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ITERATION ENTROPY

JOACHIM VON ZUR GATHEN

Abstract. We apply a common measure of randomness, the entropy, in the
context of iterated functions on a finite set with n elements. For a permutation,
this entropy turns out to be asymptotically (for a growing number of iterations)

close to log2 n minus the entropy of the vector of its cycle lengths. For general
functions, a similar approximation holds.

1. Introduction

Arithmetic dynamics deals with discrete dynamical systems given by an (arith-
metic) function on a finite set. Of particular interest are polynomials over a finite
field or ring. Their iterations form a well-studied subject with many applications.
In the area of cryptography, one is interested in showing some randomness prop-
erties of such iterations. For lack of entropy, iterations of a function on a finite
set, beginning with a uniformly random starting value, cannot provide uniformly
random values. But some specific power maps (Example 6.1) have been shown to
produce pseudorandom sequences. It seems hard to extend this to more general
situations.

More modestly, one tries to show certain randomness properties of such a func-
tion such as (approximate) equidistribution. The functional graph of f has the base
set as its nodes and a directed edge from x to y if f(x) = y. One may consider
certain graph parameters like the numbers and sizes of connected components or
cycles and ask whether they are (approximately) distributed for the functions under
consideration as they are for general functions.

Beginning with Flajolet and Odlyzko [10], also Flynn and Garton [11], Bellah
et al. [3], Bridy and Garton [7] studied functions and polynomials from this per-
spective. For a uniformly random map on n points, the expected size of the giant
component (an undirected component of largest size) in its functional graph is μn
with μ ≈ 0.75788 (Flajolet and Odlyzko [10], Theorem 8 (ii)). Certain classes of
polynomials over finite fields, mostly of small degree, are considered in Martins and
Panario [18]. Konyagin et al. [14] presents theoretical and experimental results on
maps given by random quadratic polynomials over a finite prime field. The ex-
pected size of the giant component coincides with that for random maps. However,
the number of cyclic points (points on a cycle in the functional graph) is much
smaller. In their experiments with the ten primes following 500 000, this is only
about 885. Ostafe and Sha [20] extends some of this to certain rational functions.

Arratia and Tavaré [1] show that the distribution of cycle lengths in a random
permutation is closely approximated by a Poisson distribution, with mean 1/i for
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cycle length i. Arratia et al. [2] discuss a general framework, including the factor-
ization patterns of univariate polynomials over finite fields. Burnette and Schmutz
[8] provide precise results on the distribution of cycle lengths for polynomials over a
finite field, and also for rational functions. The least common multiple T of all cycle
lengths is the order for a permutation and might be called the asymptotic order
for a general function. They prove a lower bound d

2 (1 + o(1)) for log T . Martins
et al. [19] considers the distribution of this value, and also the number of cyclic
points, for special types of polynomials.

In uniformly random permutations, the expected length of a longest cycle is τn
with τ ≈ 0.62433; Shepp and Lloyd [24] gives an exact expression for τ , and much
statistical information about the cycle length of random permutations, including
the moments of the rth shortest and longest lengths, for r = 1, 2, . . .. Mans et
al. [17] find the average number of cyclic points for quadratic polynomials to be

about the average size of a longest cycle, namely, close to
√
2n/π. For n = 500 000,

this evaluates to about 564. Thus there is a substantial difference of the expected
largest cycle lengths between random permutations and general functions.

In this paper, we take a different route. We define a general notion of iteration
entropy, applicable to any function from a finite set to itself. For a growing number
of iterations, it approaches a limit which forms the central concept of this paper,
the asymptotic iteration entropy. This measure abstracts from individual values like
number or size of components or cycles by including them in a single parameter.
It enjoys some natural properties like convexity for disjoint unions of functions.
One can compare different functions under this measure. For example, when we fix
the component sizes (summing to n), then permutations have a larger asymptotic
iteration entropy than other functions.

For the connected components of size t containing a cycle of size c, the values
t log2 cmake up the asymptotic iteration entropy (up to a factor of n). This suggests
as an open question the study of this parameter, or, more generally, the joint
distribution of (t, c) in functional graphs.

