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ABSTRACT
There have been attempts to approximate the entropy of English by frequency
analysis of large corpora. Our original goal was to deducemore precise estimates
by extensive calculations. This did not work well, thus confirming a widely held
belief in linguistics. In order to put this belief on a firm basis, we used a simplified
language model, closely related to others in the literature. This model exhibits
an unexpected trichotomy: for very small n, say up to n = 4 in our case, n-gram
counting is reasonably reliable; formedium n, up to 14, increasing statistical noise
is added, and beyond that we see statistical noise only. The model is precise
enough to yield explicit values for the thresholds given above dependent on
the corpus size. Even though a mathematically rigorous proof for English itself
is out of reach, our model gives a strong indication that frequency counting
in (large) corpora is a dead end for approximating the entropy of English, and
different linguistic tools and insights are required. As far as we know, this is
the first rigorous quantifiable argument concerning the linguistic intuition that
frequency counting of samples is insufficient for entropy determination.

1. Introduction

In the late 1940s, Claude Elwood Shannon defined the entropy of a prob-
ability distribution by an explicit formula involving the probabilities of the
distribution and showed the importance of this concept in various areas. In
his foundational paper on the subject, from 1948, he applied it to electronic
communications and initiated the theory of error-correcting codes. The chan-
nel entropy determines the ultimate limits of their efficiency, namely their
transmission rate. In 1949, he used it in cryptography. Here, the entropies
of cleartexts and keys determine the ultimate limits of the ability to decipher
encrypted messages without access to the secret key. In 1951, he studied the
entropy of (printed) English and gave upper and lower bounds for it.
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Our interest comes from the second subject, namely cryptography.Apartic-
ular case is the cryptanalysis of Vigenère ciphers fromKasiski (1863). Here, the
frequencies of individual plaintext letters, letter-digrams, etc., survive with a
flattened distribution; see von zur Gathen (2015, Section C.1). Many classical
and modern encryption systems have been broken, but for short encrypted
texts, the reliability of a decipherment depends critically on the entropy of
the plaintext language, according to Shannon’s Unicity Bound. Our original
motivation was to find good bounds on the entropy of the distribution of
letters and polygrams in English.

Since Shannon’s 1951 work, linguists have tried to improve on his bounds;
see for example Cover and King (1978) or Brown, Della Pietra, Mercer, Della
Pietra, and Lai (1992). All of them have in common that a fairly large corpus is
used to reflect on the true nature of English. We first follow this approach and
describe in Sections 2 and 3 our calculations using the corpus of contemporary
American English (COCA), see Davies (2008–2012), containing 450 million
words of different categories of printed English, and determine some letter-
and word-frequencies in it. Namely, for n between 1 and 30, we determine the
frequency of letter-n-grams and the frequencies of word monograms. We can
then apply Shannon’s formula in two ways: either for a fixed n, we compute
the entropy of, say, letter-n-grams, or we consider all letter-(n − 1)-grams
with the conditional frequency of the consecutive nth letter and compute the
entropy of this distribution. The conditional entropy values calculated turn
out to decrease with growing n.

However, although our corpus is presumably larger than those used earlier
for this purpose, our numerical values for large polygram lengths were in
conflict with known values and intuition. Indeed, for the analysis, ideally one
would have a corpus of all texts in the language under discussion, printed
English in our case. Then for each n ≥ 1 and each letter-n-gram, one would
determine its frequency. This yields a distribution over finite sequences of
letters, to which we can apply Shannon’s formula. However, no such corpus
is available. This issue is well known in the linguistic community. During
a fruitful discussion, Köhler (2016, private communication) expressed the
following opinion on this:

Zudem ist die Schützung der Entropie meines Wissens nur aufgrund eines
unendlichen Strings möglich, wobei die Eigenschaften von Schützungen mittels
abgebrochenem String fraglich sind. Au?erdem gibt es keine unendlich lan-
gen Texte. Andere Objekte wie Korpora sind künstlich zusammengestellt und
entsprechen keiner linguistisch begründbaren Spracheinheit [Additionally, an
estimate of the entropy is to our knowledge only possible when using an infinite
string, whereas the properties of estimates employing truncated strings are
questionable. Also, there are no infinitely long texts. Other objects, like corpora,
are artificially assembled and do not correspond to linguistically justifiable
language units].
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Our experiments confirmed this intuition. However, we found that, for
very small n, our frequency analyses lead to consistent results, whichever way
a reasonably representative corpus was selected. It thus seems that we are
indeed able to determine specific frequencies by analysing finite-sized corpora
only, but we fail when considering larger n (and thus the entropy of English).

Specifically, we performed the computations on various derivatives of the
corpus, say 26 letters plus space only, or only on extracts like texts labelled
‘fictional’ in the corpus. Our results are presented in Section 3. One finding
is that the choice of derivative or sub-corpus does not influence the count
substantially, thus showing a certain robustness of the sampling method. It
would be interesting to see how other corpora fare in this respect.

One can argue that the frequencies obtained from a corpus are not rep-
resentative, since a corpus is always a collection of (linguistic) objects whose
statistical properties may have little in commonwith the set of all such objects.
This is, of course, a valid point of view. The purpose of this work is, however, to
show that sampling from a language cannot be used to estimate the entropy of
the language reasonably. It turns out that, for the sampling method to provide
reliable results, the required corpus size is completely out of reach.

Specifically, we noticed that from n = 5 on, there seems to be increasing
statistical noise in our data on letter-polygrams, and for n ≥ 14, the noise
seems to dominate. This is, of course, a well-known behaviour and consistent
with the above quotation from Köhler (2016, private communication). The
main contribution of this work, starting in Section 5 and not tied to a particular
language, is a precise analysis of this phenomenon. Namely, we describe a
stochastic model for the entropy that explains this observation. Even though
the language model we use is well known, we provide explicit quantitative
estimates for the expected entropy in terms of the corpus and alphabet size,
giving – at least for certain special cases – explicit bounds for those sizes that
are necessary for good entropy approximations. As far as we know, such an
explicit analysis has not been known before. Our results show that there is
a trichotomy when analysing n-grams this way in any representative corpus:
(1) reasonable approximations to the true value of the entropy for very small
n; (2) the truth with some statistical noise for medium sized n; and (3) only
statistical noise for large n. We conclude that the approach of bounding the
entropy by analysing polygrams in a fixed (large) corpus is a dead end and
cannot be carried much further than the current work. In order to get a better
hold of a numerical value for the entropy of English, more linguistic insights
are needed.

Our observations on the difficulty of approximating language entropy are
consistent with results from the theory of computational complexity on this
question, namely, that determining the entropy of a distribution is hard for a
certain complexity class; see Section 5.
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We concentrate our analysis on letter frequencies due to our cryptographic
interest, but also do some computations with word frequencies. Here, the
limitations discussed above show up even earlier, since our corpus has fewer
words than letters.

