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1. Introduction

The composition of two polynomials g, h ∈ F [x] over a field F is denoted as f = g ◦ h = g(h), and 
then (g, h) is a decomposition of f . If g and h have degree at least 2, then f is decomposable and g
and h are left and right components of f , respectively.

Since the foundational work of Ritt, Fatou, and Julia in the 1920s on compositions over C, a sub-
stantial body of work has been concerned with structural properties (e.g., Fried and MacRae (1969), 
Dorey and Whaples (1974), Schinzel (1982, 2000), Zannier (1993)), with algorithmic questions (e.g., 
Barton and Zippel (1985), Kozen and Landau (1989)), and more recently with enumeration, exact and 
approximate (e.g., Giesbrecht (1988), Blankertz et al. (2013), von zur Gathen (2014), Ziegler (2015, 
2016)). A fundamental dichotomy is between the tame case, where the characteristic p of F does 
not divide deg g , see von zur Gathen (1990a), and the wild case, where p divides deg g , see von zur 
Gathen (1990b).

Zippel (1991) suggests that the block decompositions of Landau and Miller (1985) for determining 
subfields of algebraic number fields can be applied to decomposing rational functions even in the 
wild case. Blankertz (2014) proves this formally and shows that this idea can be used to compute all 
decompositions of a polynomial with an indecomposable right component. Giesbrecht (1998) provides 
fast algorithms for the decomposition of additive (or linearized) polynomials, where all exponents are 
powers of p. Subsequent improvements in the cost of factorization and basic operations have been 
made in Caruso and Le Borgne (2017, 2018). All these algorithms use time polynomial in the input 
degree.

We consider the following counting problem: given f ∈ F [x] and a divisor d of its degree, how 
many (g, h) are there with f = g ◦ h and deg g = d? Under a suitable normalization, the answer in 
the tame case is simple: at most one. However, we address this question for additive polynomials, 
in some sense an “extremely wild” case, and determine both the structure and the number of such 
decompositions. This involves three steps:

• a bijective correspondence between decompositions of an additive polynomial f and Frobenius-
invariant subspaces of its root space V f in an algebraic closure of F (Section 2),

• a description of the A-invariant subspaces of an F -vector space for a matrix A ∈ F n×n in rational 
Jordan form (Section 3), and

• an efficient algorithm to compute the rational Jordan form of the Frobenius automorphism on V f
(Section 4). Its runtime is polynomial in logp(deg f ).

A combinatorial result of Fripertinger (2011) counts the relevant Frobenius-invariant subspaces of 
V f and thus our decompositions (Subsection 3.1). We also count the number of maximal chains 
of Frobenius-invariant subspaces and thus the complete decompositions. Our algorithm deals with 
squarefree polynomials, and we give a reduction for the general case (Subsection 2.2).

Some of the results in the present paper are described in an Extended Abstract (von zur Gathen et 
al., 2010). Versions of the present paper are available at https://arxiv.org /abs /1005 .1087 and https://
arxiv.org /abs /1912 .00212. Implementations of all algorithms in SageMath are available at https://
github .com /zieglerk /polynomial _decomposition.

2. Additive polynomials and vector spaces

Additive (or linearized) polynomials have a rich mathematical structure. Introduced by Ore (1933), 
they play an important role in the theory of finite and function fields and have found many ap-
plications in coding theory and cryptography. See Lidl and Niederreiter (1997, Section 3.4) for an 
introduction and survey. In this section, we establish connections between components of additive 
polynomials, subspaces of root spaces, and factors of so-called projective polynomials.