2. The iteration entropy

We letX be a finite set with n elements, f : X → X a map, and for a nonnegative
integer j, f (j) = f ◦ f ◦ · · · ◦ f (with j copies of f) its jth iteration. Thus f (0) = id.
For a positive integer k and x, y ∈ X, we denote as

Nf,k(x, y) = #{j ∈ N : 0 ≤ j < k, f (j)(x) = y}

the number of times that x is mapped to y by an iterate of f , before the kth one.
Then

∑
x,y∈X

Nf,k(x, y) = kn,

Nf,k(x, y) ≤ k for all x, y,

and

pf,k(x, y) =
Nf,k(x, y)

kn
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defines a probability distribution on X2, with all pf,k(x, y) at most 1/n. The usual
Shannon entropy H∗(pf,k) of this distribution is

H∗(pf,k) =
∑

x,y∈X

pf,k(x, y) log2 p
−1
f,k(x, y) =

∑
x,y∈X

Nf,k(x, y)

kn
log2(

kn

Nf,k(x, y)
).

Throughout this paper, we employ the convention that z log2 z
−1 is taken as 0

when z = 0. The general upper bound on the entropy implies that 0 ≤ H∗(pf,k) ≤
2 log2 n.

An observation by Igor Shparlinski leads to the following simplification: we
subtract log2 n from this value.

Definition 2.1. The (shifted kth) iteration entropy Hf,k of f is:

Hf,k = H∗(pf,k)− log2 n =
1

kn

∑
x,y∈X

Nf,k(x, y) log2(
k

Nf,k(x, y)
).

Thus

0 ≤ Hf,k = H∗(pf,k)− log2 n ≤ log2 n.

We usually leave out the “shifted” in the following, although H is not defined as
an entropy.

For any x ∈ X, we have
∑

y∈X Nf,k(x, y) = k, and Nf,k(x, y)/k defines a prob-
ability distribution on the y ∈ X, with Shannon entropy

E(x) =
∑
y∈X

Nf,k(x, y)

k
log2(

k

Nf,k(x, y)
).

We might call this the value entropy. Then

H(pf,k) =
1

n

∑
x,y∈X

Nf,k(x, y)

k
log2(

k

Nf,k(x, y)
) =

1

n

∑
x∈X

E(x)

is the average value entropy.
We start with three examples.

Example 2.2. If f is the identity function on X, then

Nf,k(x, y) =

{
k if x = y,
0 otherwise,

Hf,k = 0.

Example 2.3. If f is a cyclic permutation, then Nf,n(x, y) = 1 for all x, y ∈ X,
pf,n(x, y) = 1/n2 is the uniform distribution on X2 with Shannon entropy 2 log2 n,
and

Hf,n = log2 n.

If k is an integer multiple of n, we have for all x, y ∈ X

Nf,k(x, y) = k/n,

Hf,k = log2 n.

Example 2.4. We take X to be a field with n elements, a, b ∈ X with a(a−1) �= 0,
and consider the linear congruential generator f given by f(x) = ax+ b. Then

f (j)(x) = ajx+
(aj − 1)b

a− 1
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for all j ≥ 0. Furthermore, let � be the order of a in the multiplicative group of
X. Then the functional graph of f consists of one cycle C0 = {x0} with the fixed
point x0 = −b/(a− 1) and length c0 = 1, plus (n− 1)/� cycles C1, . . . , C(n−1)/� of
length �. For a positive integer m, k = �m, 1 ≤ i ≤ (n − 1)/� and x, y ∈ Ci, we
have Nf,k(x, y) = m, and also Nf,k(x0, x0) = k. Thus

Hf,k =
1

kn

(
k log2 1 +

∑
1≤i≤(n−1)/�

∑
x,y∈Ci

m log2(
k

m
)
)

=
1

�m · n
(n− 1)�2

�
m log2 � = (1− 1

n
) log2 �.

