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Let I be a finite field with g elements, £ & F,(x) a rational function over F,.and
D C I, the domain of definition of f. Consider three notions of ‘‘permutation
[unctions™: fis a permutation on F,. or on I, or fis injective on 1. For each of
these, a random polynomial-time test is presented. For the image size of an
arbitrary rational function, a fully polynomial-time randomized approximation
scheme is given. © 1995 Academic Press, Inc,

I. INTRODUCTION

Let g be a power of a prime, [, a finite field with g elements, f = glh e
F4(x) a rational function with g, h € F,[x] and ged(g, #) = 1. Then f
induces a partial mapping F,— F, via a — f(a) forall a € F, with h(a) + 0.
If fis total (i.e., the denominator 4 has no roots in F,) and the mapping is
bijective, then [is called a permutation function over F,. In the special
case h = I, so that f = g € F[x], it is called a permutation polynomial
over [,.

Permutation functions over finite fields have been studied since the past
¢ century. Besides monomials, the two best-known classes of permutation
functions are Dickson polynomials and Rédei functions, introduced by
Dickson [5] and Rédei [26], respectively. Lidl and Wells [22], Fried and
Lidl [6], and Matthews and Lidl [24] considered generalized Dickson
polynomials and Rédei functions. In recent years, considerable attention
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has been given to potential applications of permutation functions in pub-
lic-key cryptography. We refer the reader to Lidl and Niederreiter [21,
Chap. 7], Lidl and Mullen [19, 20], and Mullen [25] for surveys of recent
work and related literature.

The interest in permutation functions comes from the fact that they
form a connection between two central aspects of the theory of finite
fields: combinatorics and algebra. The definition of these objects is rather
combinatorial, and applications such as in cryptography can also be con-
sidered combinatorial. A computational problem is how to represent per-
mutations efficiently; a general representation requires exponential size
(in log ¢), and it is not clear how to represent interesting classes much
more concisely. Algebra presents a partial solution: take those functions
that can be represented concisely as polynomials or rational functions.
This introduces the degree as an interesting measure. Two fundamental
questions for manipulating these objects are (o test when an arbitrary
rational function is a permutation and when the composition of two is
again a permutation. These questions are addressed in this paper.

Some efficient algorithms arc known for lesting whether a given poly-
nomial is a permutation. If the input f € [ [x] has degree n < g, the
probabilistic test of von zur Gathen [9] uses O~ (n log g) operations in k.
i.e., softly linear time in the input size n log g. We use the *‘soft O
notation to ignore logarithmic factors:

s = O (1)< s = Ot logh 1) for some constant £.

A variant of that test applies to ‘‘almost permutation polynomials,”
whose value set contains at least ¢ — p elements of F,, and uses O~ (np log
g) operations in F,. Subsequently, Shparlinski [29] obtained a determinis-
tic test for permutation polynomials using O™ (n*q'?) operations in F, (if
q > 4n®).

In this paper we present cfficient probabilistic tests for permutation
functions of three flavors. They are all based on the subresultant approach
introduced in von zur Gathen [9]. We use the following conventions
throughout the paper:

f=glh € Fy(x) with g, h € F,[x] and gcd(g, h) = 1,
n = deg f = max{deg g, deg A},

D ={a € F, : h(a) # 0} is the domain of definition of f, (1.1
o = q — #D is the singularity of f, ’
V = {f(a) € F, : a € D} is the value set (or image) of f,

v = #V is the image size of f.

Scction 2 presents a fast probabilistic test for permutation functions in
the usual sense [4], namely, functions that induce a bijection from F, into
itself. The running time of the test is O (n log g) operations in [,.
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We say that f'is a bijective function if and only if f'is injective on D (and
hence induces a bijection from [V into V). Thus permutation functions are
bijective functions of singularity zero. In Section 3, we show that the class
of these bijective functions represents exactly all bijections between sub-
sets of [, and study how this new class of functions behaves under the
formal composition of rational functions. It turns out that the 12 classes
definable by this operation actually form a hierarchy of exactly 5 classes,
ordered by inclusion (Theorem 3.10). A probabilistic test for bijective
functions presented in Section 4 uses O~ (no? log g) operations in [,. We
also note that both a bijective function of small degree and its inverse are
easy to evaluate. This property is required for applications such as in
cryptography.

The class of all one-to-one partial mappings on a finite set has been
extensively studied in the context of algebraic semigroup theory, and it
forms an inverse semigroup under the set-thcoretic composition of partial
mappings [3, 13]. Analogous to Cayley’s famous theorem saying that any
finite group can be represented by permutations on a finite set, the
Wagner—Preston Representation Theorem states that any finilc inverse
semigroup can be represented by onc-to-one partial mappings on a finite
set. Our results on bijective functions over finite fields may therefore be
viewed as a further development in this direction, in the sense that such
partial mappings can all be represented by rational functions.

In Section 5 we examine a special subclass of bijective functions. We
say that f is a partial permutation function it and only if [ induces a
bijection from D into itself (and hence [ = V). Thus the class of partial
permutation functions represents exactly all permutations on subsets of
F,-
We show that every bijection between subsets of F, can be represented
by a bijective function that is the composition of a permutation polyno-
mial and a partial permutation function in either order. In Theorem 5.5,
we describe the hierarchy of composition classes involving partial permu-
tation functions. Our results arc not as complete as Theorem 3.10. It
comes as a surprise that some of these classes coincide if and only if ¢ =
5. A well-known phenomenon is that some general properties of permuta-
tion polynomials fail when the field is small compared to the degree; in our
case, however, the propertics apply (o arbitrarily large degrees. In Sec-
tion 6, we design a probabilistic test for partial permutation functions
using only O~(n log g) operations in F,.

A more general problem than the recognition of permutation functions
is to count value sets of arbitrary rational functions over I,. If ¢ is large,
however, the naive counting method for the value set V of f € F,(x),
which evaluates f at all @ € [ and checks how many of these values are
distinct, quickly becomes prohibitively expensive even when deg f is
small. Like many other enumeration problems, it seems hard to design
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efficient deterministic counting algorithms for V. We are not aware of any
deterministic algorithm that computes the size of V exactly and runs in
time sublinear in q.