We focus on additive polynomials over finite fields F, though some of these results hold more 
generally for any field of characteristic p > 0. Let r be a power of p and let

https://arxiv.org/abs/1005.1087
https://arxiv.org/abs/1912.00212
https://arxiv.org/abs/1912.00212
https://github.com/zieglerk/polynomial_decomposition
https://github.com/zieglerk/polynomial_decomposition
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F[x; r] =
⎧⎨⎩ ∑

0≤i≤n

ai x
ri : n ∈Z≥0, a0, . . . ,an ∈ F

⎫⎬⎭
be the set of r-additive (or r-linearized) polynomials over F. For F = Fr , we fix an algebraic closure 
F ⊇ Fr . Then these are the polynomials f such that f (aα + bβ) = af (α) + bf (β) for any a, b ∈ Fr

and α, β ∈ F. The r-additive polynomials form a non-commutative ring under the usual addition and 
composition. It is a principal left (and right) ideal ring with a left (and right) Euclidean algorithm; see 
Ore (1933, Chapter 1, Theorem 1). For f , h ∈ F[x; r] , we find

h is a factor of f ⇐⇒ h is a right component of f (2.1)

after comparing division with remainder of f by h (in F[x]) and decomposition with remainder of f
by h (in F[x; r]). All components of an r-additive polynomial are p-additive, see Dorey and Whaples 
(1974, Theorem 4) and Giesbrecht (1988, Theorem 3.3).

An additive polynomial is squarefree if its derivative is nonzero, meaning that its linear coefficient 
a0 is nonzero. To understand the decomposition behavior of additive polynomials, it is sufficient to 
restrict ourselves to monic squarefree elements of F[x; r]. The general (monic non-squarefree) case is 
discussed in Subsection 2.2. For f ∈ F[x; r] with deg f = rn , we call n the exponent of f , denote it by 
expn f , and write for n ≥ 0

F[x; r]n = { f ∈ F[x; r] : f is monic squarefree with exponent n} .

For f ∈ F[x; r]n , the set V f of all roots of f in an algebraic closure F of F forms an Fr -vector space 
of dimension n. From now on, we assume q to be a power of r, and let F = Fq be a finite field with q
elements. Then V f is invariant under the qth power Frobenius automorphism σq , since for α ∈ F with 
f (α) = 0 we have f (σq(α)) = f (αq) = f (α)q = 0, thus σq(V f ) ⊆ V f , and σq is injective. For n ≥ 0, 
we define

L[σq;Fr]n =
{

n-dimensional σq-invariant Fr-linear subspaces of Fq

}
,

ψn : Fq[x; r]n → L[σq;Fr]n,

f �→ V f = {α ∈ F : f (α) = 0}. (2.2)

Conversely, for any n-dimensional Fr -vector space V ⊆ F, the lowest degree monic polynomial 
f V = ∏

α∈V (x − α) ∈ F[x] with V as its roots is a squarefree r-additive polynomial of exponent n, see 
Ore (1933, Theorem 8). If V is invariant under σq , then f V ∈ Fq[x; r]n . For n ≥ 0, we define

ϕn :
L[σq;Fr]n → Fq[x; r]n,

V �→ f V =
∏
α∈V

(x − α). (2.3)

Ore (1933, Chapter 1, §§ 3–4) gives a correspondence between monic squarefree p-additive poly-
nomials and Fp -vector spaces which generalizes as follows.

Proposition 2.4. For r a power of a prime p, q a power of r, and n ≥ 0, the maps ψn and ϕn are inverse 
bijections.

2.1. Right components and invariant subspaces

The following refinement of Proposition 2.4 is a cornerstone of this paper. It provides a bijection 
between right components of a monic original f ∈ Fq[x; r]n and σq-invariant subspaces of its root 
space V f ∈ L[σq; Fr]n . The latter are analyzed with methods from linear algebra in Section 3. Those 
insights are then reflected back to questions about decompositions, providing results that seem hard 
to obtain directly.
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For n ≥ d ≥ 0, f ∈ Fq[x; r]n , and V ∈ L[σq; Fr]n , we define

Hd( f ) = Hq,r,d( f ) = {
right components h ∈ Fq[x; r]d of f

} ⊆ Fq[x; r]d,

Ld(V ) = Lq,r,d(V ) = {d-dimensional σq-invariant Fr-linear subspaces of V }
⊆ L[σq;Fr]d,

where we omit q and r from the notation when they are clear from the context. We also set 
Hq,r,d( f ) = Lq,r,d(V ) =∅ for d < 0.