3. Combining functions

Given functions fi : Xi → Xi on pairwise disjoint sets X1, . . . , Xs, we can com-
bine them into a function f : X → X on their union X =

⋃
1≤j≤s Xi by setting

f(x) = fi(x) for x ∈ Xi. The functional graph of f is the disjoint union of those
of the fi; the same holds for the usual notion of graph as the set of pairs (x, f(x)).
We write ni = #Xi and n =

∑
1≤i≤s ni = #X. The iteration entropy of f turns

out to be a convex linear combination of those of the fi.

Theorem 3.1. For a positive integer k, we have

Hf,k =
∑

1≤i≤s

ni

n
Hfi,k.

Proof. For x, y ∈ X, we have:

Nf,k(x, y) =

{
Nfi,k if x, y ∈ Xi for some i,
0 otherwise.

Thus

Hf,k =
1

kn

∑
x,y∈X

Nf,k(x, y) log2
k

Nf,k(x, y)

=
1

kn

∑
1≤i≤s

∑
x,y∈Xi

Nfi,k(x, y) log2
k

Nfi,k(x, y)
=

∑
1≤i≤s

ni

n
Hfi,k.

�

4. The asymptotic iteration entropy

The functional graph of an arbitrary function f : X → X has X as its set of
nodes and a directed edge from x to y if f(x) = y. The underlying undirected
graph consists of undirected connected components Ti each containing a cycle Ci,
for various values of i. We consider these subgraphs as subsets of X, ignoring the
order imposed by applications of f . The nodes in Ti \ Ci form various preperiod
trees. The subgraph Ti consists of Ci and all nodes in the preperiod trees attached
to Ci, and we let ti and ci be the sizes of Ti and Ci, respectively. Figure 1 gives
two explicit examples.

Definition 4.1. Let f be a function with a functional graph of component sizes ti
and cycle sizes ci for 1 ≤ i ≤ s, as above. Then

(4.1) Hf,∞ =
1

n

∑
1≤i≤s

ti log2 ci
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Figure 1. The function x 	→ x2 on the units modulo 17 and 19.

is the asymptotic (shifted) iteration entropy of f .

If fi denotes the restriction of f to Ti, operating on ti values, then

Hfi,∞ = log2 ci,

Hf,∞ =
∑

1≤i≤s

ti
n
Hfi,∞,(4.2)

similar to Theorem 3.1. We now show that the finite iteration entropies of a function
converge to its asymptotic iteration entropy, for a growing number of iterations.

Theorem 4.2. For k ≥ 4n ≥ 77, the following hold:

(i)

(4.3) |Hf,k −Hf,∞| ≤ 4n log2 k

k
.

(ii) If f is a permutation, then ci = ti for all i and

|Hf,k −Hf,∞| ≤ 3n log2 n

k
,

Hf,∞ +H∗(
c1
n
, . . . ,

cs
n
) = log2 n.(4.4)
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Here H∗(c1/n, . . . , cs/n) is the Shannon entropy of the distribution on s
elements (the cycles) with probabilities c1/n, . . . , cs/n. If f is cyclic, then
Hf,∞ = log2 n. If f is the identity function, then Hf,∞ = 0.

(iii) If f is a permutation and k an integer multiple of the order lcm(c1, . . . , cs)
of f , then

Hf,k = Hf,∞.

(iv) For any f , we have 0 ≤ Hf,∞ ≤ log2 n, and Hf,∞ = log2 n if and only if f
is a cyclic permutation.

Proof. (i) We start with a single connected component X containing a single cycle
C ⊆ X of size c. The depth d of the functional graph on X is the maximal number
of edges on a directed path within it that terminates in its first point on the cycle;
this equals the maximal number of nodes on such paths minus 1. Cyclic points do
not contribute to this depth. In Figure 1, we have d = 4 in the graph at the top,
and d = 1 at the bottom. We consider the division with remainder

(4.5) k = mc+ r,

with 0 ≤ r < c. The first k iterations of f send each initial value on a cycle m times
around the cycle, and then r steps further. Thus if x and y are on the same cycle,
then the orbit of x includes y m times, plus possibly one more time, namely if the
distance (in the directed functional graph) from x to y is less than r. An off-cycle
value spends at most d steps before reaching its root on the cycle, and then cycles
around for at least k − d steps. Thus for x, y ∈ X, there is an integer u(x, y) so
that