Section 7 develops a probabilistic approximation algorithm for the im-
age size v of [ € F,(x) of degree n < g. We give a fully polynomial-time
(&, &)-approximation scheme for », using O (n% ? log ¢ log 6~!) opera-
tions in [,.

We mention some recent progress in developing (e, §)-approximation
algorithms for algebraic counting problems. Karpinski and Luby [17] de-
signed an (e, §)-approximation algorithm for counting the number of zeros
of a multivariate polynomial f(xy, . . . , x,) € Fa[xy, . . ., x,]. The
algorithm was later extended by Karpinski and Lhotzky [16] to an arbi-
trary multilinear polynomial over [,. Grigoryev and Karpinski [12] de-
signed an (g, 8)-approximation algorithm for counting the number of zeros
of an arbitrary polynomial f(x;, . . . , x,) over F,. However, unlike the
first algorithm, the latter two (&, 8)-approximation algorithms for arbitrary
F, are not fully polynomial-time in the sense that their running times are
superlinear in g rather than polynomial in log ¢.

Viewing the image of a rational function as the projection of its graph,
we see that the question of counting the size of a projection of a curve
generalizes our problem. This question is addressed in von zur Gathen
et al. [11].

2. A TEST ror PERMUTATION FUNCTIONS

For f'= g/h, D, V as in (1.1), we say that fis a permutation function if
and only if D = V = [, and denote by PF C F,(x) the class of all permuta-
tion functions over F,. Then

fEPF&VaeF,3b € F,gb)hb) =a
SVaelF,3beF,glb) — ah(b) =0
SVaeF,Ibel,x—b|g—ah
& Va € F,ged(x9 — x, g — ah) # 1
= Vae l,res,(x? — x, g — ah) = 0
&y — y | res, (x4 — x, g — yh).

Here y is a new indeterminate, r = res,(x? — x, g — yh) € Fu[¥] is the
resultant of the two polynomials x¢ — x and g — yh in F,(y)x], and the
divisibility condition is in F,[y]. From the definition of r as the determi-
nant of the (g + n) X (g + n)-Sylvester matrix for x4 — x and ¢ — yh in
F,(»)[x]. it follows that deg r = g. Furthermore, the condition ged(g, h) =
1 implies r + 0, since
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res,(x¢ —x,g—yh)=0=>3b € F, g(b) = yh(b) = 0
= 3b € F, g(b) = 0 and h(b) = 0
>3dbeF,x—b|lgandx—b|h
= ged(g, h) + 1.

THEOREM 2.1. For [ = g/h as in (1.1), f € PF if and only if
res,(x? — x, g — yh) = c(y9 — y), for some ¢ € F} = F,\{O}.

In the special case h = 1, so that /= ¢ € F,[x], the constant can be
predetermined as ¢ = —1 [9].

It would be very costly to compute r = res, (x4 — x, g — yh) directly via
the determinant of the (¢ + n) X (¢ + n)-Sylvester matrix. We can,
however, substitute a randomly chosen a € [,\F, for y, from a proper
field extension [, O F,, use the Euclidean algorithm to calculate r(a) €
Fg~, and then check whether r(a)/(a? — a) is a nonzero constant in by
with high probability, this will happen if and only if f is a permutation
function.

We denote by s rem ¢ the remainder of s on division by 7 (1 # 0), for &5
in a Euclidean domain such as F'[x] (where F is a field) or Z, and recall the
definition of the Euclidean representation of (s, t) from Knuth [18], Stras-
sen [30], and von zur Gathen [9]. The following fact is derived from von
zur Gathen [9, Sect. 5].

Fact2.2. Letk, D F, withm =2 be a field extension and a € F,.. For
f=glhasin(l.1)and u = x? — xrem(g — ah) € Foulxl, let (g, . . ., qy,
a;) be the Euclidean representation of (g — ah, ), d; = deggi,andy, € F,»
be the leading coefficient of g¢;, for2 =i = 1l. Leta € F,» be the leading
coefficient of g — ah, ny = ¢, n; = deg(g — ah) < n, n; = n, — Ege___;f.,v d; for
2<i=lands = Xy mn;, rem 2, Then, for r = res (x — x, g — yh) €
F,[¥1\{0}, we have

0 it n =1,
ra) = (=1)* @mim ] yyeem if 1, = 0. 2.1

1=i={
Furthermore, if a € F,»\F,, then r(a) € Fj..

Probabilistic Test for Permutation Functions

Input: f = g/h as in (1.1), a monic quadratic irreducible polynomial ¢ €
Fylx], and & > 0.
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Output: Yes or No.

1. Seta = (x mod ¢) € Fp\F, and calculate
r(a) € Fj: by Fact 2.2,
c=rla)(a?— a) € H-:: by repeated squaring.
If ¢ & F,, then return No and stop.
2. Repeat 1 = |log, £ '] times:
Randomly and uniformly choose a € F;» = F,[x]/(¢) and calcu-
late 8 = r(a) — c(a? — a).
It B + 0, then return No and stop.
3. Return Yes.

To estimate the cost, let M: N — R be a “‘universal’” cost of multiplica-
tion, so that the multiplication st takes O(M(n)) arithmetic operations or
bit operations, respectively, for two polynomials s, t € F[x] of degree at
most i, or two n-bit integers s, t € Z. Similarly, the division with remain-
der srem ¢ (if t + 0) and the gcd computation ged(s, £) can be performed in
O(M(n)) and O(M(n) log n) operations, respectively [1, Sect. 7.5]. We can
choose M(n) = n log n log log n with “‘fast arithmetic™ [2, 27] and M(n) =
n? with “*classical arithmetic.”

THEOREM 2.3. Let q = n, & > 0, and t = [log, €7']. The test for
permutation functions uses O(2t) random choices and Ot M(n) log g)
operations in F,. If f € PF, the output is Yes; if f & PF. the output is No
with probability at least 1 — &. In particular, for e = (1/q)""V, the test can
be performed with O(1) random choices and O (n log q) operations in .

Proaof. If f€ PF, then the test returns Yes, since r — ¢(y9 — y) = 0 by
Theorem 2.1. If f'¢& PF and ¢ & F , the test returns No correctly in Step 1.

If f& PFand ¢ € [, then by Theorem 2.1, s = r — ¢(y7 — y) € [ ,[y] is
a nonzero polynomial of degree = g, and any a € [F» with 8 = s(a) # Oisa
“wilness (o the nonbijectivity’” of f. The probability of returning a wrong
Yes in Step 3 thus equals that of selecting ¢ “‘liars” a € F 2 with 8 = 0ina
row, which is at most (g/g*)' = (1/g)' < e.