Proposition 2.5. Let n ≥ d ≥ 0, r be a power of a prime p, q a power of r, and f ∈ Fq[x; r]n. Then the restric-
tions of ψd and ϕd are inverse bijections between Hq,r,d( f ) and Lq,r,d(V f ).

Proof. For h ∈ Hd( f ), we have h | f by (2.1), and thus Vh ⊆ V f . Since h ∈ Fq[x; r]d , we have 
dim Vh = d and Vh ∈ Ld(V f ). Conversely, for W ∈ Ld( f ), we have W ⊆ V f and f W is a squarefree 
divisor of f with expn f W = d. From (2.1), we have f W ∈ Hd( f ). Thus, ψd(ϕd(Ld( f ))) ⊆ Ld( f ) and 
ϕd(ψd(Hd( f ))) ⊆ Hd( f ). Since both sets are finite and both maps are injective, we have equalities 
and the claim follows. �

Thus, under the conditions of Proposition 2.5, we have for h ∈ Fq[x; r]d

h | f ⇐⇒ Vh ⊆ V f ⇐⇒ h ∈ Hd( f ), (2.6)

as an extension of (2.1).

2.2. General additive polynomials

We generalize Proposition 2.5 from squarefree to all monic additive polynomials. We can write any
monic f̄ ∈ F[x; r] as g ◦ xrm

with unique m ≥ 0 and unique monic squarefree g ∈ F[x; r] . Then

f̄ = g ◦ xrm = xrm ◦ f (2.7)

with unique monic squarefree f ∈ F[x; r] and the coefficients of f are the rmth roots of the coeffi-
cients of g , see Giesbrecht (1988, Section 3). Composing an additive polynomial with xrm

from the 
left leaves the root space invariant and we have

V f̄ = V xrm ◦ f = V f .

We now relate the right components of f̄ to the right components of f .

Proposition 2.8. Let m, n ≥ 0, m + n ≥ d ≥ 0, r be a power of a prime p and q a power of r, 0 ≤ d ≤ m + n, 
and f ∈ Fq[x; r]n. For monic f̄ = xrm ◦ f ∈ Fq[x; r] with exponent m + n, we have a bijection between any 
two of the following three sets:

(i) {monic right components h̄ ∈ Fq[x; r] of f̄ with exponent d},
(ii) the union of all Hi( f ) for d − m ≤ i ≤ d, and

(iii) the union of all Li(V f ) for d − m ≤ i ≤ d.

Proof. We begin with a bijection between (i) and (ii). Following (2.7), we can write every h̄ in (i)
as xrd−i ◦ h with unique i satisfying d − m ≤ i ≤ d and unique monic squarefree h ∈ Fq[x; r]i . Then 
Vh ⊆ V f̄ = V f and h ∈ Hi( f ) by (2.6). Conversely, let d − m ≤ i ≤ d and h ∈ Hi( f ). Then f = g ◦ h for 

some g ∈ Fq[x; r]n−i and f̄ = xrm−d+i ◦ g̃ ◦ xrd−i ◦ h, where the coefficients of g̃ are the rd−i th roots of 
the coefficients of g . Thus h̄ = xrd−i ◦ h is a monic right component of f̄ with exponent d. Together 
this yields a one-to-one correspondence between (i) and (ii).

Proposition 2.5 provides a bijection between (ii) and (iii). �



JID:YJSCO AID:2027 /FLA [m1G; v1.287; Prn:26/06/2020; 15:36] P.5 (1-20)

J. von zur Gathen et al. / Journal of Symbolic Computation ••• (••••) •••–••• 5
We note that for d > n, all three sets are empty.