Nf,k(x, y) =

⎧⎨
⎩

m+ u(x, y) with − �d
c � ≤ u(x, y) ≤ 1 if y ∈ C,

u(x, y) with 0 ≤ u(x, y) ≤ 1 if y ∈ X \ C,
0 otherwise,

(4.6)

Hf,k =
1

kn

∑
x∈X
y∈C

(m+ u(x, y)) log2
k

m+ u(x, y)
(4.7)

+
1

kn

∑
x∈X

y∈X\C
u(x,y)=1

u(x, y) log2
k

u(x, y)
.(4.8)

Since n ≥ c and k ≥ 4n > 4d, we have m− �d/c� > 0. We write

(4.9) Hf,∞ = log2 c =
∑
x∈X
y∈C

log2 c

cn
.

For the error bound, we first bound the difference of the contributions of (x, y) ∈
X ×C to (4.7) and (4.9). This proceeds in two steps, first ignoring the logarithmic
factors. We use

δ(x, y) =
m+ u(x, y)

kn
− 1

cn
=

cm+ cu(x, y)− k

ckn
=

cu(x, y)− r

ckn
,(4.10)

δ(x, y) ≤ c− r

ckn
≤ c

ckn
,

δ(x, y) ≥ −c(d/c+ 1)− r

ckn
>

−d− c− r

ckn
,

|δ(x, y)| ≤ d+ c+ r

ckn
≤ 2

ck
,(4.11)
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since r < c ≤ d + c ≤ n. For the logarithms we consider, again for x ∈ X and
y ∈ C,

ε(x, y) =
δ(x, y)

1/cn
= cnδ(x, y),

so that

|ε(x, y)| ≤ 2n

k
≤ 1

2
,

| log2(1 + ε(x, y))| ≤ |2ε(x, y)| ≤ 4n

k
,(4.12)

m+ u(x, y)

kn
=

1

cn
· (1 + ε(x, y)).

The difference between the contributions of (x, y) ∈ X ×C to Hf,k and to Hf,∞
is

α(x, y) =
m+ u(x, y)

kn
log2

k

m+ u(x, y)
− log2 c

cn

= (
1

cn
+ δ(x, y))

(
log2 c− log2(1 + ε(x, y))

)
− log2 c

cn
(4.13)

= δ(x, y) log2 c−
1

cn
log2(1 + ε(x, y))− δ(x, y) log2(1 + ε(x, y)).

From (4.11) and (4.12), we have, as in a Cauchy-Schwartz inequality,

|α(x, y)| ≤ 2 log2 c

ck
+

1

cn
· 4n
k

+
2

ck
· 4n
k

=
1

ck
(2 log2 c+ 4 +

8n

k
) ≤ 3 log2 n

ck
.

In total, we find

|Hf,k −Hf,∞| ≤
∑
x∈X
y∈C

|α(x, y)|+
∣∣ ∑

x∈X
y∈X\C
u(x,y)=1

u(x, y)

kn
log2

k

u(x, y)

∣∣(4.14)

≤
∑
x∈X

(∑
y∈C

3 log2 n

ck
+

∑
y∈X

log2 k

kn

)
(4.15)

≤
∑
x∈X

(3 log2 n
k

+
log2 k

k

)
(4.16)

≤ 3n log2 n+ n log2 k

k
≤ 4n log2 k

k
.(4.17)

We now turn to the general case, with connected components Ti of size ti con-
taining a cycle Ci of size ci, and let fi be the restriction of f to Ti, for 1 ≤ i ≤ s.
Thus

∑
1≤i≤s ti = n, the graph of each fi contains just one component Ti, and f

is the combination of all fi in the sense of Section 3. From Theorem 3.1 and (4.2),
we have

Hf,k −Hf,∞ =
∑

1≤i≤s

ti
n
(Hfi,k −Hfi,∞).
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Since for the single-cycle function fi, ti plays the role of n in (4.1) and Hfi,∞ =
log2 ci, it follows from (4.3) that

(4.18) |Hf,k −Hf,∞| ≤
∑

1≤i≤s

ti
n
|Hfi,k −Hfi,∞| ≤

∑
1≤i≤s

ti
n
· 4ti log2 k

k
≤ 4n log2 k

k
.

