To date, there has been a discrete model and a continuous model
which describe the average behavior of the algorithm under some reasonable assumptions,
proposed by Knuth (1981, pp. 330-336) and Brent (1976) respectively.

In this paper we examine the classical Euclidean algorithm and some variants analo-
gous to the binary Euclidean algorithm for computing the ged of two polynomials over a
finite field. The Euclidean algorithm for polynomials is essential to symbolic and algebraic
computing (Collins 1967; Brown 1971; Knuth 1981, ch. 4). Tn Section 2, we determine
precisely the minimum, maximum and average number of polynomial divisions and arith-
metic operations in the ground field used in the Euclidean algorithm, depending on three
parameters: the degrees of two input polynomials and the size of the ground field. We
assume that “synthetic” polynomial division is used.

For the average-case analysis of algorithms, a difficulty is often to find an undisputed
meaning of what the “average input” is. In our case, this is quite simple: up to a fixed
degree, there is only a finite number of polynomials, and we consider each of them to be
equally likely. All algorithms in Sections 3 to 6 require an “initialization” step, and we
consider only inputs for which this step is irrelevant.

In Section 3 we analyze one variant of the Euclidean algorithm called the indetermi-
nate shift Euclidean algorithm for an arbitrary finite field. The main feature of the new
algorithm is to use indeterminate shifting (divisions by) to speed up compuling time;
that is, one removes all factors z from the resulting polynomial remainder after each divi-
sion. A careful analysis shows that the algorithm runs on average faster than the classical
Euclidean algorithm. In Section 4 we consider the linear Jactor shift Euclidean algorithm
which performs linear factor shifting so that all linear factors are removed from the result-
ing polynomial remainder after each division. The two new algorithms in Sections 5 and 6
are the polynomial analogs of the binary Euclidean algorithm for integers. The subtractive
indeterminate shift algorithm in Section 5 uses only polynomial subtractions, but requires
indeterminate shifting after each subtraction. The subtractive linear factor shift algorithm
in Section 6 uses polynomial subtractions and performs linear factor shifting after each
subtraction.

Exact average-case as well as best-case and worst-case analyses are performed for all
algorithms in Sections 4 to 6 over the finite field Z,. In comparison with the classical
Euclidean algorithm for computing polynomial ged’s over 7, we show that the linear
factor shift Euclidean algorithm runs twice as fast as the Euclidean algorithm in the sense
of average number of polynomial divisions used, and the subtractive linear factor shift
algorithm uses less polynomial subtractions than the Euclidean algorithm uses polynomial
divisions.

Sections 2 through 6 all follow the same pattern. We first describe an algorithm, then
state several theorems about its average cost, followed by a few remarks. After this, a
lemma states the distribution of results of one basic step in the algorithm on random
inputs, and a corollary expresses this as transition probability in a “lattice” (as explained
in Section 3), and finally proofs of theorems. Out of space considerations, some theorems
are left unproven; detailed proofs are in Ma (1987). At the end, we discuss the best and
worst cases.

For many applications, such as inversion in a finite non-prime field, (rational, Hermite)
interpolation, Padé approximation (see von zur Gathen 1986), and the decoder implemen-
tation of a variety of error-correcting codes (MacWilliams & Sloane 1977), one needs the
“Extended Euclidean Algorithm” for (A1, Az), which also calculates polynomials §; and

Euclidean Algorithms 431

T; for every remainder A; with S; A; + T; A2 = A;. It is easy to “extend” our algorithms
in this sense; we do not do this here.

The main purpose of this paper is to show that we can determine exactly the average-
case behavior of nontrivial algorithms.

2. The Classical Euclidean Algorithm

Let F be a finite field with p elements (so that p is a power of a prime), and let F[z] be
the polynomial ring over F in the indeterminate z. For 0 < n < m, let P,, = {4 € F[z] |

deg A =m} and Py = Py X Py. Then #Py » = (p—1)*p™t". Applying the polynomial
" Fuclidean algorithm to an inputl (A;, A3) € P, », we obtain a unique polynomial quotient
sequence (Q1,...,&Q+_1) and a unique polynomial remainder sequence (As,..., A;) such
that

Ay Q143 + As,
Az = QA3+ As,

S (1)
Aig = QiaAi1+ Ay
Aimr = Qiady,

where A; # 0, deg A;4y < degA; for 1 < i < t. If a € F is the leading coeflicient of Ay,
then ged(Ay, A2) = A;/a is the monic scalar multiple of A,.

Let n; = deg@; for 1 € i < t and ny = deg A;. Then (nq,...,nt) has the following
properties: my =m—mn, n; >0, n; >0(1<i<t), Siony=mn,2<t<n+2-ne. Each
polynomial pair (A;, Ay) has an associated extended quotient sequence (Qy, ..., Q¢—1, A¢),
which is called by Knuth (1970) the Fuclidean representation of (A, A1), and (n1,...,n;)
is the Euclidean representation pattern of (A1, Az).

The Euclidean algorithm establishes a bijection between the set of polynomial pairs
(A1, A2) in Pp, whose Euclidean representation is (n1,...,ns) and the set of finite se-
quences of t > 2 polynomials (@, ...,@¢-1, A¢). There are precisely (p—1)* p™ polynomial
pairs (A1, A3) in Pp, whose Euclidean representation pattern is (nq,..., 7).

Let 0 < n < m, (u,v) € P n, and v # 0. For any operation w € {+, —, x}, let d“(u,v)
denote the number of operations w used in the “synthetic” polynomial division algorithm
for the division of u by v (Knuth 1981, p. 402). Then

d¥(u,v)=m—-—n+1, d7*(u,v)=n(m-—n+1). (2)

In particular, all inputs (u#,v) € Pp, » uss the same number of arithmetic operations in
F'. For any operation w € {+, —, x}, the computing time ¢ of the Euclidean algorithm is a
function from P, , to N such that for any input (A, Az) € Py n, 1¥(Ay, Ag) is the number
of operations w performed in the Euclidean algorithm where each polynomial division is
carried out by the “synthetic” polynomial division algorithm. Furthermore, tdi"(A 1,A2)
denotes the number of polynomial divisions used.

432 K. Ma and J. von zur Gathen

THEOREM 2.1. For 0 < n < m and w € {div,+,—, x}, the average number t9e(m,n, p)
of operalions w performed on (uniformly distributed) inputs from P, , satisfies

Il

(1 = l/p)n-}-]-1
m+(1-1/p)n+1-(1-p™)/(p-1),
mn—(3)/p—n/(p—1)+p(1-p~")/(p— 1)

tove(m, n, p)
tive(m, n, p)
tave (M, 1, p)

REMARK 2.2. Knuth (1981, Ex. 4.6.1—4) obtains a similar result on tave(m,n,p). The
fastest known algorithms to compute the Euclidean representation are based on a divide- *
and-conquer technique (Lehmer 1938) and use O(m log? n log log n) arithmetic operations
(Knuth 1970; Schénhage 1971; Moenck 1973). Strassen (1983) gives a detailed worst-case
analysis and proves amazingly precise matching lower bounds.

AVERAGE CASE ANALYSIS OF THE EUCLIDEAN ALGORITHM

For0 < n < m,let r: Py, , — 2{01n=1} e the mapping such that T(Ay, Ag) = {deg 4; |
3 <i <1}, where (Ag,..., 4,) is the resulting polynomial remainder sequence of (A;, Aj)
in the Euclidean algorithm. For any subset § of {0,1,...,n — 1} of size t — 2, say § =
{s3,...,8} with 83 > 84 > .+~ > 5,, we have #r-1(8) = (p—1)'p™. i (A1, A7) = S, then
(A1, A2) has the Euclidean representation pattern (m —n,n — 83,83 — 84,...,8,_1 — 84, 8¢).

LEMMA 2.3. For 1 < n < m, let (Ay, A3) be uniformly distributed in Ppp and § =
T(Ay, A2). Then the n evenls “k € §7 (0 £ k £ n—1) are independent, and each occurs
with probability 1 — 1/p.

Proor. Let P,fm = {(A1,4;) € Poun |k € 7(Ay,A2)}. Forany S C {0,...,n — 1} with
k¢ S, wehave #r-1(SU{k}) = (p—1) #7-1(S). Thus #PL o= (1=1/p) #Pprn.]

Since Pr{0 € §] = Prgcd(Ay, A2) = 1], we obtain the following important proposition
(see Knuth 1981, Ex. 4.6.1—5).

PROPOSITION 2.4. For 1 < n < m, let (A1, A3) be uniformly distributed in Prn. Then
Ay and Aj are relatively prime with probability 1 — 1/p.

PROPOSITION 2.5, For 0 < k < n < m, let (A1, Az) be uniformly distributed in Foine
Then

Eellonand s Ay ST HOST G &
Proor. For 0 € k < n, it follows from Lemma 2.3 that
Pr{degged(Ar, Az) = k] = Pr{k € S,k—1¢ S,...,0¢ §] = (1= 1/p) p~*,
Prldeggcd(A;,A;) =n] =Prln—1¢5,...,0 g 8] =" o

COROLLARY 2.6. For 0 < n < m, let (A, Az) be uniformly distributed in P Then the
average degree of ged(Ay, Ag) is (1= p~™)/(p—1) < 1.

