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Abstract. This paper deals with properties of the algebraic va-
riety defined as the set of zeros of a “typical” sequence of polyno-
mials. We consider various types of “nice” varieties: set-theoretic
and ideal-theoretic complete intersections, absolutely irreducible
ones, and nonsingular ones. For these types, we present a nonzero
“genericity” polynomial of explicitly bounded degree in the coeffi-
cients of the sequence that vanishes if its variety is not of the type.
Here, the number of polynomials and their degrees are fixed. Over
finite fields, this yields bounds on the number of such sequences.
We also show that most sequences (of at least two polynomials)
define a degenerate variety, namely an absolutely irreducible non-
singular hypersurface in some linear projective subspace.

1. Introduction

Over a field K, a sequence f = (f1, . . . , fs) of homogeneous polyno-
mials in n+1 variables with n > s defines a projective variety V ⊆ Pn

K ,
namely, its set of common roots. Intuitively, most such sequences are
regular and V enjoys “nice” properties, such as being a set-theoretic
or ideal-theoretic complete intersection, being (absolutely) irreducible,
and nonsingular. This paper confirms this intuition in a quantitative
way.

For a fixed pattern (d1, . . . , ds) of degrees di = deg fi, the set of
all such f forms a multiprojective space in a natural fashion. For
properties as above, we provide a nonzero “genericity polynomial” P of
explicitly bounded degree in variables corresponding to the coefficients
in f such that any f with P (f) 6= 0 enjoys the property. Thus “most”
sequences define a nice variety.

If K is finite with q elements, we obtain as a consequence bounds on
the probability that the variety is nice. They have the form 1−O(q−1)
with explicit constants depending on the geometric data, but not on q.
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A case of interest is to fix the geometric data and consider growing q.
Then these bounds are increasing with q

For each property, we first present a genericity polynomial as above
that works for any field. From this, we derive numerical estimates in
the case of finite fields.

Section 2 provides some notational background. In Sections 3 and
4 we fix the degree sequence of our polynomial sequence and study
four geometric properties of the corresponding projective variety in
the appropriate projective space: being a set-theoretic or an ideal-
theoretic complete intersection, absolute irreducibility and nonsingu-
larity. For these properties, we present a nonzero “genericity” polyno-
mial of bounded degree in variables corresponding to the coefficients
of the polynomial sequence that vanishes if the corresponding variety
is not of the type; see the “geometric” Theorems 3.2, 3.5, 4.5 and 4.2.
These results show that a typical sequence of polynomials is regular
and defines an ideal-theoretic complete intersection which is absolutely
irreducible and nonsingular.

We then apply the bounds to polynomial sequences over finite fields
to obtain numerical results, which may also be interpreted as probabili-
ties for sequences chosen uniformly at random. Let Fq be the finite field
with q elements, where q is a prime power. Multivariate polynomial
systems over Fq arise in connection with many fundamental problems in
cryptography, coding theory, or combinatorics; see, e.g., Wolf & Preneel
(2005), Ding et al. (2006), Cafure et al. (2012), Cesaratto et al. (2014),
Matera et al. (2014). A random multivariate polynomial system over
Fq with more equations than variables is likely to be unsolvable over
Fq. On the other hand, when there are more variables than equations,
the system is likely to be solvable over Fq (see Fusco & Bach (2009) for
the phase transition between these two regimes).

Further information can be obtained if the projective variety V ⊂ Pn
F

defined by f1, . . . , fs possesses “nice” geometric properties. The pro-
jective variety V is the set of common zeros of f1, . . . , fs in the n–
dimensional projective space Pn

F over an algebraic closure F of Fq. In-
deed, if V is known to be a nonsingular or an absolutely irreducible
complete intersection, then estimates on the deviation from the ex-
pected number of points of V in Pn(Fq) are obtained in Deligne (1974),
Hooley (1991), Ghorpade & Lachaud (2002), Cafure et al. (2015), Mat-
era et al. (2016). This motivates the study of the “frequency” with
which such geometric properties arise.

Over finite fields, the geometric theorems plus an appropriate version
of the Weil bound yield bounds on the number of such sequences of
polynomials; see Corollaries 3.7, 4.6 and 4.3. This can be interpreted
as probabilities for polynomial sequences chosen uniformly at random.
The lower bounds tend to 1 with growing field size.
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For s = 1, the variety defined by a single polynomial f1 ∈ K[X0, . . . , Xn]
is a hypersurface, which is absolutely irreducible if the polynomial f1
is. Counting irreducible multivariate polynomials over a finite field is a
classical subject which goes back to the works of Carlitz (1963), Carlitz
(1965) and Cohen (1968/1969); see Mullen & Panario (2013), Section
3.6, for further references. In von zur Gathen et al. (2013), exact for-
mulas on the number of absolutely irreducible multivariate polynomials
over a finite field and easy–to–use approximations are provided. No re-
sults on the number of sequences of polynomials f1, . . . , fs over a finite
field defining an absolutely irreducible projective variety are known to
the authors.

Concerning nonsingularity over an arbitrary field K, the set of all
s–tuples of homogeneous polynomials f1, . . . , fs ∈ K[X0, . . . , Xn] of de-
grees d1, . . . , ds defining a projective variety which fails to be nonsingu-
lar of dimension n−s is called the discriminant locus. It is well-known
that the discriminant locus is a hypersurface of the space of s–tuples
f1, . . . , fs of homogeneous polynomials of degrees d1, . . . , ds; see, e.g.,
Gel’fand et al. (1994) for the case of the field of complex numbers.
This hypersurface is defined by a polynomial in the coefficients of the
polynomials f1, . . . , fs which is homogeneous in the coefficients of each
fi. For s = 1, a well-known result of George Boole asserts that the
discriminant locus has degree (n + 1)(d1 − 1)n; see Cayley (1845). On
the other hand, in Benoist (2012) an exact formula for the degrees of
the discriminant locus is provided. The calculation is based on a study
of dual varieties of nonsingular toric varieties in characteristic zero.
Then the case of positive characteristic is dealt with using projective
duality theory. Our approach is based on the analysis of an incidence
variety with tools of classical projective geometry. We do not obtain
exact formulas, but easy–to–use approximations for the homogeneity
degrees.

The above results assume a fixed sequence of degrees. When we vary
the degrees, it is natural to keep the Bézout number δ = d1 · · · ds con-
stant. In Section 5, we show that “most” polynomial sequences define
a degenerate variety, namely, a hypersurface in some linear projective
subspace. Here, “most” refers to the dimension of the set of all relevant
polynomial sequences for infinite K, and to their number in the case
of finite K.

Let d1, . . . , ds ≥ 1 be given and let f1, . . . , fs ∈ K[X0, . . . , Xn] be
homogeneous polynomials of degrees d1, . . . , ds with coefficients in an
arbitrary fieldK. A basic quantity associated to f1, . . . , fs is the Bézout
number δ = d1 · · · ds. For example, for K = Fq the cost of several
algorithms for finding a common zero of f1, . . . , fs with coefficients in
Fq is measured in terms of the Bézout number δ (see, e.g., Huang &
Wong (1999), Cafure & Matera (2006), Bardet et al. (2013)). In this
sense, it may be interesting to study geometric properties that can
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be expected from a typical sequence f1, . . . , fs of K[X0, . . . , Xn] for
which only the Bézout number δ is given. For a given degree pattern
with Bézout number δ, the results of the first part of this paper show
that the corresponding projective variety is expected to be a complete
intersection of dimension n−s and degree δ. Therefore, the situation is
somewhat reminiscent of that of the Chow variety of projective varieties
of a given dimension and degree in a given projective space.

The Chow variety of curves of Pn
K
of degree δ over an algebraic closure

K of a field K is considered in Eisenbud & Harris (1992). It is shown
that its largest irreducible component consists of planar irreducible
curves provided that δ is large enough. Over a finite field, Cesaratto
et al. (2013) use this to obtain estimates, close to 1, on the probability
that a uniformly random curve defined over a finite field Fq is absolutely
irreducible and planar. The present paper shows that for a fixed Bézout
number, a typical sequence of polynomials with corresponding degree
pattern defines an irreducible hypersurface V in some linear projective
subspace of Pn

K
(Theorem 5.7). Thus the points of V span a linear space

of dimension 1 + dimV , which is the minimal value unless V is linear.
In particular, a typical V is degenerate. Here, “typical” refers to the
dimension of the set of polynomial sequences, fixing the Bézout number.
Furthermore, for a finite field we provide nearly optimal bounds on the
number of polynomial sequences that define such degenerate varieties.
This result generalizes the corresponding one of Cesaratto et al. (2013)
from curves to projective varieties of arbitrary dimension.

2. Notions and notations

We collect some basic definitions and facts, using standard notions
and notations of algebraic geometry, which can be found in, e.g., Kunz
(1985) or Shafarevich (1994). The reader familiar with this material
may want to skip ahead to Section 3.

Let K be a field, K an algebraic closure, and Pn
K

the n–dimensional

projective space over K. It is endowed with its Zariski topology over
K, for which a closed set is the zero locus of homogeneous polynomials
of K[X0, . . . , Xn]. We shall also consider the Zariski topology of Pn

K
over K, where closed sets are zero loci of homogeneous polynomials in
K[X0, . . . , Xn].

A subset V ⊂ Pn
K
is a projective K-variety if it is the set Z(f1, . . . , fs)

(or {f1 = 0, . . . , fs = 0}) of common zeros in Pn
K
of a family f1, . . . , fs ∈

K[X0, . . . , Xn] of homogeneous polynomials.
A K-variety V ⊂ Pn

K
is K-irreducible if it cannot be expressed as

a finite union of proper K-subvarieties of V . Further, V is absolutely
irreducible if it is K–irreducible as a K–variety. Any K-variety V can
be expressed as a non-redundant union V = C1 ∪ · · · ∪ Cr of irreducible
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(absolutely irreducible) K-varieties, unique up to reordering, which are
called the irreducible (absolutely irreducible) K-components of V .

For a K-variety V ⊂ Pn
K
, its defining ideal I(V ) is the set of polyno-

mials of K[X0, . . . , Xn] vanishing on V . The coordinate ring K[V ]
of V is defined as the quotient ring K[X0, . . . , Xn]/I(V ). The di-
mension dim V of a K-variety V is the length m of a longest chain
V0  V1  · · ·  Vm of nonempty irreducible K-varieties contained
in V . A K-variety V is called equidimensional if all irreducible K-
components of V are of the same dimension m; then V is of pure
dimension m.