The reader interested in only general conclusionsmay safely skip Sections 2
and 3, which deal with the English language, but mainly serve as a case study
for our general findings in the later sections.

2. Description of the corpus

The corpus of contemporary American English (COCA), see Davies (2008–
2012), consists of a large number of English texts from five different genres:
academic texts; fictional texts; magazine texts; newspaper texts; and excerpts
of spoken English. For the analysis, we considered only written English texts,
i.e. we did not analyse the part of COCA that contains spoken English. One
reason for this was that we did not succeed in removing artificially introduced
tags (such as names) from the transcripts of spoken English, which might
skew our statistical analyses. The resulting corpus consists of 2× 109 ≈ 231
characters and contains more than 340 million English words and roughly 65
million punctuation marks.

The characters in COCA are from the set of all 95 printable ASCII charac-
ters. These are classified as

• 26 lowercase Roman letters: abcdefghijklmnopqrstuvwxyz
• 26 uppercase Roman letters: ABCDEFGHIJKLMNOPQRSTUVWXYZ
• 10 Arabic numerals: 0123456789
• 32 special symbols: !"#$%&’()*+,-./:;<=>?@[\]ˆ_‘{|}˜
• space: %

A first inspection shows that all but the special symbols \ˆ‘{|˜ occur in
COCA. Special symbols are sometimes called punctuation marks.

Each of the above mentioned text genres are split into files containing
corresponding texts from the years 1990 to 2012. Every file contains several
articles which start with ‘##’, followed by a seven digit identifier. Each article
is split into paragraphs that are separated using a special HTML-type tag.
For copyright reasons, the corpus is split into blocks of roughly 200 words to
be compliant with the US Fair Use Law, 17 US Code ?107 through ?118, on
copyrighted material.

For our analysis,wepurgedCOCAof all article identifiers.We then replaced
all sequences of Arabic numerals by the special symbol ‘#’. Furthermore,
we substituted paragraph tags and block delimiters by one of the remaining
unused symbols. These newly introduced special symbols are not directly used
in our statistical analyses, but are used only to capture the properties of written
English in a single block.
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We chose to analyse COCA over the full alphabet of all printable ASCII
characters first, distinguishing uppercase from lowercase Roman letters and
keeping space and punctuation marks. A second analysis was done using the
lowercase Latin alphabet with space only, that is, changing every Roman letter
to its lowercase analogue while ignoring any punctuation but keeping space.
Sequences of consecutive spaces were counted as a single space.

To distinguish the relevant cases, we used the following notions for the
classification of certain types of ASCII characters.

• A symbol is any printable ASCII character.
• A letter is any lowercase Roman letter or space.
• A string is a sequence of symbols preceded and succeeded but not
containing space.

• Aword is a sequence of lowercase Roman letters preceded and succeeded
by space.

A single occurrence of one of the above defined notions is also called a
monogram. For a fixed n ≥ 1, we call the polygram containing n consecutive
monograms an n-gram.

The purged COCA thus resembles excerpts of written English containing
a large number of string-monograms, separated by space, each containing an
arbitrary number of symbols (excluding space). All punctuation marks and
contractions such as n’t, ’re, ’s or the Saxon genitive ’s are monograms.

By ignoring all punctuation marks, replacing each uppercase Roman letter
by its lowercase analogue and substituting any sequence of consecutive spaces
by a single space, we obtain the corresponding corpus for word-monograms,
where the words are also separated by space. Both corpora can then be used
for the statistical analysis.

3. Elementary statistical analyses

After purging, we counted the occurrences of symbol-, letter-, string- and
word-monograms. For any of these choices M of the set of monograms,
we then computed the frequency distribution of n-grams. Such a frequency
distribution simply counts how often a certain n-gram, say g ∈ Mn, occurs in
the corpus. Dividing this count by the number of n-grams considered gives
the probability pn(g) that the n-gram g occurs.

Definition 3.1.

(1) The Shannon entropy of the distribution pn is

H(pn) = −
∑

g∈Mn
pn(g) log2 pn(g).
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Figure 1. Frequencies of letter-monograms over the alphabet containing lowercase Latin
letters and space only.

Figure 2. Frequencies of symbol-monograms over the alphabet of all printable ASCII
characters. Characters that do not occur in COCA are not plotted.

(2) The conditional entropy of the distribution pn given pn−1 is

H(pn : pn−1) = H(pn) − H(pn−1).

The latter definition corresponds to the chain rule for the entropy and can
be found in any textbook on information theory such as that by Cover and
Thomas (2006).

Most of the following computational experiments were carried out on a
2.2GHz Intel Core i7 with 8GB RAM. For larger computations, we employed
a small cluster with 8 dual-core 3.00GHz Intel Xeon CPUs and 64GB RAM.
For all of the following numerical results, we provide only graphs in the text;
see Appendix 1 for listings of the underlying numerical data.
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Table 1. The most frequent word-monograms.

Monogram the of and to a in that s for i

Frequency (%) 5.72 2.74 2.73 2.52 2.34 1.89 1.10 0.97 0.89 0.85

Table 2. The most frequent nouns in COCA.

Monogram time people years way year world day life

Frequency (!) 1.55 1.30 1.12 0.96 0.82 0.74 0.74 0.69

Table 3. The most frequent letter-digrams.

Digram th he in er an re on at en nd

Frequency (%) 10.19 9.32 7.78 6.47 6.20 5.57 4.96 4.50 4.30 4.06

3.1. Monogram frequencies

The letter-monogram and the symbol-monogram frequencies of the purged
COCA can be found in Figures 1 and 2, respectively. In both statistics, space
‘%’ is by far the most frequent character, followed by a number of lowercase
Latin letters. From the figures, we directly observe that, for both alphabets
considered, the ten most frequent letters constitute more that 70% of all
characters. From Definition 3.1(1) we directly obtain a letter-entropy1 of
4.12 bits and a symbol-entropy of 4.46 bits. In COCA, we have the most
frequent word-monograms given in Table 1. In this table, the contraction
’s and the Saxon genitive ’s are counted as the single word-monogram
s. For the frequency distribution, we obtain a word-entropy of 11.05 bits.
Concerning string-monograms, we observe that the punctuation symbol ‘,’
occurs most often, followed by ‘.’ and some of the above most frequent word-
monograms from Table 1. As a side remark, we also list the most frequent
nouns from COCA in Table 2.

3.2. Polygram frequencies

Concerning polygram frequencies, we first analysed the most frequent letter-
digrams in COCA (see Table 3).

For the letter-digram entropy, Definition 3.1(1) yields 7.55 bits, and for
the symbol-entropy, 8.01 bits per digram. This gives by Definition 3.1(2)
a conditional letter-digram entropy of 3.43 bits and a conditional symbol-
entropy of 3.56 bits.