(ii) As in the proof of (i), we first assume f to be a cyclic permutation. Then
d = 0 and 0 ≤ u(x, y) ≤ 1 in the first line of (4.6), and u(x, y) = 0 in the second
line, since X = T = C. In the equation (4.8), the last summand vanishes in (4.14)
through (4.16), and the bound in (4.17) becomes (3n log2 n)/k.

Representing a general permutation as a combination of cyclic ones gives this
bound also in (4.18). Furthermore, we have

Hf,∞ +H∗(
c1
n
, . . . ,

cs
n
) =

1

n

∑
1≤i≤s

ci log2 ci +
∑

1≤i≤s

ci
n
log2

n

ci
= log2 n.

(iii) In addition to the properties in (ii), now r = 0 in (4.5) and u(x, y) = 0 in
the first line of (4.6). Therefore δ(x, y) = 0 in (4.10) and α(x, y) = 0 in (4.13).

(iv) Using (4.4) and ci ≤ ti for all i, we have

Hf,∞ =
1

n

∑
1≤i≤s

ti log2 ci ≤
1

n

∑
1≤i≤s

ti log2 ti = log2 n−H∗(
t1
n
, . . . ,

ts
n
) ≤ log2 n.

The first inequality is strict unless ti = ci for all i, and H∗(t1/n, . . . , ts/n) = 0 if
and only if s = 1 and thus t1 = n. Hence Hf,∞ = log2 n if and only if f is a cyclic
permutation. �

The main term Hf,∞ in Theorem 4.2 (i) is independent of k, and the error bound
goes to zero with growing k. Sinkov [25] calls the expression

∑
1≤i≤s ti log2 ci a

cross-entropy, but does not discuss it further. It plays a role in modern cryptanalysis
of classical ciphers, as in Lasry [16]. We are not aware of other sources for this cross-
entropy.

While Definition 2.1 of the shifted iteration entropy is stated as a sum over n2

terms, the number of summands in the asymptotic shifted iteration entropy is only
the number of cycles. Of course, the different cycle lengths seem, in general, hard
to compute.

If the functional graph of a function f on n elements contains a connected compo-
nent of size t1 = τn with a cycle of length c1 = nγ , plus possibly other components,
then

(4.19) Hf,∞ ≥ τγ log2 n.

If f is, in addition, a permutation, then

(4.20) Hf,∞ ≥ τ log2 n+ τ log2 τ.

5. Tree surgery

How do the asymptotic iteration entropies of two distinct but closely related
functions compare? We discuss three ways of slightly modifying a functional graph
and their effect on the asymptotic iteration entropy.

Suppose we remove one “leaf” (most outlying node) from one of the preperiod
trees. Thus we consider components and cycles Ti ⊇ Ci, and set t′i = ti and c′i = ci
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for all i, except that t′s = ts − 1, assuming ts > cs. We take a new function f ′ on a
set with n− 1 elements whose graph has these parameters. Then

Δ = Hf,∞ −Hf ′,∞ = (
1

n
− 1

n− 1
)
∑

1≤i<s

ti log2 ci + (
ts
n

− ts − 1

n− 1
) log2 cs

=
1

n(n− 1)
((

∑
1≤i<s

ti log2 ci)− (n− ts) log2 cs) =
1

n(n− 1)

∑
1≤i<s

ti log2
ci
cs
.

If s = 1, then Δ = 0, and if s ≥ 2 and Cs is a smallest cycle, then Δ ≥ 0.
An alternative is to enlarge Cs at the expense of Ts, by moving one node in Ts,

at distance 1 from Cs, into Cs. Thus c′i = ci and t′i = ti for all i, except that
c′s = cs + 1 and t′s = ts − 1, assuming ts > cs.

We take a new function f ′ on X whose graph has these parameters. Then

Δ = Hf,∞ −Hf ′,∞ =
1

n
(ts log2 cs − (ts − 1) log2(cs + 1))

=
1

n
(ts log2

cs
cs + 1

+ log2(cs + 1)).