Euclidean Algorithms 433

Proor. E[degged(Ay, A2)] = Sh_o k X Pr[degged(A4y, A7) = k). m]

Proor orF THEOREM 2.1. For w € {div,+,—, X} and (A;,A3) € P, with resulting
remainder sequence (Aj,...,A;) and § = 7(4;,4;) = {deg4; | 3 < i <t} C {0,1,...,
n — 1}, we have defined the following functions t% : Pp, , — N:

1“(A1, A7) = E d”(deg A;,deg Aiyq) = d¥(m,n) + Z d“(deg A;,deg Ai.),
1<i<t 2<ict

* where d4¥(j,k) = 1, d*(j,k) = j —k+ 1,and d=%(j,k) = k(j -k + 1) for0< k< j <
m. Thus (4¥(A;, A;) equals the number of polynomial divisions used in the Euclidean
algorithm, (A, A;) equals the number of operations + used in the ground field, and
“ t7%(A4, Ay) equals the number of operations —, X used.

In order to derive t%,.(m, n, p), the average value of t“(A;, Az) with (A;, A3) uniformly
distributed in P, », we define the following random variables d¥ and e, (0 < k < n—1):

= d“(deg A;,deg A; 1), if deg A;yy =k € S for some 1,
il 0, ifk¢s,

S deg A;, if deg A;{; =k € S for some 1,

A ifk¢s.

By Lemma 2.3, the events “k € S” (0 £ k < n — 1) are independent and each occurs
with probability 1 — 1/p. Therefore, for k+1 < j < n— 1,
Prlex=j] = Pr[j€S5,j-1¢5,j-2¢5,....k+1¢8|keS]
= (1-1/p)p**',
Prlex=n] = Prln—1¢8n—-2¢S5,....k+1¢ 85 |ke8)=ptn.

These expressions depend only on j—k and n—k, and thus for fixed k and k+1 < j < n,
the probability that e; = j equals the probability that degged(u,v) = j —k —1 with (u,v)
uniformly distributed in P, ,,_g—1. By Corollary 2.6,

Y Prlep=jlx(G-k-1)=1-p"*"")/(p-1). (3)
k<j<n

By definition, E[d{] = k¢ ;<, Prler = j] X d“(j, k), and hence

ae(m,n,p) = d“(m,n)+ Y Prlk € §]x E[d]

O<k<n
= d'(m,n)+(1-1/p) 3, > Prlex = j] x d°(j,k).
0<k<nk<j<n
We distinguish the following three cases for w € {div, +, -, x}.

Case 1: w = div. Then E[d§"] = 1, and t3¥(m,n,p) =1+ (1 - 1/p) n.
Cuase 2: w = +. Then

t:,,e(m,n,p) = ?n_”"*'l'l'(l_l/p) Z Z Pr[ekzj]X(j—k‘-I-l)
U£k<nk(j5n

434 K. Ma and J. von zur Gathen

m-n+1+(1-1/p) Y [2+ Y Prig=jlx(G-k-1)

0<k<n k<j<n

= m-n+1+(1-1/p) Y [2+(1—p*"™)/(p-1)], by (3)
0<k<n

= m+(1-1/p)a+1-(1-p™)/(p-1).

Case 8: w = —, X, Then

tave (Mym,p) = n(m—n+1)+1-1/p) 3 k 3 Prlex=j1x(G-k+1)
0<k<n k<j<n
= n(m-n+1)+(1-1/p) Y k241 -p**""")/(p-1)], by (3)
0<k<n
= mn=-()/p-n/(p-D+p(1-p™)/(p-12 ©

BEST AND WORST CASE OF THE EUCLIDEAN ALGORITHM

THEOREM 2.7. For 0 < n < m andw € {div,+,—, x}, let t*; (m,n,p) and t*_ (m,n,p)
be the minimum and mazimum number, respectively, of operations w used on inputs from
Ppn. Then

tﬁ{]“;l(m’ n,p) =1, tdv (m,n,p)=n+1,
tr:;.in("'”“' s p) =m-n+1, t;ax(mw n,p) =m+n+1,

ton(m,n,p)=n(m—n+1), t5X(m,n,p)=mn.

Proor. For w € {div,+,—, x} and (Ay, A2) € Py, recall the definition of t“(Aq, A3) in
the proof of Theorem 2.1. For 0 < k<n—1landany § C {0,...,n— 1} with k ¢ S, it is
easy to see that t“(Ay, Az) < (*(Bi, By), where 7(Ay, A2) = S and 7(By, By) = S U {k}.
This reveals that t*(A,, A) is minimal if 7(A;, A2) = @ and maximal if 7(Ay, 4;) =
{0,...,n — 1}. The claims follow immediately from a simple calculation. O

The minimum computing time occurs in the Euclidean algorithm for the input (A1, Ay)
where A, divides A;. The maximum computing time occurs, e.g., for the input (A, Ag) =
(2™™ fn + fa-1,fn), where f, = Z‘L:gzj (“l_‘) 2" %! is the n* Fibonacci polynomial sat-
isfying the recurrence relation f, = 2 fo—y + fo—2 with fy =1 and f; = z. [If g, is the
n** Chebyshev polynomial of the second kind, then f, = (—/—1)" gn(vV/—1z).] This is
similar to the fact that the maximum computing time occurs in the integer Euclidean
algorithm for two consecutive Fibonacci numbers f,41(1) and f,,(1).

Collins (1974) shows that the maximum and average computing times of the integer
Euclidean algorithm are of the same order. This is also true for the polynomial Euclidean :
algorithm in the sense that for fixed m,n and w € {div, +, —, x} (see Theorem 2.1),

t:’ve(m’ n'-‘ p) =

Imax
A similar scenario occurs when the “degree size” m and n are of the same order of
magnitude as the “coefficient size” log p, since then:
L
Exi tave(m, 1, p) -
heTE tﬁ)mx(ma n’p)

Euclidean Algorithms 435

3. The Indeterminate Shift Euclidean Algorithm

For q,r € F[z] and i € N with ¢ € F and r # 0, let ¢' || r denote that ¢' divides r but
¢*! does not. Define # = r/z* for z* || rif r # 0, and 0 = 0. For 0 < n < m, also
let B, = {A € P, |zt A} and P, , = P, x P,. The indeterminate shift Euclidean
algorithm is formulated as follows.

ALGORITHM 3.1. For 1 € n € m and the input (Ay, A2) € Pp n, this algorithm computes
g{'.d(A‘| 5 Ag).

1. [Initialization] For z'* || A; and z' || Az, let u — Ayfzh v« Agfa2 | — min(ly,1p).
If deg u < deg v then swap u and .

2. [Division and shifting] Find the remainder such that u = gv 4 r and compute 7. If
= 0 then stop and return ged(4;, 42) = z'v.

3. [Resetting] Set u + v, v +— 7, and go to step 2.
We shall prove the following results:
THEOREM 3.2. Let 1 < n < m and (u,v) be uniformly distributed in Pp . Then

_q= (=1 (p+ 1) (1-p?"), ifm>n,
Prasddn=ll= {[1 - 1/(i}3+ DN - "Zopl"z"/(p— 1)], #fm=mn.

REMARK 3.3. For (u,v) uniformly distributed in Py, »,
Jim Prged(u,v) = 1]=1-1/(p+1)>1-1/p.

Here 1 — 1/p is the probability that ged(u,v) = 1 with (u,v) uniformly distributed
in Ppn. In fact, the probability that ged(u,v) = 1 with (u,v) uniformly distributed in
Py is strictly greater than the same probability with (u,v) uniformly distributed in Py, ,,
when n > 3.

THEOREM 3.4. Let 1 < n < m. The average number (3Y(m, n,p) of polynomial divisions
used in Algorithm 3.1 on inputs from Pp, is [1 = 2/(p+1)]n + 1 + a(m,n,p), where
a(m,n,p) <1 with ,;h_.n;‘o a(m,n,p) =0 is given by

a(m,n,p) = { (p—p'=*)/(p+ 1')23 j if m > n,
& (P -2p-1-2p")/[(p-1)(p+ 1)}, ifm=n.

REMARK 3.5. By Theorem 2.1, the average number edi¥(m,n, p) of polynomial divisions

ave
used in the classical Euclidean algorithm with a uniformly distributed input from P, ,, is
(1-1/p)n+1. For 2 < n < m, t3i%(m, n, p) is strictly smaller than edi¥(m, n,p). However,

for fixed m,n and large p, both algorithms require n + 1 polynomial divisions for almost
every input in the sense that

Jim 53(m, n,p) = lim egii(m,n,p)=n+ 1.

436 K. Ma and J. von zur Gathen

For a fair comparison of the two algorithms, we should consider the average cost of
Algorithm 3.1 on inputs (A;, 4;) from P, ,, which by definition equals

z Priz" || 4] Prz" | Az) 3% (m = ty,n - la,p)

o<l <m

0<lz<n
with td¥(m —l;,n—Iz,p) = tdv(n—ly,m—1y,p)if m—1; < n—1s. However, a calculation
shows that this quantity equals [1 — 2/(p+ 1)]n + 1 + f(m,n,p), where B(m,n,p) <
a(m,n,p) < 1 with lim,_ B(m,n,p) = 0. Therefore, the average computing time of
Algorithm 3.1 with inputs from P, , is dominated by the computation for those inputs
from P, n.

THEOREM 3.6. Let 1 < n < m. The average number of arithmetic operations used in
Algorithm 3.1 on inputs from Py, ,, is

tave (Myn,p) = mn—n/(p+1)=[(P* +4p+1)/(p— 1) (p+ 1)*] n + v(m, n, p),
tave(myn,p) = m+[1=2/(p+1)]n+1+¢m,n,p),

where y(m,n,p) < 4 and ¢(m,n,p) < 1 are given by

Lo p e p(P*43p°+2p41)
7(m,n,p) = { *om + 2 g 2 i ’g(p_!fm c o 1)
y e 1 —-n 3—2n t12p°—2p2_2p—
~p-1 "+ poip (7 2) H Gl + 2B e
; 1-2n pa__p_l .
oy = (M g,
~oor TAGEP G t G oy U m =

REMARK 3.7. For w € {—, X, +}, let €%,.(m,n,p) be the average number of operations w
used in the classical Euclidean algorithm with a uniformly distributed input from B
Then Theorems 2.1 and 3.6 reveal that for fixed m,n and large p, both algorithms need
the same number of arithmetic operations in the ground field for almost every input, i.e.,
mn for operations —, x and m + n + 1 for operations <, in the sense that

p]i{:goe;‘::(m, n,p) = pllr]?;o tod(myn,p) = mn,
Jim ele(myn,p) = lim &5 (m,n,p) = m+n+1.

Consequently, Algorithms 3.1 does not attain a significant reduction in computing
time unless p is quite small. Tor the finite field F = Z, with only two elements, however,
the average computing time of Algorithm 3.1 is significantly smaller than that of the
classical Euclidean algorithm, as demonstrated in the following two facts (derived from
Proposition 2.4, Theorems 2.1, 3.2, 3.4 and 3.6 by letting p = 2).

Fact 3.8. Let FF = Z5, and the input (A1, A3) be uniformly distributed in P, , with
degrees m > n > 1 respectively. Then the probability that ged(Ar, A2) = 1is 1; the
average number of polynomial divisions used in the Fuclidean algorithm is 1n+41; the
average number of operations —, X used is mn — in? — 30 4 O(1); the average number
of operations < used is m + % n + O(1).

Euclidean Algorithms 437

FAcT 3.9. Let F = Z,, and the input (4, A3) be uniformly distributed in B,,,, with
degrees m > n > 1 respectively. Then the probability that ged(Ay, Az) = 1is 34+ 0(47™);
the average number of polynomial divisions used in the indeterminate shift Euclidean
algorithm is % n+O(1); the average number of operations —, x used is m n — in?-2¥ny
O(1)form > n,and mn—1n?— ¥ n+0(1) for m = n; the average number of operations

+used is m+ 3 n+ O(1).
AVERAGE CASE ANALYSIS OF ALGORITHM 3.1

. In order to analyze Algorithm 3.1, we use the lattice model suggested by Knuth (1981,
pp. 330-336) for examining the binary Euclidean algorithm for integers. Assuming that
(A1, Az) is uniformly distributed in .Pm‘ﬂ, we consider Algorithm 3.1 with input (A;, Ag).
. To every pass through step 2, we associate with (u,v) the point (degu, deg v) € N? and
trace the passage of the algorithm through points of the lattice N2. Throughout the
algorithm, we have z 4 u and z 1 v. If (u, v) is uniformly distributed in P;; and deg 7 = k,
then (v,7) is uniformly distributed in I"’j_;,. Thus an analysis of Algorithm 3.1 can be
performed by solving the following recurrence relation:

Spn = a + Z Pr{deg# = k] Spx, m>n> 1. (4)
0<k<n
This recurrence relation is quite informative about the indeterminate shift Euclidean
algorithm. It will follow from Corollary 3.12 that for Sno = 1, S,ny, is the average number
of polynomial divisions used for computing ged(Ay, Ag) if @ = 15 Sy, is the probability
that ged(A;, 42) = 1if @ = 0. Assuming the “synthetic” polynomial division algorithm
and free indeterminate shifting, Sy, is the average number of operations —, x performed
in Algorithm 3.1ifa = n(m—n+1) and §pg = 0; S,.,, is the average number of operations
+ifa=m-n+1and S,0=n+ 1.

Let R, = {A € Flz] |deg A < n}, R, = {A € R, | A(0) # 0}, and R® = R, — R,.
Fork > 0,v € P, and r € Ry, also let Qi(v,r) = {q € Py | q(0) v(0) + r(0) # 0}. Then
_ [p—2, ifk=0,
#Qk(‘u,r] =3 {(P- l)ipk—l, if k> 1. (5)

Forw € {+,x} and F, F; C Flz], let FwF; = {fiwfo | /i € Fi, fo € F3}. The
following lemma expresses in our notation the unique existence of quotients and remainders
in polynomial divisions.

LEMMA 3.10. Let 1 <n < m and v € P,. Then

B, = ({1;} R P R:;:) U (U v} X Qmen(v,r)+ {r}]) is a disjoint union.

Teﬁn
CoRrOLLARY 3.11. For 1 < n < m and uniformly distributed (u,v) € Pm,m let v be the
remainder of u divided by v. Then for f € R,
= ifm>nand f € Ry,
Prir=fl=« p*/(p-1), if m=n and f € RY,
(P=2)p""/(p—1)%, ifm=nandfe R,.

438 K. Ma and J. von zur Gathen

Proor. Applying Lemma 3.10, we have

#Ppri [B, if m > n and fERm
Pl"[f‘"‘f] B, #Qm n(v f)/#Pm, ifm>nand f€ Rm
w2l # BBy, 1fm-nandf€Rm

#QO('U! f)/#‘pl'i'lu if m = n and f € Rn.
Since #P, = (p— 1)2p™=1 and # P, = p— 1, we complete the proof using (5). O

CoRrOLLARY 3.12. Let m,n,u,v,r be as above, and let ¥ = r/z* where 2 || r if r £ 0, and
0=0. Then, for L<k <n-—1,

Pr(7 = 0] { 3os n/{p_ 1), :;:.iz:
h G N (p-lnp i =%,
Prldegf=0] = { n.--—l] I=n/(p—1), ifm=n,
e Y (p—1)2(n—k)pr—n1, if m > n,
Prptgrs = {[(p-l (n—k)=1]p*™, ifm=n.

Proor. By definition, Pr[f = 0] = Pr[r = 0]. Also,for1 <k<n -1,
Pridegi=0]= 3 Y Prlr=w2z'], Prldegi=k=3 Y Prlr=2'f]
weF\ {0} 0<i<n feR;, 0%i<n—k
The claims follow from a straightforward calculation using Corollary 3.11. O

Proor oF THEOREMS 3.2 AND 3.4. Let §,0 = 1 in (4). Applying Corollary 3.12, we
obtain the following set of double recurrence relations:

Son = a—]—.(p_—l)?_z._l_ Z (p"'l)g(n_k)

n iy Snky m>n 21, (6)
p oo R *
s YYuplaiy ~1)(n-k)—1
o = “+(f;—_1))7,ﬁ+ > &)Ifn,k = sy m=nz (0
1<k<n

Note that Smn = Sp41,n for m > n. Let S, = Sny1.n and S, = S,pn. This substitution
into (6) and (7) gives

-1n (p-1)?
(p pﬂ.) ,+(pn+1) z (n_'k)pk‘s'k! ﬂ21, (8)
1<k<n

(p—1)mn
'(_T* 1<Zk;m[(P—1) n—k)=1]p*Sk, n2L

Sn:a'l"
S = a+

The above recurrences can be solved directly via generating functions; however, we
prefer an alternative approach (see Knuth 1981, p. 332) which transform them first into

Euclidean Algorithms 439

linear recurrence relations through the following manipulation:

5 I
Sﬂ._%sﬂ.—l = (1—%)a+p_1+(p—1) E PkSk, nz2,

1
P g 1<k<n
1 1 1
gl il B i a— ey p* Sk, n>1.
"p—-1" p-1 (-1t lszk;,,

It follows that for n > 3, (S,.——;S,,_l)—lp(sn_l —:-1.5' Sl (1—%)2a+(1—};)25 =
Note that for n > 2,

1 k p [[1 p—l]
— Spi= Sp—=Sp1—(1—-)a— ;
» 1szk«:tnp T -1y Pl (P) p"

A straightforward calculation yields

1 1 1.,
S (1+;§')Sﬂ—-1_}?5n—2+(1_;) a, n2=3,

S:a = (p Sn +
(p—1) (p- 1)2
Solving these linear recurrence relations with the initial values S; = a+1— 1/p and
S2=2a+1-[(2a+1)p? - (a+1)p+1]/p?® from (8), we obtain

= 24(2a a .
Sn = (1 p+1)an+‘(7;;)'ﬁ'}'l o 2“+ij(p_4fﬁ}z+_s 1fn21:

+2ap?—(2a+1)p—2a :
8§ = (1= p+1]un+2é+—1)ghpz 2"+P ?:tl)(z[p—l))p . a2

We observe that the above formula for S/, also holds for n = 1. Let @ = 0. Then the
probability that ged(A;, A3) = 1is §, for m > n and S}, for m = n. This completes the
proof of Theorem 3.2. The same argument with a = 1 proves Theorem 3.4. o

The proof of Theorem 3.6 is similar and can be found in Ma (1987, pp. 43-51).