2.3. Projective and subadditive polynomials

As an aside, we exhibit two further sets of polynomials that are in bijective correspondence with 
Hd( f ); this will not be used beyond this subsection, but illustrates the wide range of applications. 
Let f = ∑

0≤i≤n ai xri ∈ F [x; r] and t be a positive divisor of r − 1. We have f = x · (πt( f ) ◦ xt) for 
πt( f ) = ∑

0≤i≤n ai x(ri−1)/t . Abhyankar (1997) introduced the projective polynomials

πr−1(xrn + a1xr + a0x) = x(rn−1)/(r−1) + a1x + a0, (2.9)

which may have, over function fields of positive characteristic, nice Galois groups such as projective 
general or projective special linear groups. Projective polynomials appear naturally in coding theory 
(e.g., Helleseth et al. (2008), Zeng et al. (2008)) and the study of difference sets (e.g., Dillon (2002), 
Bluher (2003)). They can be used to construct strong Davenport pairs explicitly (Bluher, 2004a) and 
determine whether a quartic power series is actually hyperquadratic (Bluher and Lasjaunias, 2006). 
The linear shifts of (2.9) are closely related to group actions on irreducible polynomials over Fq

(Stichtenoth and Topuzoğlu, 2012). The cardinality of the value set of a (possibly non-additive) poly-
nomial f ∈ Fq[x] is determined by the maximal s, t such that f = xs · ( f̄ ◦ xt) for some f̄ ∈ Fq[x]
(Akbary et al., 2009). Bluher (2004b) shows that (2.9) has exactly 0, 1, 2, or r + 1 roots in Fq for q a 
power of r. Helleseth and Kholosha (2010) count the roots for q and r independent powers of 2.

The polynomial

ρt( f ) = x · (xt ◦ πt( f )) = x · (πt( f ))t

is called (r, t)-subadditive (or simply subadditive). We have ρt( f ) ◦ xt = xt ◦ f and in particular 
ρ1( f ) = f . Subadditive polynomials were introduced by Cohen (1990) to study their role as per-
mutation polynomials. Henderson and Matthews (1999) connect their decomposition behavior to that 
of additive polynomials and provide the bijection between (i) and (iii) in the following proposition. 
Coulter et al. (2004) use this connection to apply Odoni’s (1999) counting formula for p-additive 
polynomials and Giesbrecht’s (1998) decomposition algorithm for additive polynomials to subadditive 
polynomials.

Proposition 2.10. Let n ≥ d ≥ 0, r be a power of a prime p, q a power of r, t a positive divisor of r − 1, and 
f ∈ Fq[x; r]n. Then we have bijections between any two of the following three sets.

(i) Hd( f ),
(ii) the set of monic factors of πt( f ) that are of the form πt(h) for some h ∈ F [x; r]d, and

(iii) the set of monic (r, t)-subadditive right components of ρt( f ) of degree rd.

In particular, the maps πt and ρt are bijections from (i) to (ii) and to (iii), respectively.

Proof. For the bijection between (i) and (ii), it is sufficient to show that the following statements are 
equivalent for h ∈ Fq[x; r]d:

• h is a right component of f ;
• h = x · (πt(h) ◦ xt) is a factor of f = x · (πt( f ) ◦ xt);
• πt(h) is a factor of πt( f ).

The first two items are equivalent by (2.1), and so are the last two since πt (h)πt( f ) is coprime to x
for squarefree h and f .

The bijection between (i) and (iii) is due to Henderson and Matthews (1999, Theorem 4.1). �



JID:YJSCO AID:2027 /FLA [m1G; v1.287; Prn:26/06/2020; 15:36] P.6 (1-20)

6 J. von zur Gathen et al. / Journal of Symbolic Computation ••• (••••) •••–•••
Irreducible factors in (ii) correspond to components in (i) and (iii) that are indecomposable over 
Fq[x; r] and ρt(Fq[x; r]), respectively. For d = 1 and t = r − 1, this yields the following criterion by 
Ore.

Fact 2.11 (Ore 1933, Theorem 3). For n, r, and F as in Proposition 2.10, f ∈ Fq[x; r]n and a ∈ F× , we have

xr − ax ∈ H1( f ) ⇐⇒ πr−1( f )(a) = 0.

3. The rational Jordan form

The usual Jordan (normal) form of a matrix contains the eigenvalues. It is unique up to permuta-
tions of the Jordan blocks. The rational Jordan form of a matrix is a generalization, with eigenvalues in 
a proper extension of the ground field being represented by the companion matrix of their minimal 
polynomial. Forