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Sidon sets and statistics of the ElGamal function

Lucas Boppr�e Niehues, Joachim von zur Gathen, Lucas Pandolfo Perin, and
Ana Zumalac�arregui

ABSTRACT
In the ElGamal signature and encryption schemes, an element
x of the underlying group G ¼ Z

�
p ¼ f1, . . . , p�1g for a prime

p is also considered as an exponent, for example in gx, where
g is a generator of G. This ElGamal map x 7! gx is poorly
understood, and one may wonder whether it has some ran-
domness properties. This work presents two pieces of evi-
dence for randomness. Firstly, experiments with small primes
suggest that the map behaves like a uniformly random per-
mutation with respect to two properties that we consider.
Secondly, the theory of Sidon sets shows that the graph of
this map is equidistributed in a suitable sense. It remains an
open question to prove more randomness properties, for
example, that the ElGamal map is pseudorandom.

KEYWORDS
Sidon set; ElGamal
signature; equidistribution;
cyclestructure; random
permutation

1. Introduction

A basic requirement in modern cryptography are the random values
needed to generate keys, nonces, and other values. But our computers and
their usual models are deterministic machines that cannot, for reasons of
principle, generate uniformly random values. A powerful methodology
overcomes this obstacle: pseudorandomness.
Starting with only few uniformly random values—which must come

from other sources, say physical generators—a pseudorandom generator
(prg) produces an arbitrarily large amount of output that is indistinguish-
able from uniformly random values by any efficient (that is, polynomial-
time) algorithm such as a cryptosystem. Thus pseudorandom values are as
good as uniformly random ones for cryptographic purposes. Distinguishing
here means that the algorithm can request an arbitrarily long sequence of
values which are either all from the generator or all uniformly random,
and then has to tell which of the two is the case. The algorithm is success-
ful if its answer is correct with non-negligible probability, that is, there
exists a polynomial f so that this probability is more than 1=f ðnÞ, where n
is the size parameter. These asymptotic notions assume that the generator
is defined for infinitely many n. The current state of mathematics and
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computer science, say the open P vs. NP question, only allows to show the
desired property by assuming that some computational problem is hard;
factoring integers and computing discrete logarithms are two
such candidates.
Any bias of a prg is negligible, since otherwise the bias would be effi-

ciently detectable. Thus pseudorandomness implies (approximate) equidis-
tribution. The converse is false. For example, linear congruential generators
are usually equidistributed but not pseudorandom at all.
Alas, few prg’s are known and it is hard to come up with new ones. It is

easier (but still not always easy) to study the weaker property of equidistri-
bution. The present paper does this for the ElGamal function which is sus-
pected to be pseudorandom, but so far efforts to prove this have been
unsuccessful. Theorem 3.1 shows the following property: ElGamal values
ðgx, xÞ in a (sufficiently large) box B ¼ I � J given by two intervals I and J
are indeed close to being equidistributed, that is, there are about #B=p
many of them, with an explicit error term of 50p1=2 log 2p:
We now describe the ElGamal signature scheme (ElGamal 1985) with

size parameter n. One takes an n-bit number d and a cyclic group G ¼ hgi
of order d. In ElGamal’s original proposal, p is an n-bit prime number,
G ¼ Z

�
p ¼ f1, :::, p�1g, d ¼ p�1, and Zd ¼ f1, :::, dg is the exponent group.

More commonly, one takes Zd ¼ f0, :::, d�1g, but both are valid sets of
representatives. We let g be a generator of G, so that G ¼ fgb : b 2 Zdg:
The object of this paper is to investigate randomness properties of the
ElGamal map from G to G with x 7! gx, where x 2 Zd on the right hand
side. Since gx determines x uniquely, this is a permutation of G. If we con-
sider x 2 Zd on the left hand side, it is the discrete exponentiation map in
base g. This map is trivial from a computer science point of view, but does
not seem to have any mathematical structure.
A secret global key a 2 Zd and session key k 2 Z

�
d are chosen uniformly

at random, and their public versions A ¼ ga and K ¼ gk in G are pub-
lished. The signature of a message m 2 Zd is (K, b)
with b ¼ k�1ðm�aKÞ 2 Zd:
The private key is easily broken if discrete logarithms in G can be calcu-

lated efficiently, since then the secret a and k can be calculated from the
public A and K. For more details, see von zur Gathen (2015), Sections 8.2
and 9.8.
Related work by Cobeli, Vâjâitu, and Zaharescu (2002) studies distribu-

tions of the difference x�gx and of the function x 7! uxþ vgx for fixed u
and v. This includes the ElGamal function as a special case. The present
work improves their result with an error term of 50p1=2 log 2p instead of
their Oðp1=2 log 3pÞ and thus provides an explicit bound for the ElGamal
distribution, which they only do for x�gx: Both approaches are based on
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exponential sums, but Sidon sets, as used here, seem to provide a simpler
tool than general bounds. This may prove useful in further work on such
distribution questions.
The Decisional Diffie-Hellman (DDH) problem is to decide whether,

given a triple ðx, y, zÞ 2 G3, there exist a, b 2 Zd so that x ¼ ga, y ¼ gb, and
z ¼ gab; then (x, y, z) is a Diffie-Hellman triple.
If such triples are indistinguishable from uniformly random triples, for

uniformly random a and b, then the ElGamal encryption scheme is indis-
tinguishable by public key only attacks. The results of Canetti, Friedlander,
Konyagin, Larsen, Lieman, and Shparlinski (Canetti et al. 2000), indicate
that the most significant and least significant bits of each element in DDH
triples are indeed distributed uniformly. Do the pairs ðx, gxÞ, for uniformly
random x, exhibit a similar behavior?
This paper first gives some experimental evidence in favor of this conjec-

ture. We take some small primes, just above 1000, and consider two
parameters of permutations: the number of cycles and the number of
k-cycles for given k. Their averages for random permutations are well-
known, and we find that the average values for the ElGamal function are
reasonably close to those numbers. Secondly, we use the theory of Sidon
sets to prove an equidistributional property with appropriate parameters.
Martins and Panario (2016) study similar questions, but for general poly-

nomials that need not be permutations, and for different parameters.
Konyagin et al. (2016) consider enumerative and algorithmic questions
about (non-)isomorphic functional graphs, and Mans et al. (2019) provide
statistics, conjectures, and results about cycle lengths of quadratic polyno-
mials over finite prime fields. Kurlberg, Luca, and Shparlinski (2015) and
Felix and Kurlberg (2017) deal with fixed points of the map x 7! xx mod-
ulo primes.

2. Experiments in Fp

The table below shows the cycle structure of 12 permutations x 7! gx in F
�
p

with p¼ 1009 and the 12 smallest generators g. In the pictorial representa-
tion of Figure 1, each oval corresponds to a cycle whose length is propor-
tional to the oval’s circumference. For each g, the smaller ovals are placed
arbitrarily inside or next to the largest one. By their nature, experiments
only give a limited insight into such asymptotic questions. For primes of
cryptographically relevant size, the required computations are infeasible.
In the following subsections, we take the cycle structures for all

/ð1008Þ ¼ 288 generators of F�
1009, and then of all generators for the first

fifty primes larger than 1000. We calculate the averages for the number of
cycles and the number of k-cycles and compare them to the known values
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for random permutations. By their nature, such experiments can only give
a limited insight into an asymptotic question.