Sn_:[, n 2 2.

BEST AND WORST CASE OF ALGORITHM 3.1

Let 1 < n<mand (A;,A4;) € f:’m,ﬂ. For F # Z,, the indeterminate shift Euclidean algo-
rithm has the same minimum and maximum computing times as the classical Euclidean
algorithm (see Theorem 2.7). The minimum computing time occurs for the input (A1, A7)
where A; divides A;. The maximum computing time occurs, e.g., for the following input
(A1, A2): Ay =az™ ™[} + fl_, and Ay = f},, where a € F\{0,—1} and

o= 3 TR e = i

0<i<n

with the initial values fj = 1 and f{ = 2 + 1. It is easy to see that f}, = f, + fu—1, where
fn is the nt® Fibonacci polynomial defined in Remark 2.2.

The situation with F' = Z; (i.e., p = 2) is slightly different. Clearly, both algorithms
still have the same minimum computing time for all 1 < n < m. However, the two
algorithms have the same maximum computing time only for m > n, which occurs, for
example, when the input (Ay, A2) in Algorithm 3.11is Ay = 2™ f] + f/_; and Ay = f}.

440 K. Ma and J. von zur Gathen

In the case m = n, Algorithm 3.1 uses at most n polynomial divisions rather than
n+ 1 in the Euclidean algorithm. As an example, we can construct the following worst-

case input form=n>3: Ay =22f. ,+ fl s+af _,and Ap=2%f 5+ f._5. This
gives

1+ tia(n,n—2,p)=1+n+(n—2)+1=2n,
n+ign(n,n—2,p)=n+n(n—-2)=n?—-n,

trmax(Ts 7, P)
tom (7, 7, D)

Il

which are just slightly better than e}, (n,n,p) = 2n + 1 and egX(n,n,p) = n? in the
classical Euclidean algorithm.

4. The Linear Factor Shift Euclidean Algorithm

The indeterminate shift Euclidean algorithm in Section 3 can be extended to perform
linear factor shifting, namely, to remove all linear factors from the resulting polynomial
remainder after each division. We have not been able to give a complete and exact analysis
for this new algorithm over an arbitrary finite field, but we do so for ' = Z;. Polynomial
arithmetic over Z; has a strong analogy to binary arithmetic. In this case, subtractions and
additions in the ground field are the same operations, and each —, x operation amounts
to just one bit operation. Also, the computation of a polynomial remainder is equivalent
to a sequence of conditional polynomial subtractions. Therefore, there is no need to count
arithmetic operations like <+, x for our Euclidean algorithms over 7.

The following proposition gives an estimate on linear factors in a uniformly distributed
polynomial over any finite field F' with p > 2 elements (Knuth 1981, Ex. 4.6.2—1; Ma
1987, pp. 53-55).

ProprosITION 4.1. Let n > 2 and f be a uniformly distributed polynomial from P,. Then
the probability that f has a linear factor is 1 — T 7 (=1 (0) p~* > 1 — e~ > 1/2; the
average number of linear factors in f isp(1—p~")/(p—1) > 1.

In particular, for F = Z3 the probability that f has a linear factor is 3/4, and the
average number of linear factors in f is 2(1 — 277),

Let f=am™ fa™—1 4+ ...4 2™ €2y[z], n=my >mp_1 >-»>my > 0. fkis
odd then [has no factor z 4+ 1. Otherwise, the following holds:

f mk—l

z+1 i s NS A i 112y v
4+ gMe-2—1 4 aMe—e—2 4 ... L gWmk3
+- O SUBRRRE R o SR S + g™,

This suggests that we can remove the factor # 4+ 1 from a polynomial over Z; through
some shifting and copying operations, and the cost of doing this is O(n) bit operations.
For the convenience of analysis, we will assume that this removal is free of charge. The
skeptical reader might argue that the savings reported for the new algorithms in Sections
4 and 6 are due to this admittedly optimistic assumption. However, one can imagine
fine-tuned fast subroutines (or maybe even hardware) to perform these shifts very quickly;
they would not be of (asymptotic) help in the standard Euclidean algorithm. It should

Euclidean Algorithms 441

be pointed out that for an arbitrary finite field with p > 2 elements, the cost of removing
linear factors cannot be ignored.

The linear factor shift Fuclidean algorithm in the following is formulated only for Z,,
but can be easily extended for any finite field.

For2 < n < m,let P,?.m = P? x P? where P2 is the set of linear factor free polynomials
of degree m. For r € Zy[z] and r # 0, let ¥ = r/[z* (2 + 1)¥2] where «*' || r and
(z+1)% ||, and 0 = 0.

ALGORITHM 4.2. Given the input (A, A3) € P (m > n > 2), this algorithm outputs
ng(Al,Az).

1. [Initialization] For z% || Aq, 2% || Aa, (z 4+ 1) || 4;, and (z + 1)= [| Az, let
u e Ay /[z5 (2 + 1)), v — Ax/[z%2 (2 4+ D], k — min(ky, k2), and I — min(ly, 15).
If deg v > degu then swap u and v.

2. [Division and shifting] Find the remainder r € R,, such that u = ¢v+r and compute
7. If 7 = 0, then stop and return ged(A4;, 42) = 2% (z + 1) v.

3. [Resetting] Set u «— v, v — 7. Go to step 2.

THEOREM 4.3. Let 2 < n < m and (Ay, A3) be uniformly distributed in P‘g,n. Then the
probability that gcd(Ay, A3) = 1 equals 8 + x(m, n), where s(m,n) < L with Jim_«(m,n)
=0 is given by

t(Bn-11)4""", ifm>n+1,

K(m,n) =4 :Bn-5)4>" ifm=n+1,
-2(3n-2)4"", ifm=n.
THEOREM 4.4. Let 2 < n < m, and 6, = } if n = 2, and 6, = 0 otherwise. Then the
average number t&Y(m, n) of polynomial divisions used in Algorithm 4.2 on inpuls from
Pﬁl,n is 1 n+ M(m,n), where A(m,n) < 2 is given by
e i@Bn-14" =G, ifm>n+1,
A(m,n)=< 8 _1@n-11)4>"—-§,, ifm=n+1,
L12(3n-8)42"446,, ifm=n.
THEOREM 4.5. Let 2 < n < m, and 6, as above. Then the average number t7, . (m,n) of

operations — used in Algorithrn 4.2 on inputs from P‘,?l'u ismmn — %n“ — ‘-2‘% n+ u(m,n),
where p(m,n) < 5 is given by

B 2423, fm>n+1,
ulm,n) = ?—g—(n—2)23_“—§43"“u6m ifm=n+1,

- ln+@Bn-5)B8-n"Llygt-ns if m = n.
9 2 9

442 K. Ma and J. von zur Gathen

REMARK 4.6. Theorem 4.4 indicates that the linear factor shift Euclidean algorithm runs
on average twice as fast as the classical Euclidean algorithm in the sense of number of
polynomial divisions used (divisions by z and « + 1 are not counted). In comparison with
the Euclidean algorithm and the indeterminate shift Euclidean algorithm (see Facts 3.8
and 3.9), the linear factor shift Euclidean algorithm uses on average the fewest arithmetic
operations in Z3, while the Euclidean algorithm uses the most arithmetic operations.
Our results are stated for inputs from P,?t‘n, for which the initialization step is trivial.

It is then easy to obtain the corresponding results for average inputs from P, (see
Remark 3.5).

AVERAGE CASE ANALYSIS OF ALGORITHM 4.2

As in Section 3, we can analyze the linear factor shift Euclidean algorithm by solving the
following recurrence relation:

Smn=a+ Y PrdegF=k]Su, m2n>2 (9)
0<k<n

Assuming that (A;, Az) is uniformly distributed in P‘Eh,,, Corollary 4.9 below yields
that for Sno = 1, Smn is the average number of polynomial divisions used in Algorithm 4.2
for computing ged(A1, As) if @ = 1; Syp is the probability that ged(41,4;) = 1ifa = 0.
If the “synthetic” polynomial division algorithm is used, then S,,, is the average number
of operations — used in Algorithm 4.2 fora =n(m—n+ 1) and S0 =0

For n > 2 and z € 222, let {P? PO P! P9} and {R%, R%, RL, R%'} be the following
partitions of P, and R,:

Il

§ 5 {feP,|Va€el, fla)=0 <= a€ 7},
R = {f€R,|Va€Z; f(a)=0 < ac€z}.