For the timing analysis, we first note that any ficld operation in F,. can
be simulated with O(1) operations in [,. Therefore, in Step 1, computing
u = x4 — xrem(g — ah) € Fplx] takes O(M(n) log g) operations in F, via
repeated squaring, and calculating r(a) € F. takes O(M(n) log n) opera-
tions in T, via the Euclidean representation for (g — ah, u). The total cost
of this step is O(M(n) log(gn)) operations in F,, or O(M(n) log g) opera-
tions if ¢ = n.

Step 2 uses O(2f) random choiges in [, to generate ¢ random elements in
F,» and takes O(r M(n) log g) operations in [, or O™ (n log € ') operations
fe=qg'. =
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Remark 2.4. 1t is easy to find a quadratic irreducible polynomial ¢ €
F,lx] for our test. We distinguish two cases: char F, # 2 and char [, = 2.

If char |, # 2, then ¢ = x> — « € F,[x] is irreducible over F, if and only
if « is a nonsquare. Therefore. with an expected number of two random
choices and O(log g) operations in [F,, we can find such an a with o'¢ 12 £
1 and choosc ¢ = x* — a as the desired irreducible polynomial.

If char [, = 2, then ¢ = 2! for some / € N, and we let T: F,— T, be the
absolute trace function. It is well known that x> + x + a € k] is
irreducible over F, if and only if 7(«) + 0 (21, Corollary 3.79].

Now suppose that w = x' + ax!™' + - - - + g 1x + a € [L[x] is
irreducible over I, and F, = F>[x]/(w) is represented by the basis {I, &,
: , 71} with £ = (x mod w) € [,. Clearly, 8; = T(&¢) + 0 for some () =
i<l,Bo=1mod2,and B; = ay, since w = (x — &)(x — £2) - - - (x — £&¥7).

Furthermore, for 2 = { < [, Newton’s formula yields that

B g4 @Rt
= (&)Y + (£2)i+ - - -+ ()
=wmPfi-1 + @Bi2+ - -+ a; 4B + a; - (i mod 2).

Therefore, if j = min{0 = i < [: By # 0 or a; * (imod 2) # 0}, then 3; # 0.
With virtually no computation, we can find this index j and choose ¢ =
x? + x + &/ as the desired irreducible polynomial.

Remark 2.5. 'The test for permutation functions can be implemented
using any field extension F,. D F, with m = 2. The new implementation
relies on the following fact: if f & PF, then we can determinc a ¢ € F g« by
¢ = r(a)/(a4 — a) for some arbitrary a € F,m\F,. so that either ¢ & [F" isa
witness to the nonbijectivity of [ or ¢ € F;. In the latter case, s = r —
c(y?—y) € F,[ylis a nonzero polynomial of degree = g, and any clement
in the set {a € F. : s(a) + 0} constitutes a witness. Therefore, the proba-
bility that a random element in [F . is a witness is at least (g" — q)/q™ =
1 = g'" ™= 1/2. In particular, forany0 < e < g 'andm = 1 + [log, £,
the probability is at least 1 — .

To construct ., we need an irreducible polynomial ¢ € F,lx] of degree
m, which can be found with an cxpected number of O~ (m? + m log q)
operations in [, via the probabilistic algorithm of Shoup [28]. Further-
more, any field operation in [,» can be implemented with O(M(m) log m)
operations in k.

For0 <e =g 'and 2 =m =< 1 + [log, £7'], apart from the cost of
constructing ., the test uses O. (n log £~!) operations in F,. In that case,
a returned No answer is always correct, and a Yes answer is correct with
probability at least | — &.
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Remark 2.6. Other tests for permutation functions are available: a
deterministic one extends the test for permutation polynomials in
Shparlinski [29], and a probabilistic one gencralizes the ‘‘naive’ test for
permutation polynomials in von zur Gathen [10]. A full description of
these two tests (plus others) can be found in Ma and von zur Gathen [23].

3. ConstrUCTION AND COMPOSITION OF BUECTIVE FUNCTIONS

For f = g/h, o, D, V as in (1.1), we say that fis a bijective function if
and only if f'is injective on . Thus f represents the bijection a > f(a)
between [ and V. We call o its singularity and denote by BF O PF the
class of all bijective functions over F,.

Clearly, if f € PF, then 1/ € BF has singularity 1. In general, we have
the following.

PropPoOSITION 3.1. If f € BF has singularity k, then 1/f € BF if and
only if k = 1, and if this is the case, then its singularity is 1 — k.

A substantial generalization of this fact is given in Theorem 3.7.

PROPOSITION 3.2.  Every bijection between two subsets of F, can be
represented by a bijective function of degree at most q.

Proof. Lett: A— B be abijection between two sets A, B C F,. Thenr
can be represented by a bijective function f = g/h as in (1.1), constructed
as follows:

* Use interpolation, say, by the Lagrange formula [21, Theorem
1.71], to find ¢ € F,[x] of degree <gq, such that g(a) = 7(a) for all a € A
and g(a) = 1 for all @ € F\A.

* If A = &, then set h = x? — x; otherwise, use interpolation to obtain
a nonzero h € F,[x] of degree <gq, such that i(a) = 1 for all « € A and
h(a) = 0 for all a € F\A.

+ Set w = ged(g, h), g = g/w, and h = hiw.

Since ged(x? — x, w) = 1, we have D(g/h) = D(g/h) = A, and
gla)/h(a) = gla)/h(a) = r(a) foralla € A. =

While a polynomial f € F,[x] of degree less than g describes a total
mapping F, — F, uniquely, a partial mapping F,— [, might be represented
by different rational functions of degree at most ¢. Consequently, for (0 <
o = g, the number of bijections between subsets of T, of size ¢ — o yields
a lower bound on the number of bijective functions of singularity or.

ProposiTiON 3.3, The class BF of bijective functions represents ex-
actly all bijections between subsets of F,. Over an arbitrary finite field [,
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and for 0 = o = g, the number of bijective functions of singularity o and
degree at most q is at least
q 2
( ) (g — o).
o

In the rest of this section, we discuss the composition of our various
types of functions. It turns out that the 12 classes defined a priori by this
operation collapse into 5 distinct classes, ordered by inclusion. Note that
by “‘composition’” we mean the formal composition of rational functions,
by substituting one function for the indeterminate and then simplifying.
The subtle differences of this “‘syntactic’ operation and the **semantic’’
composition of the set-theoretic partial mappings play a major role in the
sequel.

We first observe the following anomalies when composing bijective
functions.

ExampLE 3.4. If g > 2 and a € F,\{0, 1}, then

et bl ebr, meelicer
T+ l—g ? =7 ?

and r has singularity 1. The composition

x4 3 x — 1)
(x — )9 ! — gxa-!

Inr‘_—

is total but not bijective, since (I ° r)(0) = ([ ° r)(1) = 0.

Over F;, 1 = (x + 1)/(x> + x + 1) € PF, r = I/x € BF, and r has
singularity 1. The composition [ r = x(x + 1)/(x2 + x + 1) is total but not
bijective, since ([ o r)(0) = (I o F)(1) = 0.

ExampLe 3.5. If ¢ > 2 and a € F\0, 1}, then both [ = x/(x — @)
and r = x/(x — 1) are bijective and have singularity 1. The composition

fop o A= D2
T ax + !

is neither total nor bijective, since it has one singular point a/(a — 1), and
(Lo r)0) = (Ler)l) =0.

These examples demonstrate that the composition [ ¢ r of [, r € BF is
not necessarily bijective. The explanation for such anomalics is that a
singular point of r might become desingularized during the composition
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and subsequently map to an image of / and hence violale the one-lo-one
nature of bijective functions. IHowever, it will become clear in our proof
of Theorem 3.7 that [ = r either is bijective or has only one “‘multiple™
image to which at most o + 1 points from its domain are mapped, where o
is the singularity of r.

LeEMMA 3.6 (Zippel [31]). Let F be an arbitrary field, and u = u,,x™ +
Up X"V st ux+tmandv=v,x" +v,x" T+ - ux €
Flx] relatively prime with u,v, # 0. Let U, V € F[x, y] be the bivariate
homogenizations of u, v of degrees m and n, respectively:

X

U(_;_-, _)J) = y"u (;) = U x™ + um_lxm—l}. 4 oo 4 H|K_}‘m_l + uyy™,
g n =1 n—1 n

Vix, y) = y"v ; = UpX" + Uy X"y + - - -+ vy 4 ey

Then for any relatively prime g, h € F[x], the polynomials Ul(g, h).
Vig, h) € Flx] are also relatively prime.

Proof. We give a more direct proof than Zippel’s, using the existence
ofs,t € Flx] withus + vt = 1, deg s << n and deg t << m. Substituting g/h
for x yields

u(glh)s(elh) + vig/h(glh) = 1,
Ulg, hh" 's(glh) + V(g, Y™ 't(glh) = hm'n !,
Write w = ged(U(g, h), V(g, h)). The above shows that w | p7tn-!,

Since gcd(g, h) = 1, we have ged(U(g, h), h) = 1. It follows that
ged(w, h) = 1 and therefore w = 1. =

THEOREM 3.7. Let | = ulv, r = g/h € BF with u, v, g, h € F,[x],
ged(u, v) = ged(g, h) = 1,deg u = m, deg v = n, and leading coefficients
u,, and v,, respectively. Let o = deg ged(x¥ — x, h), and

U/ Uy if m=n,
a _—
0 if'm + n.

Then | o v € BF if and only if one of the following conditions holds:
(i) m=>n;
(i) o =0; .
(i) o = 1 and a & V(I);
(iv) o= 1and a = la) for some a € FAV(r).
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Proof. Using the notation from Lemma 3.6, we write

U= UpX™ + Uy x™ 4 - -+ mx + ouy,
US X"+ U™ 14+ o+ uyx + 1,
/ - U 8™ + Uy 18"+ - - -+ wygh™ ™l + uohm
[+] j' 4
Ung" + Uy 18" h+ - o - 4 vy ght! 4 uoh”
= hn—m l_'j{'g’—k)_
Vig, h)

It follows from Lemma 3.6 that
ged(U(g, h), h) = ged(V(g, h), h) = ged(U(g, h), V(g, h)) = 1.

LetA={a €F,:v(@) =0tand B = {u € F, : h(a) = 0} be the sets of
roots of v and % in F,, respectively, and let r~1(A) = {a € FNAB : r(a) € A}
be the set of preimages of A under r. Then, the domain of / © r is

FACTMA)UB)  ifm > n,
D(ler) = . (.1
F\r'(A) if m = n.

Since [ and r are injective on their domains, respectively, we have
Va, b € FA(F'(A) U B) a # b= lr(a)) + 1(rh)),

and this shows that [ r € BF if m > n.
If m < n,then (lor)(a) = a forall a € B. Thus, for m < n and o = #RB,

ler e BF
<o =0,0oro=1and Va € F,\(r (A) U B) I(r(a) + «

co=0Woro=landa & V(),orac=1and a = l(a)
for some a € F \V(r)

~o=0,oro=1and ged(x9 — x, u — av) = |, or
o=1,ged(x? — x, u — av) = x — a and ged(x? — x, g — ah) = 1
for some a € F,. =

Remark 3.8. Theorem 3.7 is asymmetric, since for / € PF and r € BF
as in Example 3.4, [ -y & BF, bul ro | € BF.

Let l, r, o, @ be as in Theorem 3.7 and d = max{deg I, deg r} = q. The
proof of the theorem shows that we can test deterministically whether



42 MA AND VON ZUR GATHEN

ler € BF using O (d log g) operations in [F,. If [ ¢ r & BF, then it has only
one multiple image « to which [ r maps all o distinct roots of  in [, and
possibly another point b € F,, determined by

ged(x? — x, u —av) =x — a and gedix? — x, g —ah) = x — b,

for some a € F,.

DerFiniTION 3.9. Let PP C PF C BF be the classes of permutation
polynomials, permutation functions, and bijective functions over [, re-
spectively. For A, B € {PP, PF, BF}, write AcB = {lor: /€ Aand r € B}.

THEOREM 3.10.  Quer an arbitrary finite field F,, we have (see Fig. 3.1)

PP = PP PP C PF = PP < PF = PF < PP = PF = PF C BF
= PP o BF = BF « PP = BF « PF C PF = BF C BF - BF.