For larger n, we obtain for the conditional letter-n-gram entropy the values
given in Figure 3.
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Figure 3. Conditional letter-n-gram entropy of COCA for n = 1, . . . , 30. The dashed grey
lines are Shannon’s 1951 bounds for the entropy of English.

The figure indicates that the sampling errors introduced by considering the
frequency distribution of successive n-grams grow as n gets larger. An intuitive
explanation of this behaviour might be the following: a fixed corpus of length l
is for growing n a decreasingly representative sample. Eventually, we arrive at
a value of n for which each of the l − n + 1 occurring n-grams appears exactly
once in the corpus and we get absolute entropy log2 (l−n + 1). But then, each
of the l − n occurring (n + 1)-grams also appears only once in the corpus and
we get relative entropy log2 (1 + 1/(l − n)) ≈ 1/(l − n), which is close to zero
for the relevant choices for l and n.2

The left-hand part of Figure 3 seems to indicate an English entropy around
1.5 bits, but this is pure guesswork. The only conclusionwe can definitely draw
is that the entropy is below three – presumably a rather poor estimate. For a
more detailed analysis of what happens, see Section 5.

One challenge in the statistical analysis of COCA was actually to fit the
frequency distributions of polygrams into computer memory: the corpus
consists of roughly 231 ≈ 1021.49 characters. If we only stored all n-grams
of the corpus in memory (actually to start the analysis), we would need
approximatelyn× 231 bytes,which starts getting impractical already forn = 4.
Thus, one either needs to refrain from the idea of storing the data in memory
(but use slow hard-drives instead) or develop an approach that uses a certain
amount of memory that does not grow so fast with n. This can be achieved by
considering the number of different n-grams in the corpus. Consider a given
set of monogramsM with k = #M letters. Then there are at most kn different
n-grams in the corpus. For our alphabets, we have k = 27 letters and k = 95
(more precisely, k = 89 as explained above) different symbols.

(1) For small n, the number of different n-grams is comparatively small.
Also, one expects for these choices of n that almost each n-gram occurs.
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Figure 4. Storage requirements for the repeated n-grams over the alphabet of lowercase
Latin letters and space in COCA for successive n.

(2) For very large n, we have an enormous amount of different n-grams.
However, most of them either do not occur at all or just once.

Trading between these two extremes, the idea is to track repeated n-grams
only, that is, n-grams that occur at least twice in the corpus. Then one expects
for both small n and large n that the number of stored repeated n-grams is not
too large. This in turn leads to the following algorithm: we read the corpus
monogram by monogram and store for each monogram the position at which
the monogram occurs. We then recursively use the frequency distribution of
repeated (n − 1)-grams to compute the frequency distribution of repeated n-
grams. In this algorithm, eachposition is storedusing a 4 byte unsigned integer.
We thus store for the full COCAwith approximately 2× 230 positions roughly
8× 230 = 8GB in memory. Additionally, we have to store each occurring
repeated n-gram. In Figure 4, the storage requirements for the occurring
repeated n-grams are plotted.

From the figure, we see that the storage requirements grow monotonically
for n from 1 to 17 and decrease afterwards monotonically. At maximum, we
have to store roughly 3.13× 109 ≈ 2.92× 230 bytes. Thus, thewhole algorithm
requires at most 10.92GB of memory, which fits into decent hardware such as
our small Intel Xeon cluster.

The occurrences of repeated n-grams deviate fromwhat one would initially
suspect. For growing n, the number of repeated n-grams tends to zero. How-
ever, one would expect this to happen much earlier than here. Indeed, there
are whole parts of sentences that occur several times in the corpus and are
thus counted repeatedly. For example, the 16-gram indeed%there%are,
which is quite frequent in academic texts and incidentally also the beginning
of the previous sentence, occurs 135 times in COCA and is also counted 135
times.
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Further problems in the statistical analysis of COCA are inherent
problems with the precision of the floating point arithmetic for computing
the entropy. Since, by Definition 3.1(1), the entropy is computed as a sum
of kn summands of the form p log2 p, tiny errors in the evaluation of the
log-function may accumulate and lead to large errors in the evaluation of
the entropy value. To circumvent this, we decided to use mpfr, a C library
for multiple-precision floating-point computations with correct rounding; see
Fousse, Hanrot, Lefévre, Pélissier, and Zimmermann (2007). Specifically, the
use of arbitrary-precision arithmetic enabled us then to evaluate the entropy
correctly.

4. Reproducibility of the results

We explain now how readers of the current work who are so inclined can
reproduceour results forwrittenEnglish, but also generalize the givenmethod-
ologies for other written languages. The restriction to written languages is
based on the definition of language as ‘a set (finite or infinite) of sentences, each
finite in length and constructed out of a finite set of elements’, see Chomsky
(1957).

This is the basis of all our analyses: we start from a finite set of elements (as
described in Section 2, these are Roman letters with some special punctuation
marks in the case of written English) and perform statistical computations as
described in Section 3.

To reproduce our results for written English, one needs a source of samples
from the language. As explained in the introduction, we decided to use in our
case Davies’ COCA corpus, but any other source will do as well. From the
selected source, all 1-grams, 2-grams, etc. are extracted and the corresponding
probabilities (and possibly the positions) of the occurrences are stored. Then,
one can use this as a basis for computing several relevant values, such as the
(conditional) entropy as given in Definition 3.1. Of course, othermetrics, such
as for example the repetition rate, can be computed as well. The results of the
computation will exhibit the following behaviour: when considering n-grams
for growing n, the quality of the statistical results gets worse and worse. This
is intrinsic to the sampling methodology as we will show in the subsequent
sections.

The techniques can be used for other (written) languages as well. For
languages using a ‘small’ alphabet, say with up to 100 characters and for which
large corpora are available, the methods used for written English can be used
as such and a comparison with the results for English should be easily possible.
It will be interesting to compare with languages having a large alphabet (such
as Chinese), or a small corpus (such as Rongorongo or ancient Egyptian).
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Similarly, one can extend our results to a phonetic representation of a
language. There, the set of basic elements would be the phonetic characters
and the computations would then be performed over concatenations thereof.

Both generalizations are beyond the scope of this treatise.
We will now show how we can model formally any kind of language using

basic elements in the sense of Chomsky. Although ourmotivation comes from
experiments with the English language, our arguments apply to a large class
of languages.

5. A stochastic model for natural language entropy

It is well known that when we consider the language under consideration as a
stationary random process

X = ( . . . ,X−2,X−1,X0,X1,X2, . . . ),

over a finite set M of k ∈ N≥1 monograms, the entropy of the process X is
defined as

H(X) = lim
n→∞H(Xn : X0, . . . ,Xn−1).