It is easy to see that each of the eight sets P? and RZ contains exactly 2"~ 2 polynomials.
The following lemma expresses in our notation the unique existence of quotients and
remainders of polynomial divisions.

LEMMA 4.7. Let2 < n< mandv € P2. Then P® = ({v} x P,_, + RO)U({v} x PS_, +
RN U({v} x PL_,. + R2)U ({v} x P2+ R%) is a disjoint union.

CorOLLARY 4.8. For 2 < n < m and uniformly distributed (u,v) € P,?m, let v be the
remainder of u divided by v. Then r is uniformly distributed in R, if m > n+ 1; r is
uniformly distributed in R) U R}, if m = n+1; r is uniformly distributed in RS if m = n.

COROLLARY 4.9. Let m,n,u,v,r be as above, and let ¥ = r/[z* (z + 1)¥2], where z*1 || r
and (z+1)* || 7 if r # 0, and 0 = 0. Then Pr(deg7 =1]=0, and for2< k<n -1,

27 afmsntl
Prir=9] = 0, ifm=n+1,
22" ifm=n,

Euclidean Algorithms 443

n(n+1)2-"1, ifm>n+1,
Pridegf=0] = (n—1)22-n, ifm=n+1,

(n=2)(n-1)2""", ifm=n,

(n—k)(n—Fk+1)2k-n-3 ifm>n+1,
Pr(degi=k] = (n =k —1)25", fm=n+1,

(n-k=2)(n-k-1)25"1, ifm=n.
ProoF. By definition, Pr[deg ¥ = 1] = 0, and Pr[f = 0] = Pr{r = 0]. Also,
Prideg 7 =0] = E E Prlr = zh (z+]_)k?]‘
0<i<n ky+kp=i
Pridegr=4 = Y 3) Prr=2"(z+1)"{]
pr: 0<i<n—k ky+ko=i

A simple calculation using Corollary 4.8 completes the proof. =]

ProoF oF THEOREMS 4.3 AND 4.4. Let S0 = 1in (9). Applying Corollary 4.9, we obtain
the following set of triple recurrence relations for n > 2:

nn+1 n—k)(n—-k+1)

Sm,.l] ﬂ.-’r%-ﬁ- z (:‘a)n(—k+3)S,;k, 1fm>n+1,
2<k<n

n—1 (n—-k—-1) .

Sein = a4+ o2 + Z ?—S"k, ifm=n+1,
2<k<n
L (n—2!!n—l) (n—k-2)(n—k~-1) . _

Swiw = a+F i +K§<n gn—kH Sy iEm=n.

Note that Spmn = Sni2,n for m 2 n+ 2. Let S, = Snyan, S = Sngan and S7 = Spy.
This substitution into the above recurrence relations gives

: 1 1 1
So= ar 2L S Bk)ES S, ()
2<k<n-2
-1 1
5= et BNl S mok-n2ts, (1)
2<k<n—2
" n—2)(n-1 1 '
0= s 22D0D L 0 T Gok-ne-k-02s

2<k<n~2

By a manipulation similar to the one used in the proof of Theorems 3.2 and 3.4, we
can transform the above recurrence relations into the following:

Sn=85n-1+HSn2-kSus=ga ifn26,
Sh—Sp1+18, 3=%a+18m-, i Gy

8= Su=a+ LSnis =185, ifn>5.

444 K. Mu and J. von zur Gathen

Solving these linear recurrence relations with the initial values gq = ga + %, Sy =
HatZ, 55=12a4 &, S,=a+1and §}= 2a+ 1 from (10) and (11), we obtain

Sa = fqan+%(—2a+1)n41‘“+%(‘284—11)41_"+%a+g, if n >3,
S, = tan+i(-2a4+1)na® "4 1(16a-5)42"+ Lot 8 ifn>3
Sn = tan+3(2a-1)na* "4+ 4(-5a+1)4"- Lath, if n>5.

We observe that the above formula for §” also holds for n = 3,4. Let a = 0. Then
the probability is S, for m > n+ 1, 8/ for m = n+ 1, and Sy for m = n. Since S; = %
§3 = 1 and S = 0, this completes the proof of Theorem 4.3. The same argument with
a = 1 proves Theorem 4.4. 0

The proof of Theorem 4.5 is similar and is omitted here (see Ma 1987, pp. 67-72).
BEST AND WORST CASE OF ALGORITHM 4.2

For a,b € Z with b > 1 we denote by arem b the remainder of a on division by b, i.e.,
c=aremb if and only if 0 < ¢ < b and ¢ = a mod b.

THEOREM 4.10. For 2 < n < m and w € {div,—}, let tiin(m,n) and t2, (m,n) be the

minimum and mazimum number of operations w performed on inpuls from P,?,'n. Then
we have

1Y (m,n) = {;’ ifm#n+l,

ifm=n+1,
tpin(msn) = a(m—n+1), ifm>n,
: [(21:.—!—1]/3], ifm>n+1,

tay (m,n) = [2n/3], fm=n+1,

[(2n—-2)/3], ifm=mn,

mn — [(n? + n)/6] — (—nrem 3), ifm>n+1,
= _ [(57% +3n—2)/6] — (~n—1rem3), ifm=n+1,
max(m, 1) = [(6n® —7n)/6] — 1 — (—nrem3), ifm=n25,

m, if2<m=n<4.

LEMMA 4.11. For2<n<mandwc {div, -}, #%,, is monoetonically increasing in both
arguments:

tmax(M+1,0) > 2, (m,n) ifm>n+1, (12)
hax(myn+1) >, (m,n) ifm>n+2. (13)

ProOF. Let (41,4;) € P}, with cost tmax(m, 1), and write 4; = Q, A; + A3 with
deg A3 < deg A3. To prove (12), let

By = A1 + 2™ "(z + 1)Az = (Q1 + 2™ "(z + 1)) Ay + As.

Then (By, Aq) € Pr?a-l—l,n and the computation of Algorithm 4.2 after the first step is
the same for (A;, A7) and (B, A3). It follows that

t;m{(?n e 11 ?’.I.) 2 tw(Blv Aﬂ) 2 tw(AlﬁAZ) = t;ax(?ns R)-

Euclidean Algorithms 445

As for (13), it is easy to check for n = 2, 3, and we now assume n > 4. Then Az # 0.
We write A; = Q243 + A4 with deg A4 < deg A3. We have to consider three cases. Iirst
assume that nz = deg A3 = n — 1, and let

By=z(z+1)As+ A4, By =2"""18y 4 (2 +1)Aa.

If A4 = 0, we use By = (2 + 2 + 1)A3. Then (By,B;) € P ., and the algorithm
proceeds through (By, By) — (By, A3) — (Aa, A4). For w € {div, -}, recall the definition

of d“ in (2). We have

= d°(m,n+1)+d“(n+1,n—1)+t“(4a, Ay)
> d“(m,n)+d“(n,n — 1) +1“(A3, Ay)
= tw(Aeri) - t;ax(mrn)ﬂ'
with strict inequality for w = —. So now we may assume that ng < n — 2. We first deal

with the case that m > n + 3. Let
By=xzAs+(2+41)A3, By =z™"%z+1)B, + A,.

Then (By,By) € PY, .11, and (By, By) — (Bg, Az) — (As, A3). It follows that t“(By, B,)
> 1¥(Aq, Ag).

We now come to the last case, where n3 < n — 2 and m = n + 2. Take any (_"2, '3) €
R?.n—2 with cost t%_ (n,n — 2), and write Cy = P, C3 + C4, with deg Cy < deg Cs. Let

Bg=$2($+1)03+54, B1=$Bg+(.’£+l)éa.

If C4y = 0, we use By = (¢® + @ + 1)C3. Then (B, B;) € P, ., and (By,By) —
(Bz,C3) — (C5,C4). We have %, (n,n —2) > 1% (n,n3) > t“(A;, A3); this is clear if
ng = n — 2, and follows from the previous cases if ng < n — 3 (provided that ngz > 2,

otherwise it is trivial). It follows that

t:lax(n +2,n+ 1) £ tw(BI)BZ}

= d“(n+2,n+1)+dn+1,n—2)+ !w(ég,é4)

= d“(n+2,n)+d*(n,n—2)+1“(Cs,Cy)

= d“(n+2,n)+t%,(n,n - 2)

> d“(n+2,n)+ 1“(Az, Aa)

= tw(/il,Ag) = tgax(n + 2, n). O
PROOF OF THEOREM 4.10. By Corollary 4.8, we have t&¥ (m,n) = 1 for m # n+ 1, since
there exists (Aq, A2) € P.fw such that A, divides A;. For m = n + 1, we have (Y = 2,
since there exists (A, A2) € P,?;‘n such that A, = (z + 1) A3 + 2. The minimum number
tmin(m, n) of operations — performed is clearly n(m —n + 1) for all m > n > 2.

We first prove that the stated values are upper bounds on t¥, . Intuitively, for m >

n+2 Algorithm 4.2 has the worst behavior if for every pass through step 2, the associated
“lattice point” (degu,degv) changes according to the following pattern:

(myn) = (nyn—1)—=(n-1L,n-3)=(n-3,n—-4)—= (n—4,n—6) — ---.