2.1. Number of cycles in permutations

We study in detail the number of cycles in the permutations. The number
of permutations in Sn with c cycles equals the Stirling number s(n, c) of the
first kind, and thus is the coefficient of xc in the falling factorial xn ¼
x � ðx�1Þ � � � ðx�nþ 1Þ (Wilf 1990, Section 3.5). Figure 2 shows the

Figure 1. Graphical presentation of 12 permutations x 7! gx in F1009:

Generator Cycle lengths

11 2, 2, 3, 9, 34, 69, 207, 330, 352
17 1, 184, 823
22 1, 14, 37, 49, 90, 104, 298, 415
26 1, 1, 1, 3, 3, 4, 4, 7, 24, 38, 228, 694
31 1, 2, 3, 18, 42, 211, 292, 439
33 1, 2, 14, 15, 28, 948
34 2, 19, 118, 172, 209, 488
38 12, 13, 47, 936
46 1, 2, 11, 12, 15, 20, 22, 50, 112, 151, 245, 367
51 1, 1, 2, 2, 6, 10, 17, 46, 265, 658
52 1, 2, 3, 6, 13, 15, 16, 20, 32, 135, 765
53 1, 3, 3, 4, 9, 99, 889
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distribution of the number of cycles for uniformly random permutations of
n elements, that is, the fraction sðn, cÞ=n! (in percent) for n¼ 1009 and 1 �
c � 20, as a continuous line. In the same figure, experimental statistics for
288 permutations chosen uniformly at random are presented as dots. This
was done in order to calibrate our expectations. Theory and experiments
match quite well.

Figure 2. Distribution in percent of number of cycles for 288 uniformly random permutations
in S1009.

Figure 3. Distribution of number of cycles in ElGamal functions on F1009:
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Figure 3 shows the same continuous line, but now the dots represent the
counts for the 288 generators of F1009: The result looks quite similar to
Figure 2.

2.2. Number of k-cycles in permutations

For uniformly random permutations of a finite set, the number of cycles of
length k is on average 1=k (Flajolet and Sedgewick 2009, Example III.9). In
Figure 4, we give the average number of cycles of length k for all 288 gen-
erators of the multiplicative group F

�
1009 in dots. The experimental results

are reasonably close to the theoretical values.
For the specific case k¼ 1, the average number of fixed points in random

permutations is 1. The results in Figure 4 are very close, by a small error
margin. Therefore, to better illustrate this property, Figure 5 shows the
average number of fixed points for all generators in the multiplicative
group for all prime numbers from 2 to 2111. As expected, the average of
fixed points is closely distributed to the theoretical value. We also note that
by increasing p, the average of fixed points in the experiments gets closer
to the expected theoretical value.

3. Sidon sets

A subset A of an abelian group G (written additively) is a Sidon set if for
every y 2 G n f0g there exists at most one pair ða, bÞ 2 A2 such that y ¼

Figure 4. Average number of k-cycles in ElGamal functions on F1009:
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a�b: Clearly, for any set A there are exactly #A pairs ða, bÞ 2 A2 for which
0 ¼ a�b, where #A is the cardinality of A.
Let p be a prime, g 2 Z

�
p a generator of the multiplicative group Z

�
p ,

and identify Zp�1 ¼ f0, 1, :::, p�2g and Zp ¼ f0, 1, :::, p�1g: We consider
the additive group G ¼ Zp�1 � Zp (using the additive structure of both fac-
tors), and the subset

S ¼ fðgx, xÞ : x 2 Zp�1g: (3.1)

Thus S is the graph of the discrete logarithm function modulo p, since S ¼
fðy, log gyÞ : y 2 Zp n f0gg, and, after swapping the coordinates, the graph
of the ElGamal function.
The following result is well known; see Cilleruelo (2012), Example 2. We

include a proof for the sake of completeness.

Lemma 3.1. The set S in (3.1) is a Sidon set in Zp � Zp�1:

Proof. For some ðu, vÞ 6¼ ð0, 0Þ in Zp � Zp�1 and c1, c2 2 Zp�1, suppose that
ðgc1 , c1Þ�ðgc2 , c2Þ ¼ ðu, vÞ: Then

c1�c2 � v mod p� 1,

gc1�gc2 � u mod p:
(3.2)

In particular v 6� 0 mod p�1, since otherwise u � gc1�gc1 � 0 mod p
which contradicts the assumption. From (3.2) we know that gc1�v �
gc2 mod p, and hence gc1ð1� g�vÞ � u mod p: Furthermore, ð1� g�vÞ 6�
0 mod p, and we conclude that gc1 � ð1� g�vÞ�1u mod p and thus the
pair (c1, c2) is uniquely determined by (u, v). w