NowΔmay be positive, negative, or zero. If we replace log2(1− 1
cs+1 ) by−1/(cs+1),

then the value is positive if and only if ts < (cs + 1) log2(cs + 1).
For a more general result, we can at least compare two functions one of which

is obtained from the other one by amalgamating components and cycles. We take
four sequences of positive integers representing component and cycle sizes:

t = (t1, . . . , ts),

c = (c1, . . . , cs),

t′ = (t′1, . . . , t
′
r),

c′ = (c′1, . . . , c
′
r),

with r < s, n =
∑

1≤i≤s ti =
∑

1≤j≤r t
′
j , and ci ≤ ti and c′i ≤ t′i for all i. We say

that (t, c) ≺ (t′, c′) if there exist pairwise disjoint sets S1, . . . , Sr ⊆ {1, . . . , s} such
that t′j =

∑
i∈Sj

ti and c′j =
∑

i∈Sj
ci for 1 ≤ j ≤ r. For example, if r = s − 1,

Sj = {j} for j < r, and Sr = {s − 1, s}, then we may imagine the corresponding
cycles Cs−1 and Cs cut open at one point and then joined to form one cycle, with
all preperiod trees remaining attached.

Theorem 5.1. Let f and f ′ be functions on a set of n elements whose functional
graphs have component and cycle sizes t and c and t′ and c′, respectively. If (t, c) ≺
(t′, c′), then Hf,∞ < Hf ′,∞.

Proof. Inductively, it is sufficient to consider the example above with r = s − 1,
Sj = {j} for j ≤ s− 2 and Sr = {s− 1, s}. Thus c′j = cj and t′j = tj for j < r, and
t′r = ts−1 + ts and c′r = cs−1 + cs. Then

n(Hf,∞ −Hf ′,∞) =
∑

1≤i≤s

ti log2 ci

−
( ∑
1≤i≤s−2

ti log2 ci + (ts−1 + ts) log2 (cs−1 + cs)
)

= ts−1(log2 cs−1 − log2 (cs−1 + cs))

+ ts(log2 cs − log2 (cs−1 + cs)) < 0. �
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In other words, amalgamating components as above increases the asymptotic
iteration entropy.

6. Examples

We present some examples.

Example 6.1. The power map x 	→ xe in a finite field or a ring Z/NZ, for fixed
e,N ≥ 2, is of cryptographic interest. Its iterations include the power generator
for pseudorandom sequences and, with e = 2, the Blum-Blum-Shub and Hofheinz-
Kiltz-Shoup cryptosystems (Blum et al. [4], Hofheinz et al. [13]). Friedlander et al.
[12] exhibits lower bounds on the order (or period) of this function, that is, the lcm
of all cycle lengths. Kurlberg and Pomerance [15] show that the maximal value (over
all initial points) equals the order of e modulo M , where M is the largest divisor of
the Carmichael value λ(N) that is coprime to e. They prove a lower bound of about
N1/2 for a “Blum integer”, which is the product of two primes p and q for which
p− 1 and q − 1 have a large prime divisor. Sha and Hu [23] shows a similar result
in finite fields, and Sha [22] for the case where N is a prime power. Pomerance and
Shparlinski [21] proves several results about the number of cycles in the functional
graph, among them a lower bound of p5/12+o(1) for infinitely many primes p. Chou
and Shparlinski [9] computes the number of cyclic points, the average cycle length,
and other quantities for such maps, extending the work of Vasiga and Shallit [26]
on e = 2 (using the Extended Riemann Hypothesis). Corollary (4.19) gives a lower
bound on the asymptotic iteration entropy of a permutation whose graph has a
large cycle.

Example 6.2. Let n be a power of 2 and suppose that the functional graph of f
contains a complete binary tree whose root is mapped under f to the only cycle
in the graph, consisting of one point. Figure 1 illustrates this with the squaring
function x 	→ x2 for the Fermat prime p = 17 on the unit group X = F

×
17 with

n = 16 elements. Thus s = 1, T1 = X, t1 = n, c1 = 1, and Hf,∞ = 0. Theorem
4.2 says that Hf,k ≤ (4n log2 k)/k; the latter value tends to zero with growing k.
Under our measure, this function exhibits “small” iteration entropy.