The degree deg V of an irreducible K-variety V is the maximum
number of points lying in the intersection of V with a linear space L of
codimension dimV , for which V ∩L is finite. More generally, following
Heintz (1983) (see also Fulton (1984)), if V = C1 ∪ · · · ∪ Cr is the
decomposition of V into irreducible K-components, then the degree of
V is

deg V =
∑

1≤i≤r

deg Ci.

The following Bézout inequality holds (see Heintz (1983), Fulton (1984),
Vogel (1984)): if V and W are K-varieties, then

(2.1) deg(V ∩W ) ≤ deg V · degW.

Let V ⊂ Pn
K

be a projective variety and I(V ) ⊂ K[X0, . . . , Xn] its
defining ideal. For x ∈ V , the dimension dimx V of V at x is the
maximum of the dimensions of the irreducible components of V that
contain x. If I(V ) = (f1, . . . , fs), a point x ∈ V is called regular if
the rank of the Jacobian matrix (∂fi/∂Xj)1≤i≤s,0≤j≤n(x) of f1, . . . , fs
with respect to X0, . . . , Xn at x is equal to n−dimx V . Otherwise, the
point x is called singular. The set of singular points of V is the singular
locus Sing(V ) of V . A variety is called nonsingular if its singular locus
is empty.

2.1. Complete intersections. If the projectiveK-variety V = Z(f1, . . . , fs)
defined by homogeneous polynomials f1, . . . , fs in K[X0, . . . , Xn] is of
pure dimension n − s, it is a set-theoretic complete intersection (de-
fined over K). This is equivalent to the sequence (f1, . . . , fs) being
a regular sequence, meaning that f1 is nonzero and each fi is neither
zero nor a zero divisor in K[X0, . . . , Xn]/(f1, . . . , fi−1) for 2 ≤ i ≤ s.
In particular, any permutation of a regular sequence of homogeneous
polynomials is also regular.

If the ideal (f1, . . . , fs) generated by f1, . . . , fs is radical, then we
say that V is an ideal-theoretic complete intersection, or simply a com-
plete intersection (defined over K). The “radical” property rules out
repeated components and is the appropriate notion from an algebraic
point of view. If V ⊂ Pn

K
is a complete intersection defined over K, of

dimension n−s and degree δ, and f1, . . . , fs is a system of homogeneous
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generators of I(V ), the degrees d1, . . . , ds depend, up to permutation,
only on V and not on the system of generators (see, e.g., Ghorpade
& Lachaud (2002), Section 3). Arranging the di in such a way that
d1 ≥ d2 ≥ · · · ≥ ds, we call d = (d1, . . . , ds) the multidegree of V .

According to the Bézout inequality (2.1), if V ⊂ Pn
K

is a com-
plete intersection defined over K of multidegree d = (d1, . . . , ds), then
deg V ≤ d1 · · · ds. Actually, a much stronger result holds, namely, the
Bézout theorem:

(2.2) deg V = d1 · · · ds.

See, e.g., Harris (1992), Theorem 18.3, or Smith et al. (2000), §5.5,
page 80.

In what follows we shall deal with a particular class of complete in-
tersections, which we now define. AK-variety is regular in codimension
m if the singular locus Sing(V ) of V has codimension at least m+1 in
V , namely if dimV −dimSing(V ) ≥ m+1. A complete intersection V
which is regular in codimension 1 is called normal; actually, normality
is a general notion that agrees on complete intersections with the one
we use here. A fundamental result for projective complete intersections
is the Hartshorne connectedness theorem (see, e.g., Kunz (1985), Theo-
rem VI.4.2), which we now state. If V ⊂ Pn

K
is a set-theoretic complete

intersection defined over K and W ⊂ V is any K-subvariety of codi-
mension at least 2, then V \W is connected in the Zariski topology of
Pn
K

over K. For a normal set-theoretic complete intersection V defined

over K, the subvariety W = Sing(V ) ⊂ V has codimension at least
2. Then the Hartshorne connectedness theorem asserts that V \W is
connected, which implies that V is absolutely irreducible.

The next statement summarizes several well-known relations among
the concepts introduced above.

Fact 2.1. For a projective variety V ⊂ Pn
K
, the following hold.

• If V is an ideal-theoretic complete intersection, then it is a set-
theoretic complete intersection.

• If V is a normal set-theoretic complete intersection, then it is
absolutely irreducible.

• If V is nonsingular, then it is normal.

2.2. Multiprojective space. Let N = Z≥0 be the set of nonnegative
integers, and let n = (n1, . . . , ns) ∈ N

s. We define |n| = n1 + · · ·+ ns

and n! = n1! · · ·ns!. Given α,β ∈ Ns, we write α ≥ β whenever
αi ≥ βi holds for 1 ≤ i ≤ s. For d = (d1, . . . , ds) ∈ Ns, the set
Nn+1

d = Nn1+1
d1

×· · ·×Nns+1
ds

consists of the elements a = (a1, . . . ,as) ∈
Nn1+1 × · · · × Nns+1 with |ai| = di for 1 ≤ i ≤ s.

We denote by Pn

K
the multiprojective space Pn

K
= Pn1

K
× · · · × Pns

K

defined over K. For 1 ≤ i ≤ s, let Xi = {Xi,0, . . . , Xi,ni
} be disjoint
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sets of ni + 1 variables and let X = {X1, . . . , Xs}. A multihomo-
geneous polynomial f ∈ K[X] of multidegree d = (d1, . . . , ds) is a
polynomial which is homogeneous of degree di in Xi for 1 ≤ i ≤ s.
An ideal I ⊂ K[X ] is multihomogeneous if it is generated by a family
of multihomogeneous polynomials. For any such ideal, we denote by
Z(I) ⊂ Pn

K
the variety defined (over K) as its set of common zeros. In

particular, a hypersurface in Pn

K
defined over K is the set of zeros of a

multihomogeneous polynomial of K[X]. The notions of irreducibility
and dimension of a variety in Pn

K
are defined as in the projective space.

2.2.1. Mixed degrees. We discuss the concept of mixed degree of a mul-
tiprojective variety and a few of its properties, following the exposi-
tion in D’Andrea et al. (2013). Let V ⊂ Pn

K
be an irreducible variety

defined over K of dimension m and let I(V ) ⊂ K[X ] be its multiho-
mogeneous ideal. The quotient ring K[X ]/I(V ) is multigraded and
its part of multidegree b ∈ Ns is denoted by (K[X ]/I(V ))b. The
Hilbert–Samuel function of V is the function HV : Ns → N defined
as HV (b) = dim(K[X]/I(V ))b. It turns out that there exist δ0 ∈ Ns

and a unique polynomial PV ∈ Q[T1, . . . , Ts] of degree m such that
PV (δ) = HV (δ) for every δ ∈ Ns with δ ≥ δ0; see D’Andrea et al.
(2013), Proposition 1.8. For b ∈ Ns

≤m, we define the mixed degree of V
of index b as the nonnegative integer

degb(V ) = b! · coeffb(PV ).

This notion can be extended to equidimensional varieties and, more
generally, to equidimensional cycles (formal integer linear combinations
of subvarieties of equal dimension) by linearity.

The Chow ring of Pn

K
is the graded ring

A∗(Pn

K
) = Z[θ1, . . . , θs]/(θ

n1+1
1 , . . . , θns+1

s ),

where each θi denotes the class of the inverse image of a hyperplane of
Pni

K
under the projection Pn

K
→ Pni

K
. Given a variety V ⊂ Pn

K
of pure

dimension m, its class in the Chow ring is

[V ] =
∑

b

degb(V )θn1−b1
1 · · · θns−bs

s ∈ A∗(Pn

K
),

where the sum is over all b ∈ Ns
≤m with b ≤ n. This is an homogeneous

element of degree |n| −m. In particular, if H ⊂ Pn

K
is a hypersurface

and f ∈ K[X] is a polynomial of minimal degree defining H, then

(2.3) [H] =
∑

1≤i≤s

degXi
(f) θi;

see D’Andrea et al. (2013), Proposition 1.10.
A fundamental tool for estimates of mixed degrees involving intersec-

tions of multiprojective varieties is the following multiprojective version
of the Bézout theorem, called the multihomogeneous Bézout theorem;
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see D’Andrea et al. (2013), Theorem 1.11. If V ⊂ Pn

K
is a multiprojec-

tive variety of pure dimension m > 0 and f ∈ K[X ] is a multihomo-
geneous polynomial such that V ∩ Z(f) is of pure dimension m − 1,
then

(2.4) [V ∩ Z(f)] = [V ] · [Z(f)].

Finally, the following result shows that mixed degrees are monotonic
with respect to linear projections. Let l = (l1, . . . , ls) ∈ Ns be an s–
tuple with l ≤ n and let π : Pn

K
99K Pl

K
be the linear projection which

takes the first li + 1 coordinates of each coordinate xi of each point
x = (x1, . . . , xs) ∈ P

r

K
, namely,

π(xi,j : 1 ≤ i ≤ s, 0 ≤ j ≤ ni) = (xi,j : 1 ≤ i ≤ s, 0 ≤ j ≤ li).

This rational map induces the following injective Z–linear map:

 : A∗(Pl

K
) → A∗(Pn

K
), (P ) = θn−lP.

If V ⊂ Pn

K
is a variety of pure dimension m and π(V ) is also of pure

dimension m, then

(2.5) ([π(V )]) ≤ [V ];

see D’Andrea et al. (2013), Proposition 1.16. Equivalently, degb(π∗V ) ≤

degb V for any b ∈ Ns
≤m, where π∗V = deg(π|V )π(V ) and deg(π|V ) =

[K(V ) : K(π(V ))].

2.3. Varieties over a finite field Fq. In the following, Pn
F is the pro-

jective n–dimensional space over an algebraic closure F of Fq, endowed
with its Zariski topology. Pn(Fq) is the n–dimensional projective space
over Fq, of cardinality

(2.6) pn = #Pn(Fq) = qn + qn−1 + · · ·+ 1.

We denote by V (Fq) the set of Fq–rational points of a projective variety
V ⊂ Pn

F , namely, V (Fq) = V ∩ Pn(Fq). If V is of dimension m and
degree δ, we have

(2.7) #V (Fq) ≤ δ pm;

see Ghorpade & Lachaud (2002), Proposition 12.1, or Cafure & Mat-
era (2007), Proposition 3.1. For n = (n1, . . . , ns) ∈ Ns

≥1, P
n
F =

Pn1
F × · · · × Pns

F is the multiprojective space over F. Let f ∈ F[X]
be multihomogeneous of multidegree d = (d1, . . . , ds). The following
provides a highly useful upper bound on the number of Fq–rational zeros
of f in Pn(Fq), which generalizes (2.7) to the multiprojective setting.