If the language is an ergodic process, then for anyn-gram (x0, . . . , xn−1) ∈ Mn,
we have by the Shannon–McMillan–Breiman theorem (see for exampleAlgoet
& Cover, 1988) almost surely (over the choice of (x0, . . . , xn−1))

H(X) = lim
n→∞ −1

n
log2 (prob((X0, . . . ,Xn−1) = (x0, . . . , xn−1))), (1)

Thus, one can compute the entropy of such a process by looking at suffi-
ciently long samples and computing the relative entropy of the distribution of
successive n-grams. We have the following well-known result.

Fact 5.1. For a stationary ergodic stochastic process X, H(Xn : X0, . . . ,Xn−1)
is non-increasing in n and has a limit H ′(X).

Proof: By assumption

H(Xn : X0, . . . ,Xn−1) ≤ H(Xn : X1, . . . ,Xn−1) = H(Xn−1 : X0, . . . ,Xn−2),

since X is stationary. Thus H(Xn−1 : X0, . . . ,Xn−2) is non-negative and non-
increasing and has a limit H ′(X).

This is consistent with our observations depicted in Figure 3. By the chain
rule we haveH(Xn−1 : X0, . . . ,Xn−2) = H(X0, . . . ,Xn−1) −H(X0, . . . ,Xn−2)
since X is stationary. Since X is ergodic, one might want to approximate it as
in Equation (1) by looking at sufficiently many examples.
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We will show in the following that the amount l of text one needs for
precise computations of the entropy of the language is too large to be feasible.
Thus, any such approach can in principle only illuminate a limited part of
the linguistic truth. To complete the picture, we also show how large a corpus
needs to be at most for expectedly precise entropy computations.

Our observations are consistent with results from the theory of compu-
tational complexity on this question. Namely, Goldreich, Sahai, and Vadhan
(1999) show that determining the entropy of a distribution is hard for the
complexity class NISZK of non-interactive statistical zero-knowledge. Here, a
program tries to approximate the entropy of a distribution on about 2n ele-
ments by just asking for samples according to the distribution; together these
samples make up a corpus. Their result says that (under usual complexity-
theoretic assumptions) it is infeasible to obtain good approximations to the
entropy.

5.1. Description of themodel

As above, we consider the language as a strongly stationary ergodic stochastic
process X = ( . . . ,X−2,X−1,X0,X1,X2, . . . ) over the set of k ≥ 1 monograms
M = {m1, . . . ,mk}. To simplify our analysis, we additionally assume in our
model that for some n ∈ N≥1 the probability for the occurrence of a specific
monogram only depends on the previous n letters. In other words, we model
X as a homogeneous nth-order Markov process. This is a frequently used
stochastic model for English, a nice survey of other possible models can be
found in Rosenfeld (2000).

For our analysis we are interested in the n-grams that come from X. Thus,
we define a second process Xn̄ = ( . . . ,Xn̄

−2,X
n̄
−1,X

n̄
0 ,X

n̄
1 ,X

n̄
2 , . . . ) of n-grams,

where for each i ∈ Z we define Xn̄
i = (Xi, . . . ,Xi+ n−1). The process Xn̄ is now

by construction a first-order homogeneous Markov process. Thus, there are
for any x, y ∈ Mn (unknown) transition probabilities Tn : Mn × Mn → R for
the processXn̄

i induced by the language considered that specify the probability
T(x, y) of occurrence of a certain n-gram x given that the previous n-gramwas
y. Thus T(x, y) = 0 unless x and y overlap in all but one letter.

The stationary distribution Sn(x) of the process Xn̄ is the probability that a
certain n-gram is observed, and defined as

Sn(x) = prob(Xn̄
i = x)

=
∑

y∈Mn
prob(Xn̄

i−1 = y)prob(Xn̄
i = x : Xn̄

i−1 = y)

=
∑

y∈Mn
prob(Xn̄

i−1 = y) · Tn(x, y)
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for x ∈ Mn. This distribution is well-defined if the underlyingMarkov process
is irreducible and recurrent. This assumption seems to hold for English, and
we will take it for granted in the following.

We define the observed distribution (in information theory also called the
type) of then-grams induced by the processX over a set of values dom(X) = M
when observing l ∈ N≥0 consecutive outcomes by

pln(X) : dom(X)n −→ 1
l Z,

x +−→ 1
l #{0 ≤ i < l;Xn̄

i = x}. (2)

Thus, for x ∈ dom(Mn), we have pln(X) = 1
l
∑

0≤i<l 1Xn̄
i =x =, where 1Xn̄

i =x
is the indicator function of the predicate Xn̄

i = x, that is, 1Xn̄
i =x = 1 if the ith

n-gram in the process Xn̄ is x ∈ Mn, and 1Xn̄
i =x = 0 otherwise. The observed

distribution pln(X) is a random variable with values in the finite set

Pln(X) = {p : dom(X)n −→ 1
l
Z : pln(X) = p} (3)

of all possible observable distributions induced by corpora of length l.
The problem is now to estimate how far the conditional entropyH(pln(X) :

pln−1(X)) = H(pln(X))−H(pln−1(X)) of the observed distribution differs from
the conditional entropy H(Sn : Sn−1) of the stationary distribution. Suppose
we have |H(pln−1(X)) − H(Sn−1)| ≤ εn−1 and |H(pln(X)) − H(Sn)| ≤ εn for
some εn−1, εn > 0. Then

|H(pln(X) : pln−1(X)) − H(Sn : Sn−1)| ≤ εn−1 + εn

by the triangle inequality. In other words, it is sufficient to estimate when the
observed entropies H(pln−1(X)) and H(pln(X)) differ only slightly from the
true entropies H(Sn−1) and H(Sn), respectively, in order to be able to deduce
corresponding results for the conditional entropy. We will thus restrict our
attention to the entropy only.

It is easy to establish an upper bound on the observed entropy H(pln(X)).
Because log is a concave function, the entropy in Definition 3.1(1) attains its
maximum if pln(X) is a uniform distribution. Since there are in total #Mn = kn
possible n-grams andwe consider exactly l consecutive n-grams, we obtain the
upper bound

H(pln(X)) ≤ min (n log2 (k), log2 (l)). (4)

We now analyse the behaviour of the expectation E
(
H(pln(X))

)
. Our pri-

mary goal is to establish a lower bound on l for which the difference
|E

(
H(pln(X))

)
− H(Sn)| is bounded from below. This in turn leads to the

conclusion on how large we have to select the corpus size l at least to be able
to approximate the correct value of the entropy with small error. The second
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goal is to provide an upper bound on l giving an appropriate upper bound on
|E

(
H(pln(X))

)
−H(Sn)|. Having this allows us to conclude how large a corpus

has to be at most for a useful entropy approximation.
By the definition of the expectation of a random variable, we have

E
(
H(pln(X))

)
=

∑

p∈Pln(X)

H(p)prob(pln(X) = p). (5)

Before we consider this expression in full generality, we first discuss a special
case which is easy to analyse. Afterwards we will argue that a similar reasoning
also holds for arbitrary distributions.