Example 6.3. Suppose that n is even and f has one cycle C1 of size n/2, with a
one-node tree attached to each point on the cycle. Thus s = 1, c1 = n/2, t1 = n.
The benzene ring on F

×
19 at the lower left in Figure 1 is an example on n = 12

points. Then

Hf,∞ =
t1
n
log2

n

2
= (log2 n)− 1.

If we combine it with a single fixed point C2 = {x0}, then the functional graph of
some quadratic function f on a field with q = n+ 1 elements might look like this.
Then

Hf,∞ =
q − 1

q
log2((q − 1)/2) +

1

q
log2 1 ≈ (1− 1

q
) · (log2 q − 1).

Under our measure, both are “large” asymptotic iteration entropies.

Example 6.4. In Boppré et al. [5], the ElGamal function f : x 	→ gx on Fp is
studied, where p is a prime number and g is a generator of the multiplicative
group of Fp. This function occurs in some cryptographic protocols. For the two
primes 1009 and 10 009, there are 288 and 3312 generators, respectively. Figures 2
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Figure 2. The asymptotic iteration entropies for the 288 ElGamal
functions on F1009. The red line at 0.85 indicates the average.

Figure 3. The asymptotic iteration entropies for the 3312 ElGa-
mal functions on F10009. The red line near 0.89 indicates the aver-
age.

and 3 show the asymptotic iteration entropies of all these functions, normalized as
Hf,∞/ log2 p, so that all values lie between 0 and 1. The values lie, on average,
about 10 to 15% below the maximal value of 1. The variances were also computed
but are too small to be shown.

7. Open questions

• What is the average asymptotic iteration entropy of a random permuta-
tion? Or a random function? Equation (4.20) provides a lower bound for
individual permutations. Is this, with the proper value of τ ≈ 0.62433,
also a (lower or upper) bound on the average? The results of Arratia and
Tavaré [1] may help to answer this question. What is the average value of
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max{t log2 c} for random functions, where t runs through the component
sizes and c is the size of the component’s cycle? The joint distribution
of (t, c) does not seem to have been studied. The average size μn with
μ ≈ 0.75788 (Flajolet and Odlyzko [10]) of the giant component might be
a lower bound, except that components with a fixed point (c = 1) would
have to be ruled out.

• The linear congruential generator of Example 2.4 is well known to be inse-
cure (see Boyar [6]) and hence does not provide pseudorandom values by
iteration. For large �, say � = n − 1, its asymptotic iteration entropy is
close to the maximal value of log2 n. Thus large iteration entropy does not
imply pseudorandomness. Is the converse true in some sense?

• What is the relation of the (asymptotic) iteration entropy to usual notions of
random generation? A function on a finite set contains only a finite amount
of information (or Shannon entropy) and its iterates, from a uniformly
random starting value, do not generate a statistically random sequence
of elements. But one may ask for a modest amount of equidistribution
(see Boppré [5] for the ElGamal function, and other works cited earlier) or
whether some form of pseudorandomness is obtainable. The Diffie-Hellman
problem in a finite cyclic group G of order d is to find gc with gc = gab,
given ga and gb. Any function on G translates into a function on the
exponent group Zd, with the same cycle structure. The Diffie-Hellman
problem becomes the trivial task of finding c with c = ab, given a and b.
This illustrates the general observation that the computational difficulty
may lie in the presentation (here: group elements vs. exponents). But
for the ElGamal function, the translation to the exponent group does not
seem to simplify the issue, say for finding a preimage or for understanding
randomness properties. Conversely, does pseudorandomness imply that
the function is a permutation? For example, the squaring function on the
set of quadratic residues with Jacobi symbol 1 modulo a special type of
RSA modulus is used in Hofheinz et al. [13]; it is pseudorandom under the
assumption that such moduli are hard to factor, it is a permutation, and
in general not cyclic.
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