For ε ∈ Ns and n ≥ ε, we use the notations dε = d ε1
1 · · · d εs

s and
pn−ε = pn1−ε1 · · · pns−εs.
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Fact 2.2 (Cafure et al. (2015), Proposition 3.1). Let f ∈ F[X] be a
multihomogeneous polynomial of multidegree d with di ≤ q for all i,
and let N be the number of zeros of f in Pn(Fq). Then

N ≤
∑

ε∈{0,1}s\{0}

(−1)|ε|+1d εpn−ε.

2.4. General setting. It is convenient to fix the following notation:

(2.8)

integers n and s with 0 < s < n,

d = (d1, . . . , ds) ∈ N
s with d1 ≥ d2 ≥ · · · ≥ ds ≥ 1 and d1 ≥ 2,

δ = d1 · · · ds,

σ = (d1 − 1) + · · ·+ (ds − 1),

Di =

(

di + n

n

)

− 1 for 1 ≤ i ≤ s,

D = (D1, . . . , Ds) ∈ N
s,

|D| = D1 + · · ·+Ds.

Let K be a field. Each s–tuple f = (f1, . . . , fs) with fi ∈ K[X ] =
K[X0, . . . , Xn] homogeneous of degree deg fi = di is represented by a
point in the multiprojective space PD

K
= PD1

K
×· · ·×PDs

K
. More precisely,

let λ = (λ1, . . . , λs) be a point of P
D

K
. We label the Di+1 coordinates of

each λi by the Di+1 multi-indices α ∈ Nn+1
di

, namely, λi = (λi,α : |α| =
di). Then we associate each point λ = (λ1, . . . , λs) with the s–tuple
of polynomials f = (f1, . . . , fs) defined as fi =

∑

|α|=di
λα,iX

α for

1 ≤ i ≤ s. In the following, the symbol f = (f1, . . . , fs) shall denote
either an s–tuple of homogeneous polynomials of K[X0, . . . , Xn] with
degree pattern (d1, . . . , ds) or the corresponding point in PD

K
.

Let {Fi,α : |α| = di} be a set of Di + 1 variables over K for 1 ≤
i ≤ s. We shall consider the formal polynomial Fi =

∑

|α|=di
Fi,αX

α,
which is homogeneous of degree di in the variables X0, . . . , Xn. We
use the notations coeffs(Fi) = {Fi,α : |α| = di} for 1 ≤ i ≤ s and
coeffs(F ) = ∪1≤i≤scoeffs(Fi). The coordinate ring of PD

K
is represented

by the polynomial ring K[coeffs(F )]. The genericity polynomials P
to be defined are elements of this ring, and given some polynomial
sequence f as above, it is well-defined whether P (f) = 0 or not.

2.4.1. Multivariate resultants. As we shall rely repeatedly on multivari-
ate resultants in our arguments, we briefly recall their definition and ba-
sic properties. Given generic homogeneous polynomials f1, . . . , fn+1 ∈
K[X0, . . . , Xn] of degrees d1, . . . , dn+1, namely, given a generic point in

the multiprojective space PD

K
= PD1

K
× · · · × P

Dn+1

K
, it is well-known

that the projective variety V (f1, . . . , fn+1) ⊂ Pn
K

they define is empty.
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The multivariate resultant of formal polynomials F1, . . . , Fn+1 of de-
grees d1, . . . , dn+1 is the unique irreducible multihomogeneous polyno-
mial Res ∈ K[coeffs(F1), . . . , coeffs(Fn+1)] with the following properties
(see Cox et al. (1998), Chapter 3, Theorem 2.3):

• if f1, . . . , fn+1 ∈ K[X0, . . . , Xn] are homogeneous polynomials
of degrees d1, . . . , dn+1, then Res(f1, . . . , fn+1) = 0 if and only
if V (f1, . . . , fn+1) ⊂ P

n
K

is nonempty.

• Res(Xd1
0 , . . . , Xdn+1

n ) = 0.

Further, Res has degree d1 · · · di−1di+1 · · · dn+1 in the coefficients of Fi;
see Cox et al. (1998), Chapter 3, Theorem 3.1.

3. Set-theoretic and ideal-theoretic
complete intersections

In this section we obtain genericity polynomials for the set of s–tuples
of homogeneous polynomials as above which do not define set-theoretic
and ideal-theoretic complete intersections.

3.1. Set-theoretic complete intersections. We first consider the
set of s–tuples f of homogeneous polynomials of K[X0, . . . , Xn] with
degree pattern (d1, . . . , ds) defining a set-theoretic complete intersec-
tion. For this purpose, we introduce the following incidence variety:

(3.1) W = {(f , x) ∈ PD

K
× Pn

K
: f(x) = 0}.

This incidence variety is well-known. For the sake of completeness, we
establish here its most important geometric properties.

Lemma 3.1. W is absolutely irreducible of dimension |D|+ n− s.

Proof. Let φ : W → Pn
K

be the restriction of the projection PD

K
× Pn

K
→

Pn
K

to the second argument. Then φ is a closed mapping, because it is

the restriction to W of the projection PD

K
×Pn

K
→ Pn

K
, which is a closed

mapping.
As W is a closed set of a multiprojective space, it is a projective

variety. Furthermore, each fiber φ−1(x) is a linear (irreducible) variety
of dimension |D| − s > 0, and φ : W → Pn

K
is surjective. Then

Shafarevich (1994), §I.6.3, Theorem 8, shows that W is irreducible.
Finally, since W is defined by s polynomials which form a regular

sequence of K[coeffs(F ), X ], we see that dimW = |D|+ n− s. �

By the theorem on the dimension of fibers, a generic f as above
defines a projective variety Z(f ) ⊂ Pn

K
of dimension n − s, which is

necessarily a set-theoretic complete intersection. Our next result pro-
vides quantitative information concerning such f .

Theorem 3.2. In the notation (2.8), there exists a nonzero multiho-
mogeneous polynomial Pstci ∈ K[coeffs(F )], of degree at most δ/di in
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each set of variables coeffs(Fi) for 1 ≤ i ≤ s, with the following prop-
erty: for any f ∈ PD

K
with Pstci(f ) 6= 0, the variety Z(f ) has dimension

n− s. In particular, Z(f) is a set-theoretic complete intersection and
f is a regular sequence.

Proof. Let f = (f1, . . . , fs) be an arbitrary point of PD

K
. Suppose

that the variety Z(f) ⊂ Pn
K

has dimension dimZ(f) > n − s. Then
Z(f , Xs, . . . , Xn) is not empty. It follows that the set of s–tuples of
polynomials f defining a variety of dimension strictly greater than n−s
is contained in the set of f such that Z(f , Xs, . . . , Xn) is not empty.

The multivariate resultant of formal polynomials F1, . . . , Fs,
Fs+1, . . . , Fn+1 of degrees d1, . . . , ds, 1, . . . , 1 is an irreducible multi-
homogeneous polynomial of K[coeffs(F1), . . . , coeffs(Fn+1)] of degree
d1 · · ·di−1di+1 · · · dn+1 in the coefficients of Fi. In particular, the mul-
tivariate resultant of F1, . . . , Fs, Xs, . . . , Xn is a nonzero multihomoge-
neous polynomial Pstci ∈ K[coeffs(F )] of degree δ/di in the coefficients
of Fi for 1 ≤ i ≤ s.

We claim that the multihomogeneous polynomial Pstci satisfies the
requirements of the theorem. Indeed, let f ∈ PD

K
with Pstci(f ) 6= 0.

Then the multivariate resultant of f , Xs, . . . , Xn does not vanish, and
thus the projective variety Z(f , Xs, . . . , Xn) ⊂ Pn

K
is empty, which

implies that Z(f ) has dimension at most n−s. On the other hand, each
irreducible component of Z(f ) has dimension at least n−s. We deduce
that Z(f) is of pure dimension n− s. Furthermore, as Z(f) is defined
by s homogeneous polynomials, we conclude that it is a set-theoretic
complete intersection. This finishes the proof of the theorem. �

3.2. Ideal-theoretic complete intersections. Now we consider the
set of s–tuples of homogeneous polynomials f as above defining a com-
plete intersection.

For this purpose, we introduce another incidence variety:

(3.2) Wci = {(f , x) ∈ PD

K
× Pn

K
: f(x) = 0, J(f)(x) = 0},

where J(f ) = det(∂fi/∂Xj : 1 ≤ i, j ≤ s) is the Jacobian determinant
of f with respect to X1, . . . , Xs.

Lemma 3.3. Wci is of pure dimension |D|+ n− s− 1.

Proof. We have Wci = W ∩ {J(f )(x) = 0}, where W is the incidence
variety of (3.1). We claim that J(f)(x) does not vanish identically
on W . Indeed, fix a squarefree polynomial fi ∈ K[T ] of degree di for
1 ≤ i ≤ s and let fh

i ∈ K[X0, Xi] be the homogenization of fi(Xi) with
homogenizing variable X0. Denote

(3.3) f0 = (fh
1 (X0, X1), . . . , f

h
s (X0, Xs)).

Then {f 0}×Z(f 0) is contained in W and J(f 0) does not vanish iden-
tically on Z(f0), which shows the claim.
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According to Lemma 3.1, W is absolutely irreducible of dimension
|D|+n−s. Therefore, by the claim we see that Wci = W ∩{J(f )(x) =
0} is of pure dimension |D|+ n− s− 1. �

We denote by π : Wci → PD

K
the projection to the first argument and

have the following result.

Lemma 3.4. π : Wci → PD

K
is a dominant mapping.

Proof. Let f 0 be the s–tuple of polynomials of (3.3). Then the fiber
π−1(f 0) has dimension n − s − 1. Let C be an irreducible component
of Wci such that f 0 ∈ π(C). It is clear that dim π(C) ≤ |D|, and
dim C = |D|+n− s−1 by Lemma 3.3. The theorem on the dimension
of fibers shows that

dim C−dim π(C) = |D|+n−s−1−dim π(C) ≤ dim π−1(f 0) = n−s−1.