Proof. All equations follow from Theorem 3.7 (ii) or (i), with n = 0. In
the other cases, the inclusions **C"’ follow from PP C PF C BF. Clearly,
PP # PF # BF, and Example 3.4 shows that BF # PF o BF. It remains to
show that PF - BF # BF - BF.

We claim that PF < BF contains only functions that are either total or
bijective. To show this, let / = w/v € PF, r = g/h € BF, m and n be as in

BF o BF

PF o BF

BF = PP o BF = BF oPP = BF o PF

PF = PP o PF = PF o PP = PF oPF

PP = PP o PP

F1G. 3.1.  The classes of Theorem 3.10.
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Theorem 3.7. It follows from Theorem 3.7 (i) that [« r € BF if m > n, and
(3.1) implies that [ o r is total if m < n, since | € PF and thus A = @.

Furthermore, we claim that over F,, every /o r € PF = BF as above with
m < n is total with a nonconstant denominator. To prove the claim, we
note that since v has no zeros in Fs, it has the form

[P e o e B T S oL S L I S |

with n = ny > ny 1= >n>n >0forsomek=1.

Let U, V € F;[x, y] be the bivariate homogenizations of . v of degrees
m, n, respectively. In the proof of Theorem 3.7, we showed that [ o r =
h"mU(g, )/ V(g, h) with ged(V(g, h), h) = ged(Ulg, h), V(g, h) = 1. Let
i = max{deg g, deg h} be the degree of r. It is casily seen that
deg V(g, h) = ni > 0. This proves our claim.

Now we present [, r € BF such that /o r & PF « BF. We distinguish two
cases: ¢ > 2and g = 2. Over F, with ¢ >> 2 and for /, r € BF as in Example
3.5, I = r is neither total nor bijective and hence not in PF o BF.

Over by and for! = 1/x,r = l/lx(x + 1)] E BF, lor = x(x + 1) is neither
bijective nor total with a nonconstant denominator and hence not in PF o
BF. =

4. A Test For BuecTive FUNCTIONS

Forf, vasin (1.1) and 0 = p = q, we say that fis p-large if and only if
v=g—p Letr=res,(x?—x,g —yh)and k = ged(y? — y, r) € Fol ¥1.
Then

fis p-large

SIWCH#W=qg—p and YacWIbEF, f(b)gh) = a
CIAIWCF, #W=g—-p and YacWIbe F, f(b) — agh) =0
SIAWCEF, #W =g -p and Vae W 3b eF, x—=b|f— ag
SIWCEH #W =g -p and Va e W ged(x? — x,f—ag) #1
CIWCF,#W=qg—-p and Ya € W res, (x9 — x, f—ag) # 1
SAWCF,#W=g—-—p and YaeW y-alr

& deg(ged(y? =y, r) = g — p-

< deg((y7 — y)/k)) = p.
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THEOREM 4.1. Forf=glhasin(1.1) and k as above, f is p-large if and
only if deg((y9 — y)/k) = p. In particular, f' € BF if and only if fis a-large,
where o = deg ged(x¥ — x, h) is the singularity of f.

Our test for bijective functions is based on an extension of the test for p-
large polynomials in von zur Gathen [9] to rational functions. We refer the
reader to that paper for an account of the subresultant theory, arithmetic
circuits, and Kaltofen's Algorithm Rational Numerator and Denominator.

Test for Bijective I'unctions

Input: f = g/h as in (1.1), a monic gquadratic irreducible polynomial ¢ €
F,[x], and £ > 0.
Outpur: Yes or No.
1. Compute o = deg ged(x¥ — x, h).
2. Seta = (x mod ¢) € F,/\F, and work in two stages:
(i) Calculate a, — a € Fj: by repeated squaring, and r(a) =
res,(x9 — x, g — ah) € [, by Fact 2.2.
By the subresultant theory, this computation yields an arithmetic

circuit A for calculating (y¢ — y)/r € F,(y) with no division by
ZEero on input y < a.

(i1) Call Kaltofen's Algorithm Rational Numerator and Denomi-
nator with input A and «, and degree bound « both tfor numerator
and denominator.
The output is an arithmetic circuit B computing two polynomials
¢, ¢; € Fyly] of degree at most . Remove divisions from the
circuit B to get a division-free circuit C.

3. Repeal t = [log,, '] times:
Randomly and uniformly choose a € F,: = [ |x]/(¢), calculate
ci(a) and c3(a) by executing C with input y «— 4, and compute 8 =
(@ — a)esla) — ra)ey(a).
If g # 0, then return No and stop.

4. Return Yes.

THEOREM 4.2, Letg=n,e> 0,1 = [log,s '], and o = deg ged(x9 —
x, h). The test uses OQ2t) random choices and Ot M*(o)M(n) log q)
operations in F,. If f € BF, the output is YES; if f & BF, the output is No
with probability at least | — «. In particular, for e = (1/q)?"V, the test can
be performed with O(1) random choices and O (no? log q) operations in
F,.

Proof. Torr =res.(x%—x,g — yh)and k = ged(y? — y, r) € F [ y],
letw, = (y9—y)lkand w, = rlk € F,[ y]. Then, gcd(w;, wy) = |, deg wy =
deg w, since deg r = ¢, and (y4 — y)/r = w/w,.
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If / € BF, then deg w; = o by Theorem 4.1, and Kaltofen's algorithm
produces ¢; = wyand ¢; = w; in Step 2. In that case, (y4 — y)es — rey = 0
and the test returns Yes.

If /& BF, then deg wy > o by Theorem 4.1, and Kaltofen’s algorithm
produces two essentially unrelated polynomials ¢;, ¢; € F,[ y] of degree
at most o. This shows that w/w> # ¢,/c¢,, and hence s = (y9 — y)cy —
rey € Fyl y]is a nonzero polynomial of degree =g + o < 2q. Any a € F,:

’

probability of returning a wrong Yes in Step 4 equals that of selecting ¢
liars a € F,: with 8 = 0 in a row, which is at most (2g/g?)' = (2/g)' = «.

By repeated squaring and a ged calculation, we can compute o in Step |
with O(M(n) log(ng)) or O(«) operations in F,,, for o = n = g and & = M(n)
log g.