5.2. Randomspeak

Wenow restrict ourselves to the special case that Sn is the uniform distribution
UMn on Mn, i.e. for x ∈ Mn, we have Sn(x) = UMn(x) = 1/kn. We know
that H(Sn) = log kn, but now ask how this value can be approximated by
observations on corpora of some length l. Indeed, in this case the desired
bounds on l can be derived. Consider the necessary size of l first. By (4) we
have H(pln(X)) ≤ min (n log2 (k), log2 (l)) and by (5) also

E
(
H(pln(X))

)
≤ min (n log2 (k), log2 (l)). (6)

Thus, log2 kn − E
(
H(pln(X))

)
≥ log2 (kn/l). In order to approximate the true

value log2 kn with relative error at most α > 0, we consider the inequality
log2 (kn/l) ≤ α log2 kn and solve for l, giving

l ≥ k(1−α)n. (7)

This says, for example, that when we want to approximate the n-gram
entropy with relative error at most α = 0.05 over an alphabet with k = 27
letters, COCA does not provide sufficient data about the n-gram entropy for
n > 6. If we wanted to say something about 10-grams, we would already need
a corpus with at least 36TB of text. A corpus of the storage size used by all of
humankind3 would let us look until n = 15, but even this does not provide
enough data for n > 15.

We will now analyse which corpus size l is sufficient for good entropy
approximations by sampling only. Consider a distribution p : Mn → Rwhich
is close to uniform. More specifically, assume that the statistical distance is
bounded by δ ∈ R>0 so that ∥p−UMn∥∞ < δ. Then by definition of the max-
norm, we have for all g ∈ Mn that |p(x) − k−n| < δ, that is, p(x) ∈ [k−n −
δ, k−n + δ]. Consequently, − log2 p(x) ∈ [− log (k−n + δ),− log (k−n − δ)]
and−p(x) log2 p(x) ∈ [−(k−n−δ) log2 (k−n + δ),−(k−n + δ) log2 (k−n−δ)].
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We thus obtain the lower bound

H(p) = −
∑

x∈Mn
p(x) log2 p(x)

≥ −(1 − δkn) log2 (k−n + δ).

Thus, we have for the expected value

E
(
H(pln(X))

)
=

∑

p∈Pln(X)

H(p)prob(pln(X) = p)

≥
∑

p∈Pln(X)
∥p−UMn∥∞<δ

H(p)prob(pln(X) = p)

≥ −(1 − δkn) log2 (k−n + δ)
∑

p∈Pln(X)
∥p−UMn∥∞<δ

prob(pln(X) = p)

= −(1 − δkn) log2 (k−n + δ)prob(∥pln(X) − UMn∥∞ < δ).

(8)

Without loss of generality, assume that n divides l. Otherwise, pad the
corpus accordingly. Since pln(X)(x) = 1

l
∑

0≤i<l 1Xn̄
i =x , the idea is to split for

x ∈ Mn the relative counts pln(X)(x) into n independent parts, that is, consider
for 0 ≤ j < n the relative counts

pln,j(X)(x) = 1
l

∑

0≤i<l
i=j in Zn

1Xn̄
i =x = 1

l
∑

0≤i< l
n

1Xn̄
in+ j=x ,

which are the occurrences of x at positions that fall into residue class jmodulo
n and then apply Hoeffding’s inequality to get a bound for prob(∥pln(X) −
UMn∥∞ < δ).

Recall that Hoeffding’s inequality states that when we have l independent
random variables X0, . . . ,Xl−1 such that almost surely ai ≤ Xi − E(Xi) ≤ bi,
then for all positive real constants ε ∈ R≥0 we have

prob

⎛

⎝

∣∣∣∣∣∣

∑

0≤i<l
(Xi − E(Xi))

∣∣∣∣∣∣
≥ ε

⎞

⎠ ≤ 2 exp

⎛

⎜⎜⎝
−2ε2

∑

i
(bi − ai)2

⎞

⎟⎟⎠ .

Let 0 ≤ j < n and set Yi = 1Xn̄
in+ j=x for 0 ≤ i < l/n, then the random variables

Y0, . . . ,Yl/(n−1) are independent and E(Yi) = k−n for all i. Furthermore,
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we have −k−n ≤ Yi − E(Yi) ≤ 1 − k−n and Hoeffding’s inequality gives for
any x ∈ Mn and ε > 0

prob
(∣∣∣∣p

l
n,j(X)(x) − 1

n
k−n

∣∣∣∣ ≥ ε

l

)
= prob

⎛

⎝

∣∣∣∣∣∣
1
l

∑

0≤i<l/n
1Xn̄

in+ j=x − 1
n
k−n

∣∣∣∣∣∣
≥ ε

l

⎞

⎠

= prob

⎛

⎝

∣∣∣∣∣∣

∑

0≤i<l/n
Yi −

∑

0≤i<l/n
E(Yi)

∣∣∣∣∣∣
≥ ε

⎞

⎠

= prob

⎛

⎝

∣∣∣∣∣∣

∑

0≤i<l/n
(Yi − E(Yi))

∣∣∣∣∣∣
≥ ε

⎞

⎠

≤ 2 exp
(−2nε2

l

)
.

Setting δ = ε/l, we get

prob
(∣∣∣∣p

l
n,j(X)(x) − 1

n
k−n

∣∣∣∣ ≥ δ

)
≤ 2 exp ( − 2nδ2l).

Note that pln(X)(x) = ∑
0≤j<n pln,j(X)(x). By the triangle inequality we have

prob
(∣∣∣pln(X)(x) − k−n

∣∣∣ ≥ nδ
)

≤ prob

⎛

⎝
∑

0≤j<n

∣∣∣∣p
l
n,j(X)(x) − 1

n
k−n

∣∣∣∣ ≥ nδ

⎞

⎠

≤ prob
(

∃ 0 ≤ j < n :
∣∣∣∣p

l
n,j(X)(x) − 1

n
k−n

∣∣∣∣ ≥ δ

)

≤ n · prob
(∣∣∣∣p

l
n,0(X)(x) − 1

n
k−n

∣∣∣∣ ≥ δ

)

≤ 2n exp ( − 2nδ2l).

We obtain

prob
(
∥pln(X) − UMn∥∞ ≥ δ

)
= prob

(
maxx∈Mn |pln(X)(x) − k−n| ≥ δ

)

≤
∑

x∈Mn
prob

(
|pln(X)(x) − k−n| ≥ δ

)

≤ 2knn exp ( − 2nδ2l).
(9)

Plugging this into (8) gives
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Figure 5. Logarithmic scale lower and upper bounds on the corpus size lfor approximating
the entropy of randomspeak with relative error α = 0.05 over an alphabet with 27
letters, instantiating (7) and (10). The horizontal grey dashes show the size of COCA
and the vertical dashes pass through its intersections with the lower and upper bounds,
respectively.