Thus dim π(C) ≥ |D| and hence dim π(C) = |D|. It follows that
π(Wci) = P

D

K
. �

A consequence of Lemma 3.4 is that a generic fiber π−1(f ) has di-
mension n − s − 1. In particular, for such an f the variety Z(f) is
of pure dimension n − s. Thus, f is a regular sequence of K[X ] and
the hypersurface defined by the Jacobian determinant J(f ) intersects
Z(f) in a subvariety of Z(f) of dimension n− s− 1. As we show be-
low, this implies that f defines a radical ideal and Z(f ) is a complete
intersection.

We now turn this into quantitative information on a genericity poly-
nomial whose set of zeros contains all systems not defining a complete
intersection.

Theorem 3.5. In the notation (2.8), there exists a nonzero multiho-
mogeneous polynomial Pci ∈ K[coeffs(F )] with

degcoeffs(Fi)
Pci ≤ δ(

σ

di
+ 1) ≤ 2σδ

for 1 ≤ i ≤ s such that any f = (f1, . . . , fs) ∈ PD

K
with Pci(f) 6= 0

satisfies the following properties:

• f1, . . . , fs form a regular sequence of K[X0, . . . , Xn],
• the ideal of K[X0, . . . , Xn] generated by f1, . . . , fs is radical.,
• Z(f ) is an ideal-theoretic complete intersection of dimension
n− s and degree δ.

Proof. Let f = (f1, . . . , fs) be a point of PD

K
. If Z

(

f , J(f )
)

⊂ Pn
K

has
dimension strictly greater than n−s−1, then Z(f , J(f ), Xs+1, . . . , Xn)
is not empty. We conclude that the set of f with dimZ

(

f , J(f)
)

>
n−s−1 is contained in the set of f for which Z(f , J(f ), Xs+1, . . . , Xn)
is not empty.

Let f be a point of PD

K
such that Z(f , J(f), Xs+1, . . . , Xn) is not

empty. Then the resultant of f , J(f), Xs+1, . . . , Xn must vanish. The
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multivariate resultant of F1, . . . , Fs, J(F ), Xs+1, . . . , Xn is a nonzero
polynomial Pci ∈ K[coeffs(F )]. Indeed, let f 0 ∈ PD

K
be the point

defined in (3.3). Then it is easy to see that Z(f 0, J(f0), Xs+1, . . . , Xn)
is empty, which implies that Pci(f0) 6= 0.

We claim that the multihomogeneous polynomial Pci ∈ K[coeffs(F )]
satisfies the requirements of the theorem.

In order to show this claim, let f ∈ PD

K
with Pci(f ) 6= 0. Then

the variety Z(f , J(f), Xs+1, . . . , Xn) is empty, which implies that V ′ =
Z(f , J(f )) has dimension at most n − s − 1. On the other hand,
each irreducible component of V ′ has dimension at least n − s − 1 by
definition. We conclude that V ′ is of pure dimension n− s− 1.

Furthermore, as each irreducible component of V = Z(f) has di-
mension at least n− s, it follows that dimV ∩Z(J(f)) ≥ dimV − 1 =
n − s − 1, with equality if and only if V is of pure dimension n − s
and Z(J(f )) cuts properly each irreducible component of V . But
V ′ = V ∩ Z(J(f)) has dimension n − s − 1 by the previous argu-
ment, which proves that V is of pure dimension n − s and Z(J(f ))
cuts properly each irreducible component of V , namely the ideal de-
fined by J(f) has codimension 1 in K[V ]. Thus the ideal generated for
all the s × s-minors of J(f ) has codimension at least 1 in K[V ]. We
conclude that f1, . . . , fs form a regular sequence of K[X ] and Eisenbud
(1995), Theorem 18.15, proves that f1, . . . , fs generate a radical ideal
of K[X ], so that V is a complete intersection.

For an upper bound on the degree of Pci, we recall the multivariate
resultant of formal homogeneous polynomials F1, . . . , Fs, Fs+1, . . . , Fn+1

of degrees d1, . . . , ds, σ, 1, . . . , 1 is a multihomogeneous element of
K[coeffs(F1), . . . , coeffs(Fn+1)] of degree d1 · · · di−1di+1 · · ·dsσ = σδ/di
in the coefficients of Fi for 1 ≤ i ≤ s and degree δ in the coefficients of
Fs+1. We deduce that Pci ∈ K[coeffs(F )] has degree σδ/di + δ in the
variables coeffs(Fi) for 1 ≤ i ≤ s.

The third property follows from the Bézout theorem (2.2). �

3.2.1. Complete intersections defined over Fq. From the theorem, we
now derive a bound over a finite field Fq. The number of all s–tuples of
homogeneous polynomials of Fq[X0, . . . , Xn] with degree sequence d is

(3.4) #PD(Fq) = pD =
∏

1≤i≤s

pDi
.

We first present a general lower bound on the number of nonzeros of a
multihomogeneous polynomial with bounded degrees.

Proposition 3.6. Let P ∈ K[coeffs(F )] be a multihomogeneous poly-
nomial with degcoeffs(Fi)(P ) ≤ ei ≤ e ≤ q for 1 ≤ i ≤ s, and let N be



14 VON ZUR GATHEN & MATERA

the number of f ∈ PD(Fq) with P (f) 6= 0. Then

1−
se

q
≤

∏

1≤i≤s

(

1−
ei
q

)

≤
N

pD
≤ 1.

The leftmost inequality assumes additionally that q ≥ es/3.

Proof. The upper bound being obvious, we prove the lower bound. As
q ≥ ei for all i, Fact 2.2 shows that

#{f ∈ PD(Fq) : P (f) = 0} ≤
∑

ε∈{0,1}s\{0}

(−1)|ε|+1e εpD−ε,

where e = (e1, . . . , es). Using the inequality

pDi
− ei pDi−1

pDi

≥ 1−
ei
q
≥ 1−

e

q

for 1 ≤ i ≤ s, we conclude that

N = #{f ∈ PD(Fq) : P (f) 6= 0} ≥ pD −
∑

ε∈{0,1}s\{0}

(−1)|ε|+1e εpD−ε

=
∑

ε∈{0,1}s

(−1)|ε|e εpD−ε =
∏

1≤i≤s

(

pDi
− ei pDi−1

)

≥ pD
∏

1≤i≤s

(

1−
ei
q

)

≥ pD
(

1−
e

q

)s
≥ pD

(

1−
se

q

)

.

The last inequality assumes q ≥ es/3, so that in the binomial expansion
of the sth power, each positive even term (after the first two) is at least
as large as the following negative odd one. �

An important feature is the fact that the numerator in the lower
bound depends on the geometric system parameters s, ei, and e, but
not on q. This will be applied in several scenarios. We then only state
the concise leftmost lower bound. The reader can easily substitute the
more precise product lower bound if required, also allowing a slightly
relaxed lower bound on q. Furthermore, there exist polynomial systems
not having the desired property, for example fi = xdi

1 for all i, so that
we may replace the upper bound N/pD ≤ 1 by N/pD < 1; this also
holds for the other properties considered in this paper.

Combining Theorem 3.5 and Proposition 3.6, we obtain the following
result.

Corollary 3.7. In the notation (2.8), suppose that q ≥ 2sδσ/3. Let Nci

be the number of f ∈ PD(Fq) defining a complete intersection Z(f ) ⊂
Pn
F of dimension n− s and degree δ = d1 · · ·ds. Then

1−
2sδσ

q
≤

Nci

pD
< 1.
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When the geometric data are fixed, the lower bound increases with
growing q. The corollary can also be interpreted as bounding the prob-
ability that a uniformly random f ∈ PD(Fq) defines a complete inter-
section Z(f) ⊂ Pn

F of dimension n− s and degree δ = d1 · · · ds.

4. Absolutely irreducible and
smooth complete intersections

Now we return to the general framework of the previous section, that
is, we fix an arbitrary field K and consider a sequence f = (f1, . . . , fs)
of s homogeneous polynomials f1, . . . , fs ∈ K[X ] = K[X0, . . . , Xn]
with a given degree pattern (d1, . . . , ds). In the previous section we
have shown that for a generic f , the projective variety Z(f ) ⊂ Pn

K
is a

complete intersection of dimension n− s and degree δ = d1 · · · ds.
In this section we show that Z(f) is absolutely irreducible and

smooth for a generic f , and more precisely that the f without this
property are contained in a hypersurface whose degree we control.

4.1. Smooth complete intersections. First we analyze smoothness.
For this purpose, we introduce a further incidence variety. Let MF =
(∂Fi/∂Xj : 1 ≤ i ≤ s, 0 ≤ j ≤ n) denote the Jacobian matrix of the
formal homogeneous polynomials F1, . . . , Fs of degrees d1, . . . , ds. For
s + 1 ≤ k ≤ n + 1, consider the s × s–submatrix of MF consisting of
the columns numbered 1, . . . , s− 1 and k− 1, and let Jk(F , X) be the
corresponding determinant, namely,

(4.1)
Jk(F , X) = det

(

∂Fi/∂Xj : 1 ≤ i ≤ s,

j ∈ {1, , . . . , s− 1, k − 1}
)

.

We consider the incidence variety

(4.2)
Wnons = {(f , x) ∈ PD

K
× Pn

K
:

f (x) = 0, Jk(f , x) = 0 for s+ 1 ≤ k ≤ n+ 1},

and have the following result.

Lemma 4.1. The polynomials Js+1(F , X), . . . , Jn+1(F , X), F1, . . . , Fs

form a regular sequence of K[coeffs(F ), X ].

Proof. For s + 1 ≤ k ≤ n + 1, let αk = (d1 − 1, 0, . . . , 1, 0, . . . , 0) be
the exponent of the monomial Xd1−1

0 Xk−1. The choice of αk implies
that the nonzero monomial F1,αk

Xd1−1
0 occurs with nonzero coefficient

in the representation of ∂F1/∂Xk−1 as a sum of monomials. Further-
more, the Jacobian determinant Jk(F , X) is a primitive polynomial
of K[coeffs(F ) \ {F1,αk

}, X ][F1,αk
] of degree 1 in F1,αk

. In particular,
Jk(F , X) is an irreducible element of K[coeffs(F ), X ]. On the other
hand, if l 6= k, then Jl(F , X) has degree zero in F1,αk

, since none of
the entries of the matrix defining Jl(F , X) includes a derivative with
respect to X0 or Xk−1.
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Since the multiprojective variety defined by J1(F , X), . . . , Jk−1(F , X)
is a “cylinder” in the direction corresponding to F1,αk

and Jk(F , X) is
an irreducible nonconstant element of K[coeffs(F ) \ {F1,αk

}, X ][F1,αk
],

we conclude that Jk(F , X) is not a zero divisor modulo J1(F , X), . . . ,
Jk−1(F , X) for s+ 1 ≤ k ≤ n+ 1.