Similarly, the circuit size of A in Step 2(i) is O(«). Kaltofen’s algorithm
uses O(M(a)(e + log o)) or O(M(o)a) operations in F, to compute the
circuit B8 of size O(M(u)«) and O(M(o)ar) operations to construct a divi-
sion-free circuit C of sizc O(M%(a)a). The total cost of Steps 1 and 2 is
O(M*(r)a) operations in .

Step 3 uses O(2¢) random choices in F, to generate  random elements in
T,:. Bach trial takes O(M*(o)a) operations in [, to calculate ¢ (a) and
¢(a) and O(«) operations in F, to calculate 8. Therefore, the test uses a
total number of O(t M*(o)a) operations in F,, or O~(no? log ¢ ') opera-
tionsife =g~'. m

PropoSITION 4.3, Let f € BF as in (1.1) have degree n. Then f can be
evaluated with O(n) operations in F, and =" with O(M(n) log(gn)) opera-
tions.

Proof. Leta, b € F, with f(a) = b. Then g(a) — bh(a) = 0, and
ged(x4 — x, g — bh) = x — a.

Thus is it easy to calculate ¢ from h. =

5. PARTIAL PERMUTATION ['UNCTIONS

For [ = g/h, o, D, V as in (1.1) we say that fis a partial permutation
function if and only if D = V. We call o its singularity and denotc by
PPF C BF the class of all partial permutation functions over F

As a special case of Proposition 3.3, we have the following.

o .

ProPOSITION 5.1, The class PPF of partial permutation functions rep-
resents exactly all permutations on subsets of . Over an arbitrary finite
field F, and for 0 = o = g, the number of partial permutation functions of
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singularity o and degree at most q is al least

q
({r) (g — o)l

We identify a special class of partial permutation functions. For [ €
PPF, we say that fis a partial identity function if and only if f(a) = a for all
a € I and denote by PIF C PPF the class of all partial identity functions
over F,.

ExAaMPLE 5.2.  Over an arbitrary finite field [, and for a € F; = F,\{0},
x/(x — a)* ! € PIF with domain D = F\a}.

For ¢ > 2 and ¢ = 2, respectively, both 1/x472 and 1/x arc in PIF with
D = F,. If char F, # 2, then both

2x d =2
@07 1 | &g x@
arc in PIF with the domains of squares and nonsquares of F plus the zero
element, respectively.

The following is a special case of Proposition 5.1.

Prorosition 5.3, The class PIF of partial identity functions repre-
sents exactly all identity mappings on subsets of F,. Over an arbitrary
finite field F, and for 0 = o = q, the number of partial identity functions of
singularity o is at least (%). The total number of partial identity functions
is at least 29,

It is evident that PP C PF C PPF C BF. In contrast to PP, PF, and BF
(see Theorem 3.10), PPF is not closed under composition with any of the
four classes, as demonstrated by the following example.

ExaMPLE 5.4. Over an arbitrary finite field F,, /= x+ 1 E PPand r =
—1/x € PPF. However, [or = 1 — 1/x & PPF, since D(/° r) = F,\{0} and
V(! o r) = FM1}. Similarly, rel = —1/(x + 1) & PPF, since D(r o [) =
FM—1} and V(r < I) = F\0}.

THEOREM 5.5.  Qver an arbitrary finite field F,, we have
PPF o PP C PPF o PF
PP - PPF

PP'¢ PPF L PF=PPEC PPF+PRF{l PFs BF,
PF < BF C PPF ¢ BF,

PP o PPF = PPF » PP = PPF - PF = BF if g = 5,
PP« PPF C BF if g > 5.

PPF C C BF 2 PF « PPF,
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Proof. All inclusions ““C”* follow from PP C PF C PPF C BF and
Theorem 3.10. Example 5.4 shows that PPF s PP« PPF and PPF # PPF o
PP.

We recall Examples 3.4 and 3.5 and note that those /, r stated as in BF
are actually in PPF. For/ € PF and » € PPF as in Example 3.4, /o r & BF
and hence [ = r & PP < PPF. For I, r € PPF as in the proof of Theorem
3.10, I o r & PF » BF and hence / o r & PF » PPF. It remains to show that
PP > PPF = PPF PP = PPF ¢ PF = BF if¢ = 5, and PP - PPF C BFifg >
5.

Suppose that 0 = k = ¢ = 5, and that £ € BF induces a bijection A — B
between A, B C F, with #A = #B = k. For such A and B, we claim that
some linear polynomial / = ax + 8 € F,[x] with & # 0 maps B onto A. To
see this, we note that /(B) = A if and only if /(F)\B) = F)A. Since min(k,
q — k) = 2, such [ exists.

For I = ax + B with A = I(B), D(ef + B) = WV(af + 8) = A, and
D(flax + B)) = V(f(ax + B)) = B. Thus af + 8, flax + B) € PPF, and
clearly

= (X BY - e+ Bl — E’)

I= (a a) (af + B) = flax + B) (G_ o
It follows that PP < PPF = PPF o PP = PPF o PF = BF if g = 5.

Forg > 5(i.e., ¢ = 7), we first show that there are A, B C F, with #A =

#B = 3, such that no linear polynomial / € F,[x] with B = I(AJ exists.
If g =8, we choosc A = {0, I, a, b} C F, with 1 + a~! + b~ 0 and
#A = 4. Since the number oflinear polynomials I € F [x]is g(g — 1), this
is an upper bound on the number of image sets of A under such (. From

#BCF,: #B = 4} = (Z) >qglg — 1),

it follows that there exists B with #4 = #B and such that no linear
polynomial maps A onto B. If g = 7, we choose A = {0, 1,4} and B = {0, I,
3} and verify that no lincar polynomial over I maps A onto B.

We now usc such A and B to construct a bijective f'such that f & PP o
PPF, for g = 7. Let f = g/h € BF represent a bijection [ M= FAB, with
g, h, &, h as constructed in the proof of Proposmon 3.2. We may assume
that & is monic. We claim that x divides 4 and x? does nol.

Since A(0) = 0 and g(0) = 1, x divides £ but not 2. and it is sufficient to
show that x2f A. Noting that A(¢) = 1 forall c € F A, and A(c) = 0 for all
¢ € A, we have by the Lagrange formula that

fi=Y [M24-_ 3 11 c-a,

cEFpA deFple) € d cEF A JEF N}
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since TL,F_F; d = —1 by the general form of Wilson’s Theorem (see, ¢.g.,
[8, Chap. 1.3]).