Figure 5. Average number of fixed points for all generators of Fp with 2 � p � 2111:
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Lemma 3.2. Let u be a nontrivial character of G ¼ Zp � Zp�1 and let S be
the set in (3.1). Then ���X

a2S
uðaÞ

���<ð3ðp�1ÞÞ1=2:

Proof. Any nontrivial character u of G satisfies
P

x2G uðxÞ ¼ 0: Thus, for
the set S�S ¼ fx 2 G : x ¼ a�b for some a, b 2 Sg we haveX

x2S�S

uðxÞ ¼ �
X
x 62S�S

uðxÞ: (3.3)

Since jzj ¼ ðz � �zÞ1=2 for a complex number z and uðxÞ ¼ uð�xÞ for
every x 2 G, where �z denotes the complex conjugate of z, it follows that

���X
a2S

uðaÞ
���2 ¼ �X

a2S
uðaÞ

��X
b2S

uð�bÞ
�
¼
X
a, b2S

uða�bÞ

¼
X
y2G

uðyÞ � #fða, bÞ 2 S2 : y ¼ a�bg:
(3.4)

Since S is a Sidon set by Lemma 3.1, we know that

#fða, bÞ 2 S2 : y ¼ a�bg ¼
#S if y ¼ 0,
1 if y 2 S�S n f0g,
0 otherwise:

8<
:

Thus ���X
a2S

uðaÞ
���2 ¼ #S�1þ

X
y2S�S

uðyÞ

¼ #S�1�
X
y 62S�S

uðyÞ

� #S�1þ j
X
y 62S�S

uðyÞj:

(3.5)

Luckily, we have a complete description of the set S – S, since every pair
ða, bÞ 2 S2 is uniquely determined by the difference a – b unless a�b ¼ 0,
for which we have exactly #S ¼ p�1 options; hence

#ðS�SÞ ¼ ð#SÞ2�#Sþ 1 ¼ ðp�1Þ2�ðp�1Þ þ 1 ¼ #G�2#Sþ 1 (3.6)

since #G ¼ pðp�1Þ: Clearly we have from (3.6) that

8 L. BOPPRÉ NIEHUES ET AL.



��� X
y 62S�S

uðyÞ
��� � #G�#ðS�SÞ ¼ 2#S�1: (3.7)

Combining (3.4), (3.5), and (3.7) we have���X
a2S

uðaÞ
���2 � 3#S�2,

which concludes the proof. w

The following classical result is only included here for the sake of com-
pleteness. log is always the natural logarithm in this paper.

Lemma 3.3. Let n and N be positive integers with 1 � N<n. Then, for any
integer h X

0�a<n

���� X
h�x<Nþh

exp ð2piax=nÞ
����<5n log n:

Proof. By factoring out exp ð2piah=nÞ, of absolute value 1, in the inner
sum, we may assume without loss of generality that h¼ 0.
The contribution of a¼ 0 to the inner sum is precisely N< n. For 1 �

a<n, the inner sum is a geometric sum with ratio q ¼ exp ð2pia=nÞ 6¼ 1,
so that

X
0�x<N

exp ð2piax=nÞ
�����

����� ¼ qN�1
q� 1

����
���� � 2

jq� 1j :

We have

jq�1j ¼ j exp ð2pia=nÞ�1j ¼ j exp ðpia=nÞ� exp ð�pia=nÞj
¼ 2j sin ðpa=nÞj:

Then

j sin ðpa=nÞj ¼ j sin ðpða�nÞ=nÞj � 2minfa, n�ag
n

because sin ðaÞ � 2a=p for 0 � a � p=2: ThereforeX
0�a<n

��� X
0�x<N

exp ð2piax=nÞ
��� � N þ

X
0<a<n

n
minfa, n� ag

� N þ 2n
X

1�a�n=2

1
a
:
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This together with the harmonic inequalityX
1�a�n=2