Now, denote γi = (di, 0, . . . , 0) for 1 ≤ i ≤ s. Observe that no
Jk(F , X) depends on any of the indeterminates Fi,γi

for 1 ≤ i ≤ s,
since the partial derivatives of F1, . . . , Fs with respect to X0 are not
included in any of the s × s–submatrices of the Jacobian matrix MF

defining the polynomials Jk(F , X). We conclude that each Fi is not
a zero divisor modulo Js+1(F , X), . . . , Jn+1(F , X), F1, . . . , Fi−1. This
finishes the proof of the lemma. �

Now we show that for a generic s–tuple f as above, the corresponding
system defines a smooth complete intersection. We provide estimates
on the degree of a hypersurface of PD

K
containing the elements f for

which Z(f) is not smooth.

Theorem 4.2. In the notation (2.8), there exists a nonzero multiho-
mogeneous polynomial Pnons ∈ K[F ] with

degcoeffs(Fi) Pnons ≤ σn−sδ
(σ

di
+ n− s+ 1

)

≤ (σ + n)σn−sδ

for 1 ≤ i ≤ s and such that for any f ∈ PD

K
with Pnons(f ) 6= 0, the

variety Z(f ) ⊂ Pn
K

is a nonsingular complete intersection of dimension
n− s and degree δ.

Proof. From Lemma 4.1 we conclude that the incidence varietyWnons is
of pure dimension |D| − 1. Let π : PD

K
×Pn

K
→ PD

K
be the projection to

the first argument. Since π is a closed mapping, it follows that π(Wnons)
is a closed subset of PD

K
of dimension at most |D| − 1. In particular,

there exists f ∈ PD

K
not belonging to π(Wnons), which means that the

equations {f (x) = 0, Js+1(f)(x) = 0, . . . , Jn+1(f)(x) = 0} define the
empty set.

Let Ds+1 = · · · = Dn+1 =
(

σ+n
n

)

− 1, let D′ = (D1, . . . , Dn+1) and

PD′

K
= PD

K
× P

Ds+1

K
× · · · × P

Dn+1

K
. Let

K[coeffs(F ′)] = K[coeffs(F ), coeffs(Fs+1), . . . , coeffs(Fn+1)]

and let P ∈ K[coeffs(F ′)] be the multivariate resultant of formal
polynomials F1, . . . , Fn+1 of degrees d1, . . . , ds, σ, . . . , σ. Denote by
H ⊂ PD′

K
the hypersurface defined by P . For any f ∈ PD

K
we have

f ∈ π(Wnons) if and only if the (n+1)–tuple
(

f , Js+1(f), . . . , Jn+1(f)
)

belongs to H. Let φ : PD

K
→ PD′

K
be the regular mapping defined as

φ(f) =
(

f , Js+1(f ), . . . , Jn+1(f )
)

. Then π(Wnons) is the hypersurface

of PD

K
defined by the polynomial φ∗(P ), where φ∗ : K[coeffs(F ′)] →

K[coeffs(F )] is theK-algebra homomorphism defined by φ. Let Pnons ∈
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K[coeffs(F )] be any polynomial of minimal degree defining π(Wnons).
We claim that Pnons satisfies the requirements of the theorem.

To this end, we estimate the multidegree of π(Wnons). For this pur-
pose, we consider the class [Wnons] of Wnons in the Chow ring A∗(PD

K
×

Pn
K
) of PD

K
×Pn

K
. We denote by θi the class of the inverse image of a hy-

perplane of PDi

K
under the ith canonical projection PD

K
× Pn

K
→ PDi

K
for

1 ≤ i ≤ s and by θ0 the class of the inverse image of a hyperplane of Pn
K

under the projection PD

K
× Pn

K
→ Pn

K
to the second argument. By the

definition (4.2) of Wnons and the multihomogeneous Bézout theorem
(2.4), we obtain

[Wnons] =
(

∏

1≤i≤s

(diθ0 + θi)
)

(σθ0 + θ1 + · · ·+ θs)
n−s+1

= σn−s+1δ θn+1
0 + σn−sδ

∑

1≤i≤s

(
σ

di
+ n− s+ 1)θn0 θi +O(θn−1

0 ),

where O
(

θn−1
0

)

is a sum of terms of degree at most n− 1 in θ0.
On the other hand, by definition [π(Wnons)] = degcoeffs(F1)Pnons θ1 +

· · · + degcoeffs(Fs)Pnons θs. Let  : A∗
(

PD

K

)

→֒ A∗
(

PD

K
× Pn

K

)

be the
injective Z–map Q 7→ θn0Q induced by π. Then (2.5) shows that
([π(Wnons)]) ≤ [Wnons], namely,

([π(Wnons)]) =
∑

1≤i≤s

degcoeffs(Fi)Pnons θ
n
0 θi ≤ [Wnons],

where the inequality is understood in a coefficient–wise sense. This
implies

(4.3) degcoeffs(Fi)
Pnons ≤ σn−sδ(

σ

di
+ n− s+ 1)

for 1 ≤ i ≤ s. This proves the degree estimate in the statement of the
theorem.

Further, let f = (f1, . . . , fs) ∈ PD

K
with Pnons(f ) 6= 0. Then {f =

0, Js+1(f ) = 0, . . . , Jn+1(f ) = 0} is the empty projective subvariety of
Pn
K
. This implies that Z(f ) has dimension n − s and f1, . . . , fs form

a regular sequence of K[X ]. Furthermore, Eisenbud (1995), Theorem
18.15, proves that f1, . . . , fs generate a radical ideal of K[X ]. In par-
ticular, the singular locus of Z(f ) is contained in {f = 0, Js+1(f) =
0, . . . , Jn+1(f ) = 0}, which is an empty variety, showing thus that Z(f )
is a smooth variety. �

Let f ∈ PD

K
with Pnons(f) 6= 0. Then Z(f ) ⊂ Pn

K
is a nonsingular

complete intersection which, according to Fact 2.1, is absolutely irre-
ducible. As a consequence, the hypersurface Hnons = Z(Pnons) contains
all the f ∈ PD

K
for which Z(f) is not absolutely irreducible. Below we

describe a hypersurface in PD

K
of lower degree which contains all these

systems (Theorem 4.5).
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In Benoist (2012), Theorem 1.3, it is shown that the set of f ∈ PD

K
for which the variety Z(f) ⊂ Pn

K
is not a nonsingular complete in-

tersection of dimension n − s and degree δ is a hypersurface of PD

K
.

Furthermore, the author determines exactly the degrees of this hyper-
surface. As mentioned in the introduction to this paper, this result is
achieved by combining a study of dual varieties of nonsingular toric
varieties in characteristic zero and projective duality theory in positive
characteristic. In particular, for s = 1 the Benoist bound becomes the
Boole bound (n+ 1)(d1 − 1)n. On the other hand, the bound of Theo-
rem 4.2 is

(

(n + 1)d1 − 1
)

(d1 − 1)n−1 in this case, which is fairly close
to the Boole bound.

4.1.1. Smooth complete intersections defined over Fq. Next we apply
Theorem 4.2 in the case K = Fq. By Theorem 4.2 and Proposition
3.6, and with pD from (3.4), we obtain a lower bound on the number
of those systems that define a smooth complete intersection. For fixed
geometric data, it increases with growing q.

Corollary 4.3. In the notation (2.8), assume that q ≥ s(σ + n)σn−sδ/3.
Let Nnons be the number of f ∈ PD(Fq) for which Z(f ) ⊂ Pn

F is
a nonsingular complete intersection of dimension n − s and degree
δ = d1 · · · ds. Then

(4.4) 1−
s(σ + n)σn−sδ

q
≤

Nnons

pD
< 1.

4.2. Absolutely irreducible complete intersections. With nota-
tions as in the previous section, in this section we obtain an estimate
on the number of polynomial systems defined over an arbitrary field
K such that the corresponding projective variety is an absolutely ir-
reducible complete intersection. As the approach is similar to that of
Sections 3.2 and 4.1, we shall be brief.

Let Js+1(F , X) and Js+2(F , X) be the Jacobian determinants de-
fined in (4.1). Consider the incidence variety
(4.5)
Wirr = {(f , x) ∈ PD

K
× Pn

K
: f (x) = 0, Js+1(f)(x) = 0, Js+2(f )(x) = 0}.

Arguing as in the proof of Lemma 4.1, we obtain the following.

Lemma 4.4. The polynomials Js+1(F , X), Js+2(F , X), F1, . . . , Fs form
a regular sequence of K[coeffs(F ), X ].

Our next result asserts that for a generic s–tuple f as above, the
corresponding variety is an absolutely irreducible complete intersec-
tion. We also provide estimates on the degree of a hypersurface of PD

K
containing the elements f for which Z(f) is not absolutely irreducible.
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Theorem 4.5. There exists a nonzero multihomogeneous polynomial
Pirr ∈ K[coeffs(F )] with

degcoeffs(Fi)
Pirr ≤ σδ(

σ

di
+ 2) ≤ 3σ2δ

for 1 ≤ i ≤ s such that for any f ∈ PD

K
with Pirr(f ) 6= 0, the va-

riety Z(f ) ⊂ Pn
K

is an absolutely irreducible complete intersection of
dimension n− s and degree δ.

Proof. Lemma 4.4 shows that Wirr is of pure dimension |D|+n−s−2.
Its subvariety W ′

irr = Wirr ∩ {Xs+2 = · · · = Xn = 0} may be seen as an
incidence variety analogous to (4.2) associated to generic polynomials
of K[X0, . . . , Xs+1] of degrees d1, . . . , ds. Therefore, applying Lemma
4.1 with n = s+ 1 we deduce that W ′

irr is of pure dimension |D| − 1.
Furthermore, we let π : PD

K
×Pn

K
→ PD

K
be the projection to the first

argument. As π is a closed mapping, π(W ′
irr) is a closed subset of PD

K

of dimension at most |D| − 1 and hence there exists f ∈ PD

K
\ π(W ′

irr).
For such an f , the equations {f = 0, Js+1(f ) = 0, Js+2(f ) = 0, Xs+2 =
0, . . . , Xn = 0} define the empty projective set.