446 K. Ma and J. von zur Gathen

More formally, we have the following inequalities for n > 5 by Corollary 4.8 and (13):

tdY (n+2,n)
max(n + 21 n’)

max(n n-—l)<2+td” (n—1,n—3),

<
< n+tnm(n,n— 1)<5n—2+4+1t;,.(n—1,n—23).

Note that t&iY,(4,2) < 2, 1Y (5,3) < 3, 1Y (6,4) < 3, and t5,,(4,2) < 6, t5..(5,3) <
13, t5.x(6,4) < 18. We obtain, for n > 2,

tax(n +2,0) < [(20 4 1)/3], toa(n+2,n) < [(50% +111)/6] — (-n1em3). (14)

By Corollary 4.8 and (13), the following holds for m > n + 2:

tdv (m,n) < 1 +tdY (n,n 1), tmax(Myn) <n(m—n+1)+tn,.(n,n-1),
m;x(n+l n)<1+t§,}“(nn 2), m“(n+1n)<2n+t ax(My 1 —2),
tdiv (n,n) < 14+ t3Y (n,n - 3), max(ny 1) € n+15,.(n,n - 3).

Note that t5,y(n,n) = nfor 2 < n < 4, t%,.(m,1) = 0 since P = 9, and 1Y (m,0) =
1, t5a¢(m,0) = 0. The claimed upper bounds on t¥, follow from a straightforward
calculation using (14).

To prove that these are also lower bounds, we exhibit the following (A3, 4;) € P® o for
which the bounds are attained. This property is checked by verifying that one application
of steps 2 and 3 of Algorithm 4.2 transforms any such pair into another pair on the list,

and that all of the given inequalities are actually equalities in this case.
e Aj=2(z+1)" ", +sp1and Ag=t, form>n+2 >4,
e Ay =tpprand Ag=s, form=n+12 3,

o Ay =z(z+1)ths+z(z+1)tn_3+ 8n_g and Ay = z(2 + 1)*tp_3 + 8p—q4 for
o= i

Here s,,t, € Pa for n > 4 are defined by s, = 2 (2 + 1)th—2 + 8p—3 and 1, =
(# + 1) 8p-1 + xt,_3 with the initial values 8y = &) = 1, 83 = t = z2 + z + 1, and
sa=tg=a+a2+1. O

5. The Subtractive Indeterminate Shift Algorithm

Analogous to the binary shift Euclidean algorithm for computing integer ged’s, the inde-
terminate shift algorithm computes polynomial ged’s using only polynomial subtractions
and divisions by @. The algorithm works for any finite field, but we formulate and analyze
it only for Z,.

ALGORITHM 5.1. Given the input (A;, A3) € Py (m > n > 1), this algorithm computes
ng(Al, A?)

1. [Initialization] For z*! || A; and 2% || Ay, let u — Aj/e®, v — Ay/z*2, and k —
min(ky, k). If degv > deg u, then swap u and v. Stop and return ged(A4;, 4;) = z*
if degv = 0.

Euclidean Algorithms 447

2. [Subtraction and shifting] Let r = u — v and compute r, as defined in Section 3. If
= 0 or # = 1, then stop and return ged(A;,Az) = z*v or ged(Aq, 4;) = o*
respectively.

3. [Resetting] If deg 7 > deg v, then u « 7; otherwise, u + v, v «— 7. Go to step 2.

TuEoREM 5.2. Let1 < n < m. The average number 1595 (m, n) of polynomial subtractions
used in Algorithm 5.1 on inputs from B, B 1« m+ 3 in 4+ v(m,n), where v(m,n) < 1 is
given by
—g4mgotn if m>n,
v(m,n) =
“4l-n o (n-4)27" =1, ifm=n.

We assume that a subtraction u — v needs exactly 1 + degv operations — in Z,, if
deg u > degv.

THEOREM 5.3. Let 1 £ n £ m. H.Fhe avemge number t,,.(m,n) of operations — used

in Algorithm 5.1 on inputs from Ppn is 1mn — £n% + im — fn + x(m,n), where
7(m,n) < 2 is given by

(m,n) B-Hd, ifim &)
m(m,n) =
18 _1lpn— 42" 42"" ifm=n.

AVERAGE CASE ANALYSIS OF ALGORITHM 5.1

Assuming that (A, A3) is uniformly distributed in Pm,m we can analyze this algorithm
by solving the following recurrence relation:

Smn =0+ E Pl-'[dﬂgF = k]Snks Smn = Sam, m2n2 1 (15)
0<k<m
Corollary 5.5 below implies that for a = 1 and Sp9 = 0, Smn is the average number
129 (m, n) of polynomial subtractions used in Algorithm 5.1 for computing ged(A;, Az).
Smn is the average number t,.(m,n) of operations — used in Algorithm 5.1 fora =n+1
and §,0=0.

LEMMA 5.4, For 1 € n € m, let (u,v) be uniformly distributed in ﬁm_ﬂ and r = u— v.
Then r is uniformly distributed in {z} X Pn—y if m > n; v is uniformly distributed in
{z} X Rp—1 if m = n.

COROLLARY 5.5. Let m,n,u,v,r be as above, and let 7 = r/z' where z' || r if r # 0, and
0=0. Then, forl<k<m-1,

e 0, if m > n,

G { g=n i; m=n,
.. oo if m > n,
Pr{deg7 =0] = { (n - 121", e{)f"m L

A 2k‘m’ 1fm> n,
Pr{degf=k] = { (n—Fk- 1)25-% ifm=mn.

448 K. Ma and J. von zur Gathen ‘

Proor. We distingnish two cases.
Case 1: m > n. Since r is uniformly distributed in {2} X Pp—1, Pr[f = 0] = 0, and ‘
-k

Pr(deg = 0] = Pr[r = 2™] = 2'™™ Prdeg# = k] = E Prir=ag™ " fl=2""
feB,
Case 2: m = n. Since r is uniformly distributed in {2} x Rn—;, Pr[i = 0] = 21—,

Pr{deg#=0] =) Prir=2*]=(@n-1)2""",
0<i<n—2

Pridegf = k] = Z z Prir =2+ f] = (n— k - 1) 2k=n. ~
fep, 0<i<n—k-2

Proor oF THEOREM 5.2. Let a = 1 and Spo = 0 in (15). Applying Corollary 5.5, we
obtain the following set of double recurrence relations:

Smn = 14) 2¥™g, fm>a>1,
1<k<m

Snm = 14 z (n—k—l)?k_“Snk, ifm:nZ]_.
1<k<n

Note that Syun — 3 Sm-1,n = 3 + 1 Sum-1 for m > n + 1; that is, S, = Sm-1n + 3-
By induction on m — n, we have

S’mnztn-}—hn‘i‘%(m_n—-l), ifm>n+1. (16)

Let 5y = Sn41,n and S), = Sp,. This substitution into the above recurrence relations
gives

- 1 T ot 1 I,
Sn = 1+2n+1 2 2 [Sk+§(n~—k—1)]+§Sn, 1fn_>_ (= (17)
<k<n
o f 1 k 1 .
— -_— 15 £F = gt SH > v
Sy P 1<kz<u(n k=1)25[Sk+ 3 (n 1)), ifn>1 (18)

As in the proof of Theorems 3.2 and 3.4, we can use a similar transformation to obtain
the following linear recurrence relations from (17) and (18):

Sn—38u-14+18,..=8-2", Hn>3,
Sn= S+ §Sn2=15-2+§-2"0-1, ifn>3.

Solving these linear recurrence relations with the initial values §; = 2,52 = 18 and
§1 =85 =1 from (17) and (18), we obtain

Sn = En42l™_24m_ 5 ifn>1,
g = %n—(v&—il)?_n—%ril_"—%, a1
The claim then follows from (16). (=

The proof of Theorem 5.3 is similar and can be found in Ma (1987, pp. 75-80).

Euclidean Algorithms 449

BEST AND WORST CASE OF ALGORITHM 5.1

THEOREM 5.6. For 1 < n < m and w € {sub, -}, let t¥; (m,n) and t§,(m,n) be the
minimum and mazimum number of operations w used in Algorithm 5.1 on inputs from
P n. Then, except that t232,(2,2) = 1 and 15,,(2,2) = 3, we have

b (m,n) = 1, 129 (m,n) = m + [n/2] — 1,

ton(mn)=n+1, i (mn)=mn—|n?/4]+m—14nrem2.
Proor. Using Lemma 5.4, we have ¢392 (m,n) = 1 and ¢ (m,n) =n+1foralll1 <n <
m, since there exists (Ay, Ay) € Py, » such that A; — Ay = 2™ for m > n, and A; —A; =0
for m = n.