E
(
H(pln(X))

)
≥ −(1 − δkn) log2 (k−n + δ)(1 − 2knn exp ( − 2nδ2l)).

(10)

This says, for example, that when we want to approximate the n-gram
entropy with relative error α = 0.05 and ε = 0.05 over an alphabet with
k = 27 letters, COCA tells us only for sure a good approximation on the
entropy for n ≤ 2. A corpus of the storage size used by all of humankind, i.e.
295 exabyte, definitely provides sufficient data for n ≤ 6. We summarize our
results in Figure 5.

Thus, we have satisfactory results in the case of randomspeak: first, it is
infeasible to approximate the entropy by looking at increasingly long n-grams.
Second, the amount of textwe need to look at atmost is enormous and a corpus
of size of COCA can serve as a basis for estimating the n-gram entropy for
n = 1 and n = 2, since for these values the corpus size sufficient for good
approximations lower than COCA’s size. For n = 3, . . . , 6 we do not know
whether COCA is sufficiently large, but we know it is larger than what is
necessary for a good entropy approximation by sampling. For n > 6, sampling
cannot be used to estimate the entropy, since the necessary size of a corpus
exceeds that of COCA.

We are able to obtain the same result numerically, using the data given in
Table A5. When we interpolate the data linearly by the equation

y = y2 − y1
x2 − x1

(x − x1) + y1,
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for points (x1, y1) and (x2, y2) on the line, we obtain that the lower bound is
approximately given by the line equation

y = 4.517143127 · x

and the upper bound is approximately given by

y = 9.49987258 · x + 9.66950108,

where we use for both extrapolations the corresponding points at x1 = 1 and
x2 = 2, respectively. COCA’s size is roughly 231 bytes, which tells us that the
upper bound is larger than the horizontal line at y = 31 for x > 2.24 and the
lower bound for x > 6.86. This is consistent with our deduction based on (7)
and (10).

5.3. Markov sampling

We will now argue that for non-uniform stationary distributions we also have
the stated trichotomy. In fact, it seems that randomspeak is the worst case that
can happen when sampling.

For the lower bound this is easy to see. In fact, we can proceed similarly as
in the beginning of Section 5.2, but this time we do not assume anything about
the Markov transition probabilities Tn (and thus the stationary distribution
Sn). From (6), we know that we have for the expected entropy E

(
H(pln(X))

)
≤

min (n log2 (k), log2 (l)). Thus, H(Sn) − E
(
H(pln(X))

)
≥ H(Sn) − log2 l. In

order to approximate the true value H(Sn) with relative error at most α > 0,
we consider the inequality H(Sn) − log2 l ≤ αH(Sn) and solve for l, giving
l ≥ 2(1−α)H(Sn). Since H(Sn) ≤ n log2 k, this bound is indeed weaker than the
corresponding bound in (7) and thus says that. For non-uniform Sn, a smaller
corpus is necessary for a good approximation of the entropy of English than
for the case of randomspeak.

It remains to argue that this is also true for the necessary corpus size. Thus,
one has to study the difference between randomspeak and a Markov process
with unknown (possibly non-uniform) transition probabilities Tn. In order to
do so,weused successive approximations toEnglish. Specifically,we computed
for every m ≥ 1 from COCA the frequency of letter m given the previous
m− 1 letters and generated equally long texts randomly corresponding to the
respective distributions. This well-known procedure gives for m = 1 exactly
randomspeak, while for growing m the resulting random language from the
(m + 1)th-order Markov process approaches English better and better.

Afterwards, we computed for all of the generated texts the n-gram entropy
values for successive n and plotted the result, see Figure 6.

The figure shows that in the casem = 1, i.e. randomspeak, the conditional
entropy value is maximal for very small n and decreases rapidly. When m
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Figure 6. Letter entropy of a (1/128)-fraction of COCA (black) versus letter entropy of
zeroth-order (light grey), first-order, second-order and fourth-order approximations (dark
grey).

grows, the behaviour gets more and more similar to that of COCA, where
we have a much slower decrease in the entropy values for growing m, thus
giving conditional entropy zero much later. This leads to the conclusion that
statistical noise in the case of English occurs somewhat later than in the case
of uniform distributions.

6. The central conjecture

We have proven mathematically that there is a natural trichotomy in the case
of randomspeak when analysing n-grams by sampling: reasonable approxima-
tions to the true value of the entropy for very small n ≤ 2, the truth with some
statistical noise for medium sized 2 < n < 7, and statistical noise only for large
n ≥ 7. We also argued that in the stochastic model a similar trichotomy holds
in general and saw that the case of randomspeak is the worst case possible.
The result is difficult to quantify, since the entropy of English and thus the
specific bounds for the necessary and sufficient corpus size, respectively, are
unknown. That this is also true for English (regardless of the model) leads to
the following central conjecture of this article.

Conjecture 6.1. The approximation of the n-gram entropy of English by sam-
pling corpora leads to a natural trichotomy: (1) the linguistic truth for very
small n; (2) the truth with some statistical noise for medium size n; and (3) only
statistical noise for large n.

If true, we further conjecture that it holds for other languages with ‘small’
alphabets and ‘large’ corpora, if they follow an irreducible recurrent Markov
process.

We performed further experiments to underpin this conjecture. The idea
was to analyse how the entropy of a representative fraction of COCA differs
from the entropy value of the full corpus. Our trichotomy conjecture implies
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Figure 7. Illustration of the trichotomy. Left: letter-entropy of the full COCA (the upper)
and a (1/128)-fraction thereof (the lower). Right: absolute distance $ between the two
entropy values.

that we expect almost no difference for very small and very large n, since in
the former case we computed in both cases a good approximation to the true
value and in the latter case we anyway have in both cases only statistical noise.
The results of such an analysis are depicted in Figure 7.

The figure indicates that, in the case of English, we have a good approx-
imation to the true value of the n-gram entropy for n ≤ 5. For n = 14 the
measured n-gram entropy drops below one for the first time, whichmeans that
the statistical noise seems to dominate from this point in time on, resulting
in only noise beyond n ≥ 25. This observation is also consistent with our
observation above, which led us to the conclusion that randomspeak is in fact
the worst case that can happen.

7. Bounding the expected entropy

Wefinish by giving bounds on the expectation (5) of the entropy in ourMarkov
model described in Section 5.1. Recall that it is defined as

E
(
H(pln(X))

)
=

∑

p∈Pln(X)

H(p)prob(pln(X) = p).