1
a
<1þ log ðnÞ,

which holds for any integer n � 2, implies the claim. w

Theorem 3.1. Let S ¼ fðgx, xÞ : x 2 Zp�1g. For any box B ¼ ½hþ 1::hþ
N� � ½kþ 1::kþM� 	 Zp � Zp�1 we have

#ðS \ BÞ � #B
p

����
���� � 50p1=2 log 2p:

Proof. By the orthogonality of characters and separating the contribution of
the trivial character u0 ¼ 1, we have

#ðS \ BÞ ¼ 1
pðp� 1Þ

X
u

X
a2S

X
b2B

uða�bÞ

¼ #B
p
þ 1
pðp� 1Þ

X
u 6¼u0

X
a2S

X
b2B

uða�bÞ:

Thus

#ðS \ BÞ� #B
p

����
���� ¼ 1

pðp� 1Þ
X
u6¼u0

X
a2S

X
b2B

uða�bÞ
�����

�����
� 1

pðp� 1Þ
X
u 6¼u0

X
a2S

uðaÞ
�����

�����
X
b2B

uðbÞ
�����

�����
� 1

pðp� 1Þ max
u 6¼u0

X
a2S

uðaÞ
�����

�����
 ! X

u6¼u0

X
b2B

uðbÞ
�����

�����:
(3.8)

The characters of G act as follows:

uððx, yÞÞ ¼ exp 2pi
sx
p
þ ty
p� 1

� �� �
, for some ðs, tÞ 2 G:

Hence we have

X
u6¼u0

X
b2B

uðbÞ
�����

����� �
X
0�s<p

X
h<x�hþN

exp ð2pisx=pÞ
�����

�����
 !

�
X

0�t<p�1

X
k<y�kþM

exp ð2pity=ðp�1ÞÞ
������

������
0
@

1
A,

which implies, by Lemma 3.3, that
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X
u 6¼u0

X
b2B

uðbÞ
�����

�����<25pðp�1Þ log 2p: (3.9)

By Lemma 3.2,

max
u 6¼u0

X
a2S

uðaÞ
�����

�����<
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðp�1Þ

p
,

which combined with (3.9) in (3.8) concludes the proof. w

One can show, with a bit more of work, see Cilleruelo and
Zumalac�arregui (2017), that in fact

#ðS \ BÞ � #B
p

����
���� 2 Oðp1=2 log 2

þð#B � p�3=2ÞÞ,

where log þðxÞ ¼ maxf log ðxÞ, 1g for x 2 R
þ: The implied asymptotics are

for growing p. In particular, for #B asymtotically larger than p3=2 log p,
then #ðS \ BÞ
#B=p: In Cilleruelo and Zumalac�arregui (2017) such a result
was obtained for a much larger family of dense Sidon sets.
As mentioned in the Introduction, Cobeli, Vâjâitu, and Zaharescu (2002)

study a similar question. Besides using a box as in Theorem 3.1, they allow
the further constraint that uxþ vgx<t for a parameter t; our result corre-
sponds to the special case t¼ p. They exhibit an explicit and easily calcu-
lated function that approximates the distribution considered with an error
of Oðp1=2 log 3pÞ: Theorem 3.1 improves this in two directions: the error
term is only p1=2 log 2p and the estimate is explicit with the constant 50—
which can presumably be improved. For the distribution of x�gx (Cobeli,
Vâjâitu, and Zaharescu 2002), provide an explicit estimate with error pro-
portional to p1=2 log 3p:

4. Ideas for future work

We have shown, both experimentally and theoretically, some randomness
properties of the ElGamal function over G ¼ Z

�
p for a prime p. In particu-

lar, our upper bound of 50p1=2 log 2p on the distance of this function from
equidistribution is new. Many questions along these lines remain open:

� stronger results, perhaps even pseudorandomness,
� other groups for G, for example, elliptic curves,
� similar questions about the Schnorr function, where G is a “small” sub-

group of a “large” group Zp:
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