Using the fact that = 2.cr, ¢ = 0if ¢ > 2, we find that the coefficient s of x
Il"l E 15

s==3 [ ddy=—~F L 3L

cEF A dEFNM0,c} Eigpt € cémdn €
Our choice of A implies that

l+at+b1%0 ifg =8,
§ =
L+41£0 ifg=7.

Now we claim that no | € PP and u/v € PPF exist with [ = [ s (u/v).
Suppose that we have such [, u, v € I,[x] with v monic and ged(u, v) = 1.
letn=degl=1,1~= 29515,, Lixi, and v = 2ozizn litt'v"" € F,|x]. Then
ged(v, w) = 1, since v divides all \llmmdnd‘i of w except [, u", and ged(v,
L) = 1. Fu:“thermnn.

-2 G) -

n
(l=i=n v

which implies that £ = v" and hence n = 1, since x divides h exactly once.

Thus /is a linear polynomial over F,, and the domain and value set of /v
are

o) -v(d) - ron

Since /=l (ufv) and V(1) = T \B, we have [(A) = B. By our construc-
tion, no such / exists. =

Several properties of permutation polynomials, such as Carlitz's con-
Jecture [7] or the implication that permutation polynomials are excep-
tional [4, 10], hold only when the field is sufficiently large compared to the
degree. The proper inclusion PP « PPF C BF exhibits a similar phenome-
non; a difference is that these classes contain rational functions of arbi-
trarily large degrees.

We note that PP and PF are %ynldbllbd“y distinct classes of functions
over F,; however, they are semantically equivalent, or have the same
exprcssivc power, in the sense that each represents exactly all permuta-
tions on [,.
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The following proposition establishes an interesting connection among
the classes PP, PPF, and BF. Combining it with Theorem 5.5, we can
conclude that the four classes of functions BF, PP « PPF, PPF ¢ PP, and
PPF = PF are semantically equivalent, since each class represents exactly
all bijections between subsets of F,.

PrOPOSITION 5.6.  Every bijection between two subsets of F, can be
represented by a bijective function that is the compaosition of a permuta-
tion polynomial and a partial permutation function in either order.

Proof. Let 7:/A— B be a bijection between two sets A, B C F,. We
want to show that 7 can be represented by two bijective functions fand u
such that f = gehand u = v e w with g, w € PP and h, v € PIF C PPF.

Let g = w be a permutation polynomial over F, inducing the restricted
bijection a — 7(a) between A and B, and let & be a partial identity function
with domain A and v a partial identity function with domain B. By Theo-
rem 3.10, both /= g ¢ h and g = v o w are bijective functions, I)( f) =
D(g) = A, and f(a) = g(a) = 7(a) foralla € A, m

Combining Theorems 3.10 and 5.5, we obtain the following corollary.

CoroLLARY 5.7. Quer a finite field ,, we have the composition
classes shown in Fig. 5.1.

6. A TEST FOR PARTIAL PERMUTATION FUNCTIONS

Since any f = g/h € PPF is a special bijective function that induces a
bijection from its domain into itself, one way of testing whether £ € PPF is
to first test whether f € BF and then check that none of the roots of / lie in
the value set V of f. So suppose that f € BF and that x,, . . ., x, are the
roots of hin [, and set

k=[] (x— x)=gedxs = x, h) € F(x].

I=i=o

Then

[T (¢ —xt) = ke [] (g/h — x) = hok(glh) € T,[x].

I=i=o Isi=v

Denote this polynomial by K it is the bivariate homogenization of &,
evaluated at (g, h). Then we have
& Ve gedx? —x, g —xh) =1,
f € PPF & ged (.\"? —%s ]_[ (g — x,h)) =1 < ged(x? — x, K) = 1.

1=i=
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| PPF o BF | BF o PPF
i 1
1

“'"‘—-._ 1

] PPF o PPF |

[ ]

| BF = PP o BF = BF o PP = BF o PF ]

1
PPF o PF
1

PP o PPF

PF = PP 0 PF = PF 0 PP = PF 0 PF |

PP - PP o PP

FiG. 5.1. The composition classes of Corollary 5.7. Solid line, lower class is properly
contained in upper class; dashed line, containment; dotted line, upper class is not contained
in lower class.

The running time of this procedure is O~ (no? log q) operations in [,. In
the remainder of this section, we design a simpler and more efficient test,
using only O~(n log ¢) operations in [F,.

For D = FMx, . . .. X}, let d € Fy[x] be the following polynomial of
degree g — o

d = I b=t 0 o, ©.1)

o - ged(xd — x, h)’
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Then

fEPPF&YaeDIbe D gh)hb) =a
S VYaceD3IAbeED gb) — ahb) =0
SVaeDIbEDx—b|g— ah
S Vae Degedld, g — ah) # 1
S VaeDres(d,g — ah) =0
& d(y) | res (d, g — vh).

Here y is a new indeterminate, r = res,(d, g — yh) € F,[ y1is the resultant
of d and g — yh in F,(y)[x], and the divisibility condition is in F (yJ
Using the same argument as that in Section 2, we see that deg r = q —
and r # 0.

THEOREM 6.1. For f= glhasin(1.1), let k = ged(x9 = x, h) and d =
(x9 = x)/k € b lx]. Then f € PPF if and only if

k(y)res,(d, g — yh) = c(y? —y)  for some ¢ € F}.

Remark 6.2.  An explicit representation of d € F,[x] via polynomial
coefficients would require exponential size in log ¢, and it would be pro-
hibitively expensive to compute r = res,(d, g — yh) € Fyl y] directly via
the determinant of the (g — o + n) X (g — o + n)-Sylvester matrix for d
and g — yh in F (y)[x].

For any a € F,» O F, with m = 2, however, we can apply Fact 2.2 to
compute r(a) € F,. cfficiently by the following trick:

* First compute v = x9 — x rem[k(g — ah)] € F,n[x] by repeated
squaring and then u = v/k = d rem(g — ah) € F,»lx] by polynomial
division. Since g, h, k, v, and u each have degree at most n + o = 2n, the
cost of this step is O(M(n) log g) operations in F,.