The estimate of the maximum cost follows the lines of the proof of Theorem 4.10; we

omit some details. It is casy to see that #u (2,2) = 1 and #5,,(2,2) = 3. For the other

Tax ‘max
cases, we first prove the claimed upper bound on t%,. . Intuitively, the algorithm has the

worst behavior if the “lattice point” (deg u,degv) associated at each pass through step 2
changes in the following pattern:
(m,1) = (m—-1,1)---— (1,1), form 2 n =1,
(m,2) = (m—1,2)---—(3,2) = (2,1) = (1,1), for m > n = 2,
(3,3) = (3,1) = (2,1) = (1,1), for m = n = 3,
(4,4)— (4,2) = (3,2) = (2,1) = (1,1), form =n = 4,
(r,n) = (n,n—-2)—>(n-1,n-2)>(n-2,n—-2)— .-+, form=mn >3,
(m,n) = (m—1,n) = .-+ — (n,n), form >n > 3.
Formally, one proves monolonicily of t,, in the sense that
am+1l,n) >t (mmn) fm>2n>1,
o a(myn+1) >t (m,n) m=>n+12>2
except that t2,.(2,2) < t2,,(2,1), and the following inequalities for n > 5:
50 (n,n) <3+ 0 (n—2,n—2), toa(n,n) <3n—1+1,,,(n—2,n-2).
Note that 322 .(3,3) < 4, t2b (4,4) < 5, and #,,,(3,3) < 10, 15,,(4,4) < 15. We obtain
the following for n > 3:
t59b (n,n) < n+ [n/2] =1, lga(n,n) < [3n?/4] +n—1+nrem2.

Since
t5ub (m, 1) £ m and tg,(m,1) < 2m, for m > 1,
t5ub (m 2) < m and {5, (m,2) < 3(m—2)+4, form>3,
b (m,n) < m—n+ 22 (n,n), for m > n > 3,
tmax(myn) < (m —n)(n+1) + th.(n,n), for m > n > 3,

the claimed upper bounds follow immediately.

For the corresponding lower bounds, we construct explicit examples. Let h,, g, € B,
forn> lbedefinedashy =g1 =z+1,hg=22+z+1,g: =22+ 1, hg =2+ 2?2 4+ 2 41,
ga=23+ 1, hy=2+23+2?+1,94=2"+a%+a+1,and gp = 2% hp_2+ (2 +1) gn-3,
hn = gn + % gn—2 for n > 5. Then the stated bounds are attained for the following input
(A1, A2) € Pppform>n>1:

450 K. Ma and J. von zur Gathen

oAy =a2" S g 4 oy Po<icm—3 ' and Ay = gy, form > n = 2,

s Ay =a" " h, + g, Zgg,-<m_ﬂ z* and A; = Gr, otherwise, O

6. The Subtractive Linear Factor Shift Algorithm

The subtractive indeterminate shift algorithm in Section 5 can be easily extended to do
linear factor shifting, namely, to remove all linear factors from the resulting polynomial
after each subtraction. The subtractive linear factor shift algorithm works for any finite
field, but we formulate and analyze it only for Z,.

ALGORITHM 6.1. Given the input (A1,42) € Py (m > n > 2), this algorithm outputs
ged(Ay, Ag).

1. [Initialization] For 2% || A4y, z* || A,, (z+ 1" || Ay, and (z + 1)2 | Az, let
u— Ay/[z% (z + 1)), v Ay/[z*2 (2 4 1)), k « min(ky, k2), and | — min(ly,l).
If deg v > degu, then swap u and v. Stop and return ged(Ag, 4;) = o* (2 + 1) if
degv = 0.

2. [Subtraction and shifting] Let r = u — » and compute 7, as defined in Section 4. If
7=0or7 =1, then stop and return gcd(4,,4;) = z* (2 + 1)'v or ged(Ag, A;) =
z* (2 + 1)}, respectively.

3. [Resetting] If deg 7 > deg v, then u « 7; otherwise, u « v, v — 7. Go to step 2.

THEOREM 6.2. Let2 < n < m. The average number 1532 (m, n) of polynomial subtractions
used in Algorithm 6.1 on inputs from PY . is Lm + §n+ p(m,n), where p(m,n) < 1 is
given by

%(15?1-47)41'“4-3-2"‘—%, ifm>n+1,

p(m,n) = { 7 (15n—17) 42" 4 (n® —5n+6)2-n-1_ =, ifm=n+1,

— 5 (15n-2)4%" 4 (-3n2+ 13n + 12)2-71 - 12 yfpm = g,
REMARK 6.3. If m — n is constant and n is large, then Algorithm 6.1 needs an average
of 3T n + O(1) polynomial subtractions to compute ged(Aq, Az). This shows that the
subtractive linear factor shift algorithm uses on average less polynomial subtractions than
the classical Euclidean algorithm uses polynomial divisions.

THEOREM 6.4. Let 2 < n < m. The average numnber 17, .(m,n) of operations — used
in Algorithm 6.1 on inputs from P¥ is lmn — 70+ im+ a4 o(m,n), where
a(m,n) < 1 is given by

si—sn+&(5n-17)41-n 4 3.9-n ym>n+1,
o(m,n)=< 184 %(5?}—7)42'“4—(712-9n+10)2_“'1, fm=n+1,

- an—5g(Bn-2)42"4 (-3a2 + 26m+4)27""' ifm=n.

Euclidean Algorithms 451

AVERAGE CASE ANALYSIS OF ALGORITHM 6.1

LEMMA 6.5. For 2 < n < m, let (u,v) be uniformly distributed in P} and r = u — v.

Then r is uniformly disiributed in {z (2+1)} X Pp—2 when m > n; r is uniformly distributed
in{z(z+1)} X Rp_, when m = n.

COROLLARY 6.6. Let m,n,u,v,r be as above, and let ¥ = r/[z' (z + 1)7], where z* || r and
(z4+1)Y ||rifr#0,and 0=0. Then Pr[degF =1] =0, and for2<k<m -1,

Pie=qf = g 0
cgl = [m=p2rm o il
Pr[degr =0] = { (n-2)(n-1)2"" ifm=n,
-8 " (m — k- 1)2F-m, if m > n,
Pridegr =k] = {(n_k_z)(n—k—l)2"""1. if m=n.

ProoF. By definition, Pr[deg# = 1] = 0. We distinguish two cases.
Case 1: m > n. Since r is uniformly distributed in {z (z 4+ 1)} X Ppn—2, Pr[f = 0] = 0,

3) = Prir= gtz 4 1) = (m-1)2""™,
ki +ky=m—2

35 o Prlr =z (z + 1)+ f] = (m-k-1)25™,
IEP;? ki t+ky=m—-2—k

Il

Pr[deg7 = 0]

Il

Pr{deg7 = k]

Case 2: m = n. Since r is uniformly distributed in {z (¢ + 1)} X Rp—2 = RJ', the same

probabilities have been derived in Corollary 4.9.]

PROOF OF THEOREM 6.2. Let 2 < n < m and (A;, Az) be uniformly distributed in P, .
Corollary 6.6 reveals that the average number 532(m, n) of polynomial subtractions used
in Algorithm 6.1 is the solution Sy, to the following recurrence relation (with Sno = 0

and a = 1):

Smn:a"f' Z Pl‘[deg‘-"_':k]-gnks Smnzsﬂm‘r m2n22-
0<k<m

Applying Corollary 6.6, we obtain the following
(m—-k-1)

S = 14 Z ek Sak, Hm>n>2, (19)
2<k<m—2
n—k-2)(n=-k-1) , :
xg'm.u = l + z (2.“3'1('_;:) bnk, lf m =% 2 2. (20)
2<k<n—2

Note that Smn — 3 Sm-1n = 3 + 50 107 Snk 2% for m > n + 1. Therefore,

: [ol
Smn - bm-—l,n o Z bm—?,n = I : Z Sn,m—Z
for m > n + 2; that is, Srp = Sm—1n + % An easy induction on m — n yields

Smn = Snt2n+4(m—n=2), ifm>n+2 (21)

452 K. Ma and J. von zur Gathen

Let Sp = Spyom, S, = Sn+1n and §7 = S,,. This substitution into (19) and (20)
gives

e 1 & 1 L2 e

bn —]+§:‘.—+—2 Z (n—k+1)2 [Sk+1(n—~k—'2)}+15n_l+zsns (22)
2<k<n—2

’ 1 ! 1 4

Soo= ltgm 3 (-R2Si+ (- k=24 550, (23)
2<k<n—2

i 1]
Sy = 1+ﬁ2<§ 2(n—k-—2)(n—k—1)2k[5k+1(““k—2)]- (24)

Applying a similar manceuvre as in the proof of Theorems 3.2 and 3.4, we can transform
the above recurrence relations into the

Sn 2 %Sn—'l 4 {'g Sn—2 — g Sn—B + ésn-—-i = '%IE —id '2_“_3) ifn 2 6:

Sa~ % a1 + %51—2 = ﬁ n=3 = %.5’,1_2 = %Sn—s i g—i =2, Hn>5
Sy—26n . +387 ,- Ler ,= 18,3+ 1-3.2m, if n > 5.
Solving these linear recurrence relations with the initial values Sp=2, 8= 2, 84 =

B, 8=, 5=1,8=55=Rad sy = 3 = 54§ = 1 from (22), (23) and (24),
we obtain

S, = ;c—';’n+;-7(15n-47)4‘*ﬂ+3-2-ﬂ—%, if n>2,

S = %n—!—51.—?(1511—17)42““+(n2—5n+6)2‘“‘1-—%, ifn>2,

S¢ = %n—313(15?1—2)43'“+(—3n2+13n+12)2_“_1—%, if n> 2.
The claim follows from (21). O

The proof of Theorem 6.4 is similar and can be found in Ma (1987, pp. 82-90).