This shows that the multivariate resultant P ∈ K[coeffs(F )] of for-
mal polynomials F1, . . . , Fs of degrees d1, . . . , ds and the polynomials
Js+1(F , X), Js+2(F , X), Xs+2, . . . , Xn is nonzero. Denote by Hirr ⊂ P

D

K
the hypersurface defined by P and let Pirr ∈ K[coeffs(F )] be any poly-
nomial of minimal degree defining Hirr. We claim that the multihomo-
geneous polynomial Pirr satisfies the requirements of the theorem.

Indeed, let f = (f1, . . . , fs) ∈ P
D

K
be such that Pirr(f) 6= 0, that is

f /∈ Hirr. Observe that

Hirr = π(W ′
irr) = π

(

Wirr ∩ {Xs+2 = · · · = Xn = 0}
)

.

For any f ∈ PD

K
, if Z

(

f , Js+1(f), Js+2(f)
)

⊂ Pn
K

has dimension strictly

greater than n − s − 2, then Z
(

f , Js+1(f ), Js+2(f ), Xs+2, . . . , Xn

)

is
nonempty, and the multivariate resultant of the polynomials
f , Js+1(f ), Js+2(f ), Xs+2, . . . , Xn vanishes, that is, f belongs to Hirr.
We conclude that, if f /∈ Hirr, then Z

(

f , Js+1(f), Js+2(f)
)

is of pure
dimension n − s − 2. It follows that Z(f ) has dimension n − s and
f1, . . . , fs form a regular sequence of K[X ]. Furthermore, Eisenbud
(1995), Theorem 18.15, proves that f1, . . . , fs generate a radical ideal
of K[X ]. In particular, the singular locus of Z(f ) is contained in
{f = 0, Js+1(f) = 0, Js+2(f ) = 0}, which has dimension s − 2, show-
ing that Z(f) is a normal complete intersection, and thus absolutely
irreducible by Fact 2.1.

Now we estimate the multidegree of Hirr. For this purpose, we con-
sider the class [W ′

irr] of W
′
irr in the Chow ring A∗(PD

K
×Pn

K
) of PD

K
×Pn

K
.

Denote by θi the class of the inverse image of a hyperplane of PDi

K
under

the ith canonical projection PD

K
×Pn

K
→ PDi

K
for 1 ≤ i ≤ s and by θ0 the
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class of the inverse image of a hyperplane of Pn
K

under the projection

PD

K
× Pn

K
→ Pn

K
to the second argument. By the definition (4.5) of Wirr

and the multihomogeneous Bézout theorem (2.4), we obtain

[W ′
irr] =

(

s
∏

i=1

(diθ0 + θi)
)

(σθ0 + θ1 + · · ·+ θs)
2 θn−s−1

0

= σ2δ θn+1
0 + σδ

∑

1≤i≤s

(
σ

di
+ 2)θn0 θi +O(θn−1

0 ),

where O
(

θn−1
0

)

is a sum of terms of degree at most n− 1 in θ0.
On the other hand, by definition [Hirr] = [π(W ′

irr)] = degcoeffs(F1)Pirr θ1+

· · · + degcoeffs(Fs)Pirr θs. Let  : A∗
(

PD

K

)

→֒ A∗
(

PD

K
× Pn

K

)

be the
injective Z–map Q 7→ θn0Q induced by π. Then (2.5) shows that
([π(W ′

irr)]) ≤ [W ′
irr], where the inequality is understood in a coefficient–

wise sense. This implies that, for 1 ≤ i ≤ s, the following inequality
holds:

(4.6) degcoeffs(Fi)
Pirr ≤ σδ

( σ

di
+ 2

)

≤ 3σ2δ.

This completes the proof of the theorem. �

The hypersurface Hirr ⊂ PD of the proof of Theorem 4.5 is defined
by the multivariate resultant P = P [0,..., s+1] ∈ K[coeffs(F )] of for-
mal polynomials F1, . . . , Fs of degrees d1, . . . , ds and the polynomials
Js+1(F ), Js+2(F ), Xs+2, . . . , Xn. It is well-known that P is actually
the multivariate resultant of the polynomials Fi(X0, . . . , Xs+1, 0, . . . , 0)
for 1 ≤ i ≤ s and Jk(F )(X0, . . . , Xs+1, 0, . . . , 0) for s < k ≤ s + 2;
see, e.g., Cox et al. (1998), §3.3, Exercise 12. In particular, P only
depends on the coefficients Fi,α with αk = 0 for s + 2 ≤ k ≤ n. By
considering the sets of indices [0, . . . , s, k] for s < k ≤ n, one obtains
multivariate resultants P [0,...,s,k] ∈ K[coeffs(F )] whose set of common
zeros in PD

K
contains all the f not defining a normal complete intersec-

tion of dimension n − s and degree δ. Furthermore, it can be proved
that the polynomials P [0,..., s,k] for s < k ≤ n form a regular sequence
of K[coeffs(F )]. This shows that the set of f ∈ PD

K
that do not de-

fine a normal complete intersection of dimension n− s and degree δ is
contained in a subvariety of PD

K
of pure codimension n− s.

4.2.1. Absolutely irreducible complete intersections defined over Fq. Now
we apply Theorem 4.5 in the case K = Fq. Combining Theorem 4.5
and Proposition 3.6, we can bound the number of polynomial systems
as above defining absolutely irreducible complete intersections.

Corollary 4.6. Suppose that q ≥ sσ2δ. Let Nd
irr be the number of

f ∈ PD(Fq) such that Z(f ) ⊂ Pn
F is an absolutely irreducible complete
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intersection of dimension n− s and degree δ = d1 · · · ds. Then

(4.7) 1−
3sσ2δ

q
≤

Nirr

pD
< 1.

5. Most systems define a degenerate variety

We fix the dimension n ≥ 2 of a projective ambient space Pn
K

over

an algebraic closure K of a field K, the codimension s with 1 ≤ s <
n and the degree b > 0, and discuss geometric properties which are
satisfied by “most” complete intersections with these features. We show
that most complete intersections in this sense are absolutely irreducible
hypersurfaces within some linear projective subspace; in particular,
they are degenerate for s ≥ 2. In fact, this means that most systems
define a “maximally degenerate” variety V ; unless V is linear, its points
span a linear space of dimension at least dimV + 1. We also provide
estimates on the number of polynomial systems defined over a finite
field Fq which fail to define such an absolutely irreducible hypersurface.

In the previous sections, we fix a degree pattern d = (d1, . . . , ds)
and consider the corresponding variety PD

K
. Then “most” polynomial

sequences in this variety turn out to have the desired properties. This
is in the usual sense of algebraic geometry of comprising all polynomials
outside of a fixed proper closed subvariety.

The spirit of this section is different, more combinatorial than geo-
metric. For fixed s and b, we consider all polynomial sequences of any
degree pattern d for which d1 · · · ds = b. These sequences do not seem
to form an algebraic set in a natural way, but rather are a disjoint union
of several varieties. We determine which of them has the largest dimen-
sion and call its degree pattern “typical”. This does not correspond to
the geometric notion of “most” in the sense of the other sections.

But it is a useful tool to understand the situation over a finite field.
Given s and b, we have a finite set of polynomial sequences and find the
type of variety that their majority determines. This turns out to be
(irreducible smooth) hypersurfaces in some linear projective subspace.
We may thus say that most sequences determine degenerate varieties
(for s ≥ 2).

More precisely, we consider the multiprojective variety S(b) of all sys-
tems f = (f1, . . . , fs) of homogeneous polynomials with 1 ≤ deg fi ≤ b
for all i. Given a degree pattern d = (d1, . . . , ds) ∈ Ns with d1 ≥
d2 ≥ · · · ≥ ds ≥ 1 and d1 · · · ds = b, the systems f with degree pat-
tern d form a closed subvariety Sd of S(b). Their union S =

⋃

d Sd

over all such d is the object studied in this section. We show that for
d(b) = (b, 1, . . . , 1), Sd(b) is the unique component of S with maximal
dimension. All systems in Sd(b) describe a hypersurface within a linear
subspace of codimension s− 1, which is proper if s ≥ 2.
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A result of a similar flavor was shown by Eisenbud & Harris (1992).
They prove that in the Chow variety of curves of degree b in Pn

K
, most

curves are planar and irreducible if 4n−8 ≤ b. Based on this approach,
Cesaratto et al. (2013) provide numerical bounds for the probability
that a curve randomly chosen in the Chow variety over a finite field
is planar and irreducible. At first sight, it may look surprising that a
generic curve in this sense is planar. We show a corresponding result
for more general varieties: the dimension of the variety of polynomial
systems defining absolutely irreducible hypersurfaces within some lin-
ear projective subspace is larger than the dimension of systems defining
other types of varieties.

The two models of varieties are different: we consider defining sys-
tems of polynomials, while Eisenbud & Harris (1992) and Cesaratto
et al. (2013) deal with varieties themselves. In their case of curves,
they find that unions of lines form a component of maximal dimension
within the Chow variety if b < 4n − 8. The corresponding unions of
linear subspaces do not turn up in our approach.

5.1. Dimension of systems with a given Bézout number. As-
sume that s ≥ 2 and for any d = (d1, . . . , ds) with d1 ≥ d2 ≥ · · · ≥
ds ≥ 1 and d1 ≥ 2, let Sd be the multiprojective variety of all homoge-
neous f1, . . . , fs ∈ K[X0, . . . , Xn] with deg fi = di for all i. The Bézout
number of such a system is δ(d) = d1 · · · ds. According to Theorems
3.5, 4.2, and 4.5, the projective variety V = Z(f) ⊂ Pn

K
defined by

a generic f = (f1, . . . , fs) is a smooth absolutely irreducible complete
intersection of dimension n − s and degree δ(d). As the degree pat-
tern (d1, . . . , ds) is not fixed a priori, one may wonder how frequently
a given pattern arises. We shall show that the most typical pattern is
that corresponding to hypersurfaces, namely, (b, 1, . . . , 1).

For this purpose, for any degree pattern d = (d1, . . . , ds) ∈ Ns as
above, we abbreviate

δ(d) = d1 · · · ds, Di(d) =

(

di + n

n

)

− 1 for 1 ≤ i ≤ s,

D(d) = (D1(d), . . . , Ds(d)), |D(d)| = D1(d) + · · ·+Ds(d).

This notation is in agreement with that of (2.8), where the dependence
on d is not explicitly indicated, since we were considering a fixed degree
pattern.

We consider the hypersurface degree pattern d(b) = (b, 1, . . . , 1) ∈ Ns

and D(b) = D(d(b)) and start with the following result.

Lemma 5.1. We have |D(b)| > |D(d)| for all d 6= d(b) with δ(d) = b.