* Setnyg = g — o, compute the Euclidean representation of (g — ah,
u), and then use (2.1) to compute r(a). The cost of this step is O(M(n)
log n) operations in [,.

Test for Partial Permutation Functions

Input: f = g/h as in (1.1), a monic quadratic irreducible polynomial ¢ €
Fqlx], and & > 0.
Oatput Yes or No.

1. Compute k = ged(x4 — x, h) € F,[x].
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2. Seta = (xmod ¢) € F,/\F, and calculate
r(a) = res,((x? — x)k, g — ah) € F;2 by Remark 6.2, ¢ = k(a)r(a)/
(a% = a) € F: by repeated squaring.
If ¢ & Fg, then return No and stop.

3. Repeat t = [log, ¢ '] times:
Randomly and uniformly choose ¢ € F,: = F,[x]/(¢), and calcu-
late B = kla)r(a) — e(a — a).
If B # 0, then return No and stop.

4. Return Yes.

The proof of the following theorem is similar to that of Theorem 2.3.

THEOREM 6.3, Let g =n,e >0, and t = [log, £~']. The test for partial
permutation functions uses O(2t) random choices and O(t M(n) log q)
operations in F,. If f € PPF, the output is Yes; if f &€ PPF, the output is
No with probability at least 1 = e. In particular, for & = (1/q)°V, the test

can be performed with O(1) random choices and O~(n log q) operations in
F

g

7. A PROBABILISTIC APPROXIMATION SCHEME FOR
CouNTING VALUE SETS

The basic idea of our probabilistic algorithm for estimating the image
size of an arbitrary rational function is the well-known “*dart throwing™
scheme. Let U be a finite universe of known size #U and S C U a subset
of unknown size. If we have an algorithm to decide the membership of a
in S for all @ € U, then we can approximate #S as follows:

1. Predetermine an N € N as the number of trials and initialize the
estimator A « 0.

2. Repeat N times:

Randomly and uniformly choose a € U (throw a dart) and test

whether ¢ € S (see where the dart lands). If @ € S, then set

A~ A+ #U,

3. Output A « A/N.

DEerFINITION 7.1.  An (e, 8)-approximation scheme for #S is a Monte
Carlo algorithm with two additional input parameters £ and 8, which
outputs an estimate A of #S with probability at least 1 — & and relative
error al most ¢, i.e.,

Prob[#S(l — &) = A= #S(l + &)]=1- 4.
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An (g, 8)-approximation scheme for #8 is said to be fully polynomial-
time if the running time of the algorithm is polynomial in e !, log # !, and
the input size of the counting problem.

Fact 7.2. (Karp et al. |15]). Let 8 = #U/#Sand & = 1. If N = 48
In(2/8)& 2, then the dart throwing scheme is an (e, 8)-approximation algo-
rithm for #8S.

LEMMA 7.3. Forf= glh, o, v, n as in (1.1), we have

qg—a
n

=y=g-—0.

Proof. We recall the notation of (1.1). It is clear that v = #D = ¢ — «.

Fori € N, let R; = {a € [, : #f '({a}) = i} be the set of points with
exactly i preimages under f, and r; = #R,;. Clearly, R, = @ for i > n, since
forany a € F,, g — ah € F[x] has at most n roots in [,. Since

Ur=t ad Jr=V

O=i=n I=i=n
are partitions of F, and V, respectively, it follows that

v = Z ir;, 2 irr=#D = g — o,

I=i=n 1=i=n

nv—-nzr,-—"_}zir;=q—(r. L]

1=i=n I=i=n

If n < g, then o = deg ged(x¥ — x, h) = n < g, and thus ¢ = 1. This
vields the upper bound

T
%c-n+;<_w+nszn, (7.1)

Monte Carlo Approximation Algorithm for v

Input: f = glhasin(1.1),n = deg f< ¢q. 0 < ¢, and 0 < §.
Output: A such that Problp(l —e) = A=p(l + &) =1 — 8.
L. Set N = [8n In(2/8)e 2] and initialize A « 0.
2. Repeat N times:

Randomly and uniformly choose an clement ¢ € F,, and test
whether it is an image of /; if so, i.e., if ocd(x?— x, g — ah) # |,
then set

A<—A+ g
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3. Output A < A/N.

THeOREM 7.4, The Monte Carlo approximation algorithm is a fully
polynomial-time (e, 8)-approximation scheme for the image size of f €
F,(x) of degree n < q, and it uses O(nM(n)e ~* log q log & ') operations in
E;.

Proof. Tt follows from Fact 7.2 and the upper bound in (7.1) that the
algorithm is an (s, 8)-approximation scheme for v. Each of the [8n
In(2/8)e 2 iterations takes O(M(n) log g) operations in [, to calculate
ged(x? — x, g — ah).

The total cost of the algorithm is therefore O(nM(n)e 2 log ¢ log 8 '), or
O~ (n’¢ " log q log 87') operations in F,. =

This scheme has been generalized in von zur Gathen et al. [11] to
estimate the size of the projection of a plane curve.

8. OPEN QUESTIONS

We have developed random polynomial-time tests for permutation
functions of three flavors and a fully polynomial-time randomized approx-
imation scheme for counting value scts of arbitrary rational functions over
any finite field. It would be very interesting to know whether there exist
cfficient deterministic algorithms for such decision and counting prob-
lems.

Here are some open problems we would like to answer deterministi-
cally in time sublinear in ¢ (ideally in time polynomial in log g).

I. Count e¢xactly the number v of distinct values of an arbitrary ra-
tional function f € F,(x). Clearly, this problem is in the complexity class
#% (see Johnson [14] for terminology): A nondeterministic Turing ma-
chine guesses an clement a € F, and then checks whether a is an image of
fi if so, it accepts and otherwise it rejects. The number of accepting
computations thus equals the image size » of f. Is this problem #%-
complete?

2. If an exact counting algorithm is hard to obtain, approximate »
deterministically in time polynomial in & 7! for the relative error estimate
E.

3. Count the classes PF, PPF, BF with a degree restriction; e.g.,
determine #{f = g/h € PF : deg g, deg h = d}, with d < q. How many
distinct bijections are represented by these rational functions?

4. Complete the picture of composition classes in Corollary 5.7.

5. Find explicit classes of permutation functions, partial permutation
functions, or bijective functions, if possible, casy to compute or with
small degree.
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