BEST AND WORST CASE OF ALGORITHM 6.1

m

minimum and mazimum number of operations w used in Algorithm 6.1 on inputs from
Pr?ln Let dmpm = (m — n)rem 2. Then we have

THEOREM 6.7. For 2 < n < m and w € {sub, =}, let t2; (m,n) and tmax(m, n) be the

tn(m,n) = 1,

ton(m,n) = n41,
5 (m,m) = (m=n)/2+1, ifm=n=4, or dnn=0and2 < n <3,
e S [(m+n)/2] =2, otherwise,

tmay(myn) { (m—=mn+2)(n+1)/2, fm=n=4,0rdpny,=0and2<n<3,

(m4+dmnn)(n+1)/2-3, otherwise.
Proor. By Lemma 6.5, we have £2%2 (m,) = 1 and tin(m,n) =n+1forall 2 < n < m,
since there exists (Ay, A;) € PP . such that A; — A, = zm-1 (z + 1) for m > n, and
Al-—Ag:UfOI'm:n.

As usual, we first prove an upper bound on thax, following the lines of the proof of
Theorem 4.10. Intuitively, the algorithm has the worst behavior if the “lattice point”
(deg u, deg v) associated at each pass through step 2 changes in the following pattern:

Euclidean Algorithms 453

(r+1,n)> (nn—1)>(n—1L,n=2)—= ... —(3,2),if m=n+12>3,
(n,n) = (R,m—3)— (n—2,n—=3)=-.. = (3,2),if m=n>5,

(m,4) > (m—2,4) > (m—4,4) = --. = (5,4),if m >n = 4 and dp 4 = 1,
(m,4) - (m - 2,4) - --- = (6,4) = (4,3) = (3,2),if m > n = 4 and

dm,4 =0,
(myn) = (m=2,n) - (m—4,n) > --- = (n+dnn,n), il m > n+2 and
n # 4.

Formally, one proves monotonicity of t%,, in the sense that

tnax(m +1,0) > 8, (m,n) ifm2n2>2,
tmax(Myn+1) 2>t (m,n) dfm>n+123,

except that t& . (4,4) < t%,.(4,3). Defining @®°(n) = 1 and d~(n) = n + 1, we have the
following inequalities:

thax(n+1,n) < dMn)+to(n,n—1),ifn+1>4, (25)
000 € 24400 (n -2 n—-8), Hn2s, (26)
tmax(fan) < 2n—141_. . (n—2,n-3), ifn>5, (27)
tmax(msm) < [(m—n)/2]d*(n) + thax(n + dpn,n), m>n+2,n #4, (28)
tmax(myn) £ [(m—4)/2]d“(4) + t2.4(5,4), if m >n =4 and dp g =1, (29)
tmax(m,n) < (m—6)d“(4)/2+ t2,,(6,4), ifm>n=4and dnr4=0, (30)

Since 550 (3,2) < 1 and #,,(3,2) < 3, it follows from (25) to (27) that £9 (m,n) <
m =2 and 1, (m,n) < (m+3)(m—2)/2for 2 < n < m < n+ 1, with the exception
that #;,.(n,n) = d“(n) for 2 < n < 4. Plugging this into (28) and (29) and noting that
135b (6,4) < 3 and 1,,(6,4) < 12 in (30), we obtain the upper bounds as claimed.

For the lower bounds, we again construct explicit examples. Let ¢ = 2? 4 2, and
u, € P? for n > 4 be defined by u, = up_; + qUp— with u = 22 4+ z 4+ 1 and ug =
a° + z% + 1. Furthermore, let v, = quu_2 + qn_3 + Up_3 and w, = quu_3 + Un—3 for
n2bve=w=uy vs=uzg,wa=a2+e+lL,vu=a*+22+1,and wy = 24 +z + 1.
Then, for n > 2, up,vn, w, € P2, and the stated bounds are attained for the following
input (A1, 42) € P},

¢ A =Upyy and Ay = uy,, for m=n+1;
e A = v, and A; = w,, for m = n;

[] A‘| = q('m—u—l]/'l Unt1 + Uy Eﬂgfg(m—n—l’a),"ﬁ qt and Ag = tip, for m 2 n 4+ 2 and
dm,n =1

o A =g 2q, 4w, EOSiS(m—n—ﬂ/? ¢ and Ay = wy, form > n+2,n # 4 and
dm,ﬂ =0,

o Ay = zqm=D/2yy 4 yu, ZU(i([m—6]}2qi and Ay = uy, form > n+ 2, n = 4 and
das = 0. O i

454 K. Ma and J. von zur Gathen

7. Conclusion

We have given exact average-case analyses for several variants of Euclid’s algorithm for
polynomials over a finite field. It would be nice to extend the results of Sections 4 to 6 from
Z; to an arbitrary finite field. More importantly, it would be desirable to have analogous
results for various algorithms for factoring polynomials, say in Z[z], to determine the
optimal sequence of the usual operations of extracting square roots (resp. pth roots),
dividing out ged(A, A’), and the various factoring algorithms for squarefree polynomials
(e.g., Berlekamp 1970; Rabin 1980; Ben-Or 1981; Cantor & Zassenhaus 1981).

References

Aho, A. V., Hoperoft, I. E., Ullman, J. D. (1975). The design and analysis of computer algorithms. Reading,
MA: Addison-Wesley.

Ben-Or, M. (1981). Probabilistic algorithms in finite fields. Proc. 22nd IEEE Symp. on the Foundations of
Computer Science, Nashville, TN, pp. 394-398.

Berlekamp, E. R. (1970). Factoring polynomials over large finite fields. Math. Comp. 24, 7T13-735.

Borodin, A., von zur Gathen, J., Hopcroft, J. E. (1982). Fast parallel matrix and GCD computations.
Information and Control 52, 241-256.

Brent, R. P. (1976). Analysis of the binary Euclidean algorithm. In: Algorithms and Complexity, ed. J. F.
Traub, pp. 321-355. New York: Academic Press.

Brown, W, 8. (1971). On Euclid’s algorithm and the computation of polynomial greatest common divisors.
J. Assoc. Comput. Mach. 18, 478-504.

Brown, W. 8., Traub, J. F. (1971). On Euclid’s algorithm and the theory of subresultants. J. Aasoc.
Comput. Mach. 18, 505-514,

Cantor, D. G., Zassenhaus, H. (1981). On algorithms for factoring polynomials over finite fields. Math.
Comp. 36, 587-592.

Collins, G. E. (1967). Subresultants and reduced polynomial remainder sequences. J. Assoe. Comput.
Mach. 14, 128-142.

Collins, G. E. (1974). The computing time of the Euclidean algorithm. SIAM J, Comput. 3, 1-10.
Dixon, J. D. (1970). The number of steps in the Euclidean algorithm. J. Number Theory 2, 414-422,
von zur Gathen, J. (1984). Parallel algorithms for algebraic problems. STAM J. Comput, 13, 802-824.

von zur Gathen, J. (1986). Representations and parallel computations for rational functions. SIAM J.
Comput. 15, 432-452.

Heilbronn, H. (1968). On the average length of a class of continued fractions. In: Abhandlungen aus
Zahlentheorie und Analysis, ed. P. Turdn, pp. 87-96. Berlin: VEB Deutscher Verlag.

Knuth, D. E. (1970). The analysis of algorithms. Proc. Internat. Congress Math., Nice, vol. 3, pp. 269-274,
Paris: Gauthier-Villars.

Knuth, D. E. (1981). The Art of Computer Programming, vol. 2, Semi-numerical Algorithms. Reading,
MA: Addison-Wesley.

Lamé, G. (1844). Note sur la limite du nombre des divisions dans la recherche du plus grand commun
diviseur entre deux nombres entiers. C. R. Acad. Sci. Paris 19, 867-870.

Euclidean Algorithms 455

Lehmer, D. H. (1938). Euclid’s algorithm for large numbers. Amer. Math. Monthly 45, 227-233.

Ma, K. (1987). Analysis of polynomial GCD computations over finite fields. Tech. Rep. 195, Dept. of
Computer Science, University of Toronto, 93 pp.

MacWilliams, F. J., Sloane, N. J. A. (1977). The theory of error-correcting codes. Amsterdam: North-
Holland.

Moenck, R. (1973). Fast computation of GCD’s. Proc. Fifth ACM Symp. on Theory of Computing, New
York, NY, pp. 142-151.

Rabin, M. O. (1980). Probabilistic algorithms in finite fields. STAM J. Comput. 9, 273-280,
Schonhage, A. (1971). Schnelle Berechnung von Kettenbruchentwicklungen. Acta Inform. 1, 139-144,
Stein, J. (1967). Computational problems associated with Racah Algebra. J. Comp. Phys. 1, 397-405.

Strassen, V. (1983). The computational complexity of continued fractions. SIAM J. Comput. 12, 1-27.