First, let us compute the probability that an observed sequence (Xn̄
0 , . . . ,X

n̄
l )

ofn-grams is equal to afixed givenone.Todo so,weuse thedistributionpl2(X
n̄)

of consecutively occurring n-grams, i.e. the bigram distribution of the process
Xn̄. We have for (xn̄0 , . . . , x

n̄
l−1) ∈ (Mn)l with prob(Xn̄

0 = xn̄0 ) ̸= 0:

1
prob(Xn̄

0 = xn̄0 )
prob((Xn̄

0 , . . . ,X
n̄
l−1) = (xn̄0 , . . . , x

n̄
l−1))

=
∏

1≤i<l
prob(Xn̄

i = xn̄i : Xn̄
i−1 = xn̄i−1) (11)

=
∏

x,y∈Mn
Tn(x, y)l·p

l
2(x

n̄)(x,y)
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=
∏

x,y∈Mn
2l·p

l
2(x

n̄)(x,y) log2 Tn(x,y)

= 2−l·(H
(
pl2(x

n̄) ∥ Tn
)
+ H(pl2(x

n̄))), (12)

where we write

H
(
pl2(x

n̄) ∥ Tn
)

=
∑

x,y∈Mn
pl2(x

n̄)(x, y) log2
pl2(x

n̄)(x, y)
Tn(x, y)

for the conditional entropy (also called the Kullback–Leibler divergence or
information gain) of pl2(x

n̄) given Tn; see Kullback and Leibler (1951). The
result of (12) is the Markov analogue of a well-known result for independent
draws; see for example Cover and Thomas (2006, Section 11.1).

Using (12), we can compute the probability that an observed distribution of
consecutive n-grams pl2(X

n̄) equals a given distribution q ∈ Pl2(X
n̄). Assuming

that the first n-gram of the corpus was drawn uniformly at random, i.e.
prob(Xn̄

0 = x0) = 1/kn, we have

prob(pl2(X
n̄) = q) =

∑

x
pl2(x

n̄)=q

prob((Xn̄
0 , . . . ,X

n̄
l−1) = (xn̄0 , . . . , x

n̄
l−1))

=
∑

x
pl2(x

n̄)=q

prob(Xn̄
0 = x0) · 2−l·(H

(
pl2(x

n̄) ∥ Tn
)
+ H(pl2(x

n̄)))

= 1
kn

cq · 2−l·(H
(
q ∥ Tn

)
+ H(q)),

(13)

writing x = ( . . . , x−2, x−1, x0, x1, x2, . . . ) for a specific outcome of the process
X and cq for the number of such sequences with pl2(x

n̄) = q. We have the
following result in our context.

Lemma 7.1. Let cq = #{x = ( . . . , x−2, x−1, x0, x1, x2, . . . ); pl2(xn̄) = q}. Then

1
(l + 1)kn+ 1 k

n2lH(q) ≤ cq ≤ kn2lH(q).

Proof: This can be proved as in Cover and Thomas (2006, Theorem 11.1.4)
by using (13) for the result of the probability of a certain distribution in the
context ofMarkov processes, noting that we have atmost kn+ 1 non-zero values
in the distribution q.

The lower bound in the lemma can be substantially improved. In fact, one
can replace the constant (l + 1)kn+ 1 by the much smaller #Pl2(Y

n̄), where Yn̄
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is the Markov process with transition probabilities given by Tn = q. Jacquet,
Knessl, and Szpankowski (2012) gave asymptotic estimates for this countwhen
n = 2. They proved that, up to a constant, we have asymptotically #Pl2(Y

2̄) ≈
lk2−k/(k2 − k)!. The constant they give is dependent on the alphabet size k and
expressed as a certain multi-integral. We are not aware of a similar result for
arbitrary n. Thismight also be due to the fact that the behaviour of overlapping
strings is quite subtle. Guibas and Odlyzko (1981) analysed this issue and gave
fundamental results on the number of strings without a specified pattern. This
should give better bounds on #Pl2(Y

2̄), but since we do not need this for the
following, we stick to the lemma as stated above.

It remains to express the expected entropy (5) of pln(X) in terms of the
entropy of the bigramdistributions of its n-grams. By the chain rule and noting
that the entropy of p differs from the entropy of the marginal distributions of
q by at most a factor of 2 we have

E
(
H(pln(X))

)
=

∑

p∈Pln(X)

H(p)prob(pln(X) = p)

∈
[1
4

. . . 1
] ∑

q∈Pl2(Xn̄)

H(q)prob(pl2(X
n̄) = q).

(14)

Combining (13) and Lemma 7.1, we thus get the following bounds on the
expected entropy:

E
(
H(pln(X))

)
∈

[
1

4 · (l + 1)kn+ 1 . . . 1
]
kn

∑

q∈Pl2(Xn̄)

H(q) · 2−lH
(
q ∥ Tn

)
. (15)

This seems to be difficult to handle in its full generality for the following
reasons.

• Both the transition probabilities Tn of the Markov process and the cor-
responding stationary distribution Sn from which the samples are taken
are unknown.

• Computing the exact number of sequences with a given bigram distribu-
tion of n-grams is out of reach at the moment.

• The conditional entropy is not a metric. Specifically, it does not satisfy
the triangle inequality.

8. Conclusion

We performed a thorough analysis of Davies’ corpus of contemporary Amer-
ican English and computed the entropy values for various alphabets and n-
gram lengths. After observing that this gives results incompatible with known
ones, we studied why sampling cannot be used for estimating the entropy
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of English in a satisfactory manner, since the size of the corpus necessary is
beyond practical limits. To show this, we set up a simplified Markov model
for a natural language like English and argued that sampling procedures for
n-grams can only give reasonable approximations of the entropy for very small
n and no result at all for large ones, leading to a natural trichotomy. Although
our mathematical analysis applies to the artificial language randomspeak,
we conjecture that, regardless of the model, this trichotomy also applies to
English and other languages with similar properties (sizes of alphabets and
corpora,Markovian generation, as stated above), and give experimental results
to validate this hypothesis.

The fundamental conclusion is that linguistic methods different from our
style of computational analysis of orthographic representations are needed to
understand the entropy of English.

Notes

1. The entropy of the distribution of lowercase Roman letters without space is
4.19.

2. In the purged COCA, we have l ≈ 231. Even if only for n > 230 each letter
n-gram occurs only once, we still get relative letter entropy log2 (1 + 2−30) ≈
2−30 ≈ 0.

3. Following Hilbert and López (2011), the storage used nowadays is estimated as
295 exabyte.
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Appendix 1. Numerical results
For better reproducibility of our results, we list here the numerical results of our
findings. Specifically, we give the numerical data underlying each statistical plot in the
current work.
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Table A1. Numerical data for Figure 1.