Proof. An elementary calculation shows that for a ≥ 2 we have

(2a+ 2)!

(a+ 2)!
> 2

(2a)!

a!
.
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It follows that
(2a+ n)!

(a+ n)!
> 2

(2a)!

a!
for n ≥ 2, since the left–hand side is monotonically increasing in n.
Next, we have for a ≥ c ≥ 2 that

(

a+ n

n

)

≥

(

c+ n

n

)

,

(ac + n)!

(ac)!
> 2

(a+ n)!

a!
.(5.1)

Dividing both sides by n!, we find that with s = 2,

(5.2) |D(bc, 1)| > |D(b, c)|.

The general claim of the lemma follows by induction on s. �

Let a ≥ c ≥ 2 and let ρ be a prime number dividing c. From (5.1)
one deduces that |D(aρ, c/ρ)| > |D(a, c)|. For an integer b, we set
g(b) = 0 if b is prime, and otherwise
(5.3)

g(b) = |D(b)|−|D(b/ρ, ρ, 1, . . . , 1)| =

(

b+ n

n

)

−

(

b/ρ+ n

n

)

−

(

ρ+ n

n

)

,

where ρ is the smallest prime number dividing b. Extending the bi-
nomial u(τ) =

(

b/τ+n
n

)

to a real function of the real variable τ on the
interval [2 .. b/2] via the gamma function, u is convex and assumes its
maximum at one of the two endpoints of the interval, namely, at τ = 2;
see von zur Gathen (2011), (3.6). It follows that

(5.4) g(b) ≥

(

b+ n

n

)

− 2

(

b/2 + n

n

)

.

We always have g(b) ≥ 1, but g(b) may be quite large. For example, if
b2 ≥ 2n3, then g(b) ≥ b2/2n2. Furthermore, for n > s > 1 and b ≥ 2
composite, we have

|D(b/ρ, ρ, 1, . . . , 1)| = max
δ(d)=b,d 6=d(b)

|D(d)|,

and

(5.5) |D(b)| ≥ |D(d)|+ g(b)

for any d with δ(d) = b and d 6= d(b).
Combining Lemma 5.1 and (5.5), we can conclude that among all

s–tuples of homogeneous polynomials having a degree pattern d with
δ(d) = b, “most” of them define a hypersurface within some linear
projective subspace of Pn

K
. More precisely, we have the following result.

Corollary 5.2. Let n ≥ 2, 1 ≤ s < n, and b > 0. For any degree
pattern d 6= d(b) with δ(d) = b,

dimPD(b)

K
≥ dimP

K
D(d) + g(b).
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Proof. Since dimP
K
D(d) = |D(d)| for any degree pattern d, the corollary

follows from (5.5). �

We may strengthen the conclusions of Corollary 5.2 by applying The-
orem 4.5.

Corollary 5.3. With assumptions as in Corollary 5.2, denote by Sd
irr

the set of f ∈ P
K
D(d) with degree pattern d such that Z(f) ⊂ Pn

K
is

an absolutely irreducible complete intersection of dimension n− s and
degree b. Then for any degree pattern d 6= d(b) with δ(d) = b, we have

dimSd(b)

irr ≥ dimSd
irr + g(b).

Proof. Let d be a degree pattern with δ(d) = b. According to Theorem
4.5, there exists a hypersurface Hd

irr ⊂ P
K
D(d) such that Z(f) ⊂ Pn

K
is

an absolutely irreducible complete intersection of dimension n− s and
degree b for any f ∈ P

K
D(d) \ Hirr. This implies that

dimSd
irr = dimP

K
D(d) = |D(d)|.

The conclusion now follows from Corollary 5.2. �

5.2. Systems defined over a finite field. In this section we obtain
a quantitative version of Corollary 5.3 for the set of s–tuples of homo-
geneous polynomials with coefficients in Fq having any degree pattern
d with δ(d) = b. For the case s = 1, von zur Gathen et al. (2013),
Corollary 6.8, shows that the number N1

irr of homogeneous polynomials
f1 ∈ Fq[X0, . . . , Xn] of degree b which are absolutely irreducible satisfies
the following estimate:

∣

∣

∣

∣

N1
irr −

q(
b+n

n ) − q(
b+n−1

n )

q − 1

∣

∣

∣

∣

≤ 4 q(
b+n−1

n
)+n−1 1− q−n

(1− q−1)2
,

where the 4 can be replaced by 3 for n ≥ 3.
We denote as Ms(b) the number of d as in (2.8) with δ(d) = b, which

equals the number of nontrivial unordered factorizations of b with at
most s factors, and first estimate this quantity.

Lemma 5.4. For positive integers b ≥ 2 and s, we have Ms(b) ≤
blog2 log2 b.

Proof. We consider unordered factorizations F of b ∈ N with s factors.
Such an F is a multiset of s positive integers whose product (with
multiplicities) equals b. The number 1 is allowed as a factor. Formally,
we have F : N≥1 → N with

∏

a∈N≥1
aF (a) = b and

∑

a∈N≥1
F (a) = s.

Then a “occurs F (a) times” in F , and a “occurs” in F if F (a) ≥ 1.
Picking primes p and q with p | b and q ∤ b, we take for any F some a

occurring in F with p | a and replace one copy of a by aq/p. This new
multiset F ′ is a factorization of bq/p. Replacing the unique occurrence
of a multiple of q in any factorization of bq/p by the same multiple of
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p gives a factorization of b. When applied to F ′, it yields the original
F . Thus the map F 7→ F ′ is injective and Ms(b) ≤ Ms(bq/p).

Let m = Ω(b) be the number of prime factors of b, counted with mul-
tiplicities, and c any squarefree integer with m = Ω(c) prime factors.
The above shows that Ms(b) ≤ Ms(c). A factorization of c corresponds
to a partition of {1, . . . , m} into t ≤ s disjoint nonempty subsets, to-
gether with s−t times the empty set (meaning F (1) = s−t in the above
notation). We drop the restriction t ≤ s and consider all partitions of
{1, . . . , m} into nonempty subsets. The number of such partitions is the
mth Bell number Bm. Since Ms(2) = 1, we may assume that m > 2.
By Berend & Tassa (2010), we have

log2Bm ≤ m · log2(0.8m/ lnm) < m log2m.

Since m = Ω(b), we have 2m ≤ b. It follows that

Ms(b) ≤ Ms(c) ≤ Bm < 2m log2 m ≤ blog2 log2 b.

�

Combining Lemma 5.1 and (5.5) we obtain an estimate on the num-
ber of polynomials systems as above defining a complete intersection
which is a hypersurface in some linear subspace. As a special case of
(3.4), the number of s–tuples f = (f1, . . . , fs) of homogeneous polyno-
mials of Fq[X0, . . . , Xn] with degree pattern (b, 1, . . . , 1), up to nonzero
multiples in Fq of any fi, is equal to

#PD(b)

(Fq) = #PDb(Fq) ·
(

#Pn(Fq)
)s−1

= pDb
ps−1
n ,

where Db =
(

b+n
n

)

−1. The estimates in the following will be expressed

as a deviation from this value. For any d 6= d(b) with δ(d) = b, (5.5)
implies that

(5.6) pD(d) ≤
pDb

ps−1
n

qg(b)
.

Theorem 5.5. Let Nhyp denote the number of f ∈ PD(d)(Fq) defining
a complete intersection Z(f ) ⊂ Pn

F of dimension n − s and degree b,
which is a hypersurface in some linear projective subspace of Pn

F for
some d as in (2.8) with δ(d) = b. Then

∣

∣

∣

Nhyp

pDb
ps−1
n

− 1
∣

∣

∣
≤

1 + 9q−1

qn−s+3
+

Ms(b)

qg(b)
≤

1 + 9q−1

qn−s+3
+

blog2 log2 b

qg(b)
.

Proof. Let d = (d1, . . . , ds) ∈ N
s be a degree pattern with d1 ≥ d2 ≥

· · · ≥ ds ≥ 1, δ(d) = b and d 6= d(b). Denote by Nd
ci the number of

f ∈ PD(d)(Fq) defining a complete intersection of Pn
F of dimension n−s

and degree b = δ(b). We have the obvious upper bound

Nd
ci ≤ pD(d) =

∏

1≤i≤s

pDi(d).
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Any complete intersection with degree pattern d(b) is a hypersurface in
some linear projective subspace. Therefore,

∣

∣Nhyp − pDb
ps−1
n

∣

∣ ≤
∣

∣Nd(b)

ci − pDb
ps−1
n

∣

∣ +
∑

δ(d)=b

d6=d(b)

pD(d).

The sum leads to the second summands in the bounds of the the-
orem via (5.6). We now consider the first term on the right–hand
side of the inequality. Let f = (f1, . . . , fs) be an s–tuple of poly-

nomials of Fq[X0, . . . , Xn] with degree pattern d(b). We first consider
the case where f2 = X0, . . . , fs = Xs−2. Then Z(f ) ⊂ Pn

F is a com-
plete intersection of dimension n − s and degree b if and only if g1 =
f1(0, . . . , 0, Xs−1, . . . , Xn) is a squarefree polynomial of Fq[Xs−1, . . . , Xn].

We fix a monomial order of Fq[Xs−1, . . . , Xn] and normalize g1 by
requiring that its leading coefficient with respect to this order be equal
to 1. Denote by Sn−s+1,b(Fq) the set of normalized squarefree homoge-
neous polynomials of Fq[Xs−1, . . . , Xn] of degree b. Then

#Sn−s+1,b(Fq) · q
(b+n

n )−(b+n−s+1
n−s+1 ) = #{Z(f ) ⊂ Pn

F complete intersections

of degree b : f2 = X0, . . . , fs = Xs−2}.

We can make the previous argument for any sequence (f2, . . . , fs) ∈
(Pn
F (Fq))

s−1 with f2, . . . , fs linearly independent linear forms, that is, for
any (s−1)–tuple (f2, . . . , fs) of homogeneous polynomials of Fq[X0, . . . , Xn]
with degree pattern (1, . . . , 1) such that f2, . . . , fs are linearly indepen-
dent, up to multiples in Fq of any fi. If Nind is the number of elements
(f2, . . . , fs) ∈ (Pn

F (Fq))
s−1 with f2, . . . , fs linearly independent, then

Nd(b)

ci = #Sn−s+1,b(Fq) · q
(b+n

n
)−(b+n−s+1

n−s+1 ) ·Nind,(5.7)

Nind =
∏

0≤k≤s−2

qn+1 − qk

q − 1
= ps−1

n

∏

1≤k≤s−2

qn+1 − qk

qn+1 − 1
≤ ps−1

n .(5.8)

According to von zur Gathen et al. (2013), Corollary 5.7, we have
∣

∣

∣

∣

∣

#Sn−s+1,b(Fq)−
q(

b+n−s+1
n−s+1 )

q − 1

∣

∣

∣

∣

∣

≤
3 q(

b+n−s−1
n−s+1 )+n−s

(1− q−1)2
.