Letter Percentage Letter Percentage Letter Percentage

17.48 e 10.05 t 7.43
a 6.83 o 6.23 i 6.02
n 5.84 s 5.6 r 5.15
h 4.15 l 3.48 d 3.22
c 2.63 u 2.28 m 2.09
f 1.77 g 1.75 p 1.72
v 0.85 k 0.68 x 0.16
j 0.16 z 0.1 q 8.0e−2

Table A2. Numerical data for Figure 2.

Symbol Percentage Symbol Percentage Symbol Percentage

19.31404379287664 e 9.189638118956339 t 6.5890425217861575
a 6.071616515232053 o 5.663258901190674 n 5.295936607767364
i 5.267291123777249 s 4.939274100379097 r 4.648566422939864
h 3.7036267300235646 l 3.1249643771273696 d 2.8781581619544947
c 2.2443613703617467 u 2.061698754700811 m 1.774177196473276
f 1.5459613552911255 g 1.5361174456573872 p 1.4682669809940119
y 1.3316968772841433 w 1.2773286682033456 . 1.073121149502952
, 1.0361571023906162 b 1.0283952281531639 v 0.7568996712682905
k 0.5871472114118468 # 0.4274953355446141 " 0.35747406873944276
I 0.3252573828772203 I 0.3200413882158496 - 0.3048304097480939
’ 0.3033881872242249 A 0.27768224815272513 S 0.26768550987540857
C 0.1967761014338056 M 0.16410211509418077 B 0.15352246570438938
H 0.15218280860281624 E 0.15044607205311294 x 0.14771990873428092
R 0.13568836352143035 N 0.1343510773265215 W 0.13050546671709276
O 0.13010212807536894 P 0.12610017988049896 D 0.1172865240286478
L 0.11384676522200697 F 9.554108970352677e−2 ) 9.076323859371124e−2
( 9.013343094741738e−2 G 8.835036688149446e−2 j 8.357597729540875e−2
z 8.196309690984636e−2 : 7.11950552765129e−2 q 6.807498952448084e−2
J 6.331710144877836e−2 U 5.722557837442999e−2 ; 5.3581684503996446e−2
Y 5.247262178458918e−2 ? 5.227066795492757e−2 K 4.5178622268261734e−2
V 3.461775045925126e−2 / 3.311355243517853e−2 $ 2.1521478481615078e−2
! 1.4812666148160127e−2 * 1.1032208053865239e−2 & 9.217136747974818e−3
% 8.103379633372326e−3 Z 6.618623043946523e−3 Q 6.6059624023593775e−3
X 5.58054527006719e−3 = 3.6104640864674897e−3 < 3.123716948295036e−3
> 2.8255043080644897e−3 @ 1.1965491753184307e−3 + 1.1435357023055906e−3
] 1.801889064837139e−6 [ 6.164357327074423e−7 } 9.483626657037574e−8
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Table A4. Numerical data for Figure 4.

n Byte n Byte n Byte

1 27 2 1456 3 53787
4 861416 5 6442885 6 27780660
7 85127511 8 205537080 9 418009311
10 738908360 11 1155084634 12 1626795432
13 2102850516 14 2526503210 15 2853373740
16 3058867728 17 3136688632 18 3099008322
19 2970835060 20 2778861960 21 2549987811
22 2307096836 23 2066215902 24 1838391504
25 1630647350 26 1446641768 27 1287056007
28 1151009720 29 1036822268 30 941963970
31 863460794 32 799113120 33 746578932
34 703882144 35 669317215 36 641373948
37 618802763 38 600526426 39 585757302
40 573754120 41 564009202 42 556096002
43 549656057 44 544449532 45 540244035
46 536847646 47 534095357 48 531887664
49 530129775 50 528773400

Table A5. Numerical data for Figure 5. Lower and upper bounds are given in log2 bytes.

n Lower bound Upper bound

1 4.517143127 19.16937366
2 9.034286254 28.66924624
3 13.55142938 38.14079409
4 18.06857251 47.62002396
5 22.58571564 57.10622396
6 27.10285876 66.59742953
7 31.62000189 76.09221661
8 36.13714502 85.58962923
9 40.65428814 95.08901879
10 45.17143127 104.5899337
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Table A7. Numerical data for Figure 7.

n COCA (1/128)-COCA Distance

1 4.1223154342333403477027786721 4.12044952959361854283315551584 0.0018659
2 3.43076033302674510139240737772 3.42780991653933497786965745036 0.00295042
3 2.89540603583070055293546829489 2.88012921663687659901142978924 0.0152768
4 2.3813836925150173584597723675 2.34339254701725430152237095172 0.0379911
5 2.02953731020582317512435110984 1.96092070689757314028156542918 0.0686166
6 1.83432600134673506886429095175 1.71692314417972369255949161015 0.117403
7 1.71445863071592796700315375347 1.51440907023865278802077227738 0.20005
8 1.61449291417535789605608442798 1.3070991330483465731049363967 0.307394
9 1.51432605029041766897535126191 1.09110034653200216325785731897 0.423226
10 1.40617326816577659087670326699 0.875671274150846556949545629323 0.530502
11 1.28583934021815338155647623353 0.67952452921910122540793963708 0.606315
12 1.15437936453272982362250331789 0.51131654556704830838498310186 0.643063
13 1.01533774497438855632935883477 0.37362552129668813449825393036 0.641712
14 0.87380196436165391560280113481 0.267256742742095099174548522569 0.606545
15 0.736241419930706797458697110415 0.187627243286527800592011772096 0.548614
16 0.608101337413167186696227872744 0.129999598483248490765618043952 0.478102
17 0.492909765357492091197855188511 0.0899631221246011136827291920781 0.402947
18 0.3931279594872840732477925485 0.0624213029087101745062682311982 0.330707
19 0.309379594892263298788748215884 0.0436482203217707365183741785586 0.265731
20 0.240705964776896763623881270178 0.0310004412970066312027483945712 0.209706
21 0.185644837339676627152584842406 0.0223180236695021960713347652927 0.163327
22 0.142317516604322236162261106074 0.0161924881719990310102730290964 0.126125
23 0.108512498820687142142560333014 0.0118876853656466607844777172431 0.0966248
24 0.082443522791944445771150640212 0.00889415361661605174958822317421 0.0735494
25 0.0625401813745760648544091964141 0.00672452922163913058284379076213 0.0558157
26 0.0474558838611471855983836576343 0.00512963244309716515090258326381 0.0423263
27 0.0360483382696230592046049423516 0.00402545463231973599249613471329 0.0320229
28 0.0274709358519658053410239517689 0.00321071093559410769557871390134 0.0242602
29 0.0210289727658050651371013373137 0.00253207025072299529711017385125 0.0184969
30 0.0161743116093546746014908421785 0.00200681755969256414573465008289 0.0141675