Therefore, we find that
∣

∣

∣

∣

Nd(b)

ci −
q(

b+n

n
)

q − 1
Nind

∣

∣

∣

∣

≤
3 q(

b+n

n
)−(b+n−s+1

n−s+1 )+(
b+n−s−1
n−s+1 )+n−s

(1− q−1)2
Nind

≤
3 q(

b+n

n
)− b

2+n−s

b+n−s
(b+n−s

n−s
)+n−s

(1− q−1)2
ps−1
n .

Observe that, for b ≥ 2 and n− s ≥ 2,

(5.9)
b2 + n− s

b+ n− s

(

b+ n− s

n− s

)

− n+ s ≥ n− s+ 5.
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Indeed, as the left–hand side is monotonically increasing in b, it suffices
to consider b = 2. For b = 2 and n− s ≥ 2, an elementary calculation
shows that (5.9) is satisfied. As a consequence, we obtain

∣

∣

∣

∣

Nd(b)

ci −
q(

b+n

n )

q − 1
Nind

∣

∣

∣

∣

≤
3 q(

b+n

n )−n+s−5

(1− q−1)2
ps−1
n ≤

13

2

pDb
ps−1
n

qn−s+4
.

In order to get rid of the term Nind, we use

qn+1 − qk

qn+1 − 1
≥ 1−

1

qn+1−k

for 1 ≤ k ≤ n + 1, and thus

1 ≥
∏

1≤k≤s−2

qn+1 − qk

qn+1 − 1
≥

∏

1≤k≤s−2

(

1−
1

qn+1−k

)

≥ 1−
1 + 2q−1

qn−s+3
,

It follows that

(5.10) ps−1
n − q−n+s−3(1 + 2q−1)ps−1

n ≤ Nind ≤ ps−1
n .

We deduce that

∣

∣Nd(b)

ci − pDb
ps−1
n

∣

∣ ≤

∣

∣

∣

∣

q(
b+n

n
)

q − 1
N

ind
− pDb

ps−1
n

∣

∣

∣

∣

+
13

2

pDb
ps−1
n

qn−s+4

≤
1 + 2q−1

qn−s+3
pDb

ps−1
n +

ps−1
n

q − 1
+

13

2

pDb
ps−1
n

qn−s+4
.

The statement of the theorem readily follows. �

The error term in Theorem 5.5 decreases with growing q for fixed
geometric data.

Next we estimate the number of polynomial systems as above defin-
ing an absolutely irreducible complete intersection. In view of Lemma
5.1 and Theorem 5.5, we have to pay particular attention to the degree
pattern d(b), which is the subject of the next result.

Lemma 5.6. Let Nd(b)

irr be the number of f ∈ PD(b)
(Fq) defining an

absolutely irreducible complete intersection Z(f) ⊂ Pn
F of dimension

n − s and degree b which is a hypersurface in some linear projective
subspace of Pn

F . Then

∣

∣

∣

Nd(b)

irr

pDb
ps−1
n

− 1
∣

∣

∣
≤

1 + 14 q−1

qn−s+3
.

for b > 2 or n− s > 3. For b = 2 and n− s ≤ 3, the statement holds
with 1 + 14 q−1 replaced by 14 q2.

Proof. Let f = (f1, . . . , fs) be an s–tuple of homogeneous polynomial

of Fq[X0, . . . , Xn] with degree pattern d(b). We first consider the case
f2 = X0, . . . , fs = Xs−2. We have that Z(f) ⊂ Pn

F is absolutely irre-
ducible if and only if g1 = f1(0, . . . , 0, Xs−1, . . . , Xn) is an absolutely
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irreducible polynomial of Fq[Xs−1, . . . , Xn]. We normalize g1 by re-
quiring that its leading coefficient with respect to a given monomial
order of Fq[Xs−1, . . . , Xn] is equal to 1. Denote by An−s+1,b(Fq) the set
of normalized absolutely irreducible polynomials of Fq[Xs−1, . . . , Xn] of
degree b. We have

#An−s+1,b(Fq) q
(b+n

n
)−(b+n−s+1

n−s+1 ) = #{Z(f) ⊂ Pn
F absolutely irreducible :

f2 = X0, . . . , fs = Xs−2}.

Now we let (f2, . . . , fs) run through all the sequences of linearly–inde-
pendent linear forms of Fq[X0, . . . , Xn], namely through all the (s−1)–
tuples of homogeneous polynomials of Fq[X0, . . . , Xn] of degree pat-
tern (1, . . . , 1) with f2, . . . , fs linearly independent, up to multiples in
Fq of any fi. If Nind denotes the number of elements (f2, . . . , fs) ∈
(Pn
F (Fq))

s−1 with f2, . . . , fs linearly independent, then

Nd(b)

irr = #An−s+1,b(Fq) q
(b+n

n )−(b+n−s+1
n−s+1 )Nind.

From von zur Gathen et al. (2013), Corollary 6.8, we have that

∣

∣

∣
#An−s+1,b(Fq)−

q(
b+n−s+1
n−s+1 )

q − 1

∣

∣

∣
≤

3 q(
b+n−s

n−s+1)+n−s

(1− q−1)2
.

Further, by (5.10) we have |Nind − ps−1
n | ≤ q−n+s−3(1 + 2q−1)ps−1

n . As
a consequence,
∣

∣

∣
Nd(b)

irr − pDb
ps−1
n

∣

∣

∣
≤
∣

∣

∣
Nd(b)

irr −#An−s+1,b(Fq) q
(b+n

n )−(b+n−s+1
n−s+1 )ps−1

n

∣

∣

∣

+
∣

∣

∣
#An−s+1,b(Fq) q

(b+n

n
)−(b+n−s+1

n−s+1 )ps−1
n − pDb

ps−1
n

∣

∣

∣

≤ pDb

∣

∣Nind − ps−1
n

∣

∣

+ pDb
ps−1
n

q − 1

q(
b+n−s+1
n−s+1 )

∣

∣

∣
#An−s+1,b(Fq)−

q(
b+n−s+1
n−s+1 )

q − 1

∣

∣

∣

≤
(1 + 2q−1

qn−s+3
+ 12 q−(

b+n−s

n−s
)+n−s+1

)

pDb
ps−1
n .

Finally, taking into account that

−

(

b+ n− s

n− s

)

+ n− s+ 1 ≤ −n + s− 4

for b > 2 or n− s > 3, the statement of the lemma readily follows. �

Now we are ready to estimate the number of polynomials systems
as above defining an absolutely irreducible projective subvariety of Pn

F

of dimension n − s and degree b defined over Fq. We recall g(b) from
(5.3).

Theorem 5.7. Let N b
irr be the number of f ∈ PD(d)(Fq) defining an

absolutely irreducible complete intersection Z(f) ⊂ Pn
F of dimension
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n − s and degree b which is a hypersurface in some linear projective
subspace of Pn

F , for any d with δ(d) = b. Then

∣

∣

∣

N b
irr

pDb
ps−1
n

− 1
∣

∣

∣
≤

1 + 14 q−1

qn−s+3
+

blog2 log2 b

qg(b)
.

if b > 2 or n − s > 3. For b = 2 and n − s ≤ 3, the statement holds
with 1 + 14 q−1 replaced by 14 q2.

Proof. Let N 6=d(b)

irr denote the number of f ∈ PD(d)(Fq) such that Z(f )
is an absolutely irreducible complete intersection of dimension n − s
and degree b, not having degree pattern d(b). We have

∣

∣N b
irr − pDb

ps−1
n

∣

∣ ≤
∣

∣Nd(b)

irr − pDb
ps−1
n

∣

∣ +N 6=d(b)

irr .

On the one hand, Lemma 5.6 provides an upper bound for the first
term in the right–hand side. On the other hand, by Lemmas 5.1 and
5.4 and (5.5), we find

(5.11)

N 6=d(b)

irr ≤
∑

δ(d)=b

d 6=d(b)

pD(d) ≤
∑

δ(d)=b

d6=d(b)

pDb
ps−1
n

qg(b)

≤ Ms(b)
pDb

ps−1
n

qg(b)
≤ blog2 log2 b

pDb
ps−1
n

qg(b)
.

Combining both inequalities, the theorem follows. �

We may express Theorem 5.7 in terms of probabilities. Consider the
set of all f ∈ PD(d)(Fq) when d runs through all the degree patterns
with δ(d) = b. If Pb

irr denotes the probability for a uniformly random
f to define an absolutely irreducible complete intersection Z(f) ⊂ Pn

F

of dimension n− s and degree b, then Theorem 5.7 and (5.11) say that

Pb
irr ≥ 1−

1 + 14 q−1

qn−s+3
−

2blog2 log2 b

qg(b)

for b > 2 or n− s > 3.

6. Open questions

Several issues are left open in the context of this work.

• We have worked exclusively in the projective setting and it re-
mains to adapt our approach to the affine case.

• The nonvanishing of our genericity polynomials is sufficient to
guarantee the property that they work for. Can one find exact
conditions for our properties that are necessary and sufficient?
We have not even determined the dimensions of the sets of
systems that violate the property.
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• For a particular case of the previous question, see the remarks
after (5.5). In that context, can one determine the dimension
of the set of f ∈ PD

K
not defining a normal, or absolutely irre-

ducible, complete intersection of dimension n− s and degree δ?
Do both dimensions agree? Are they equidimensional subvari-
eties of PD

K
?

• Elucidate the relation between the two models of varieties: sys-
tems of defining equations as in this paper, and Chow varieties.
For example, unions of lines occur in the Chow point of view
for curves in higher-dimensional spaces, but not in our consid-
erations. More specifically: what is the dimension of the set
of systems of s polynomials that define finite unions of linear
spaces, each of codimension s? By Kumar (1990), such a union
is a set-theoretic complete intersection if and only if it is con-
nected (in the Zariski topology).

• Stephen Watt pointed out that one might investigate the gener-
icity of computational “niceness” properties, such as a Gröbner
basis computation in singly-exponential time.
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An invitation to algebraic geometry. Springer, New York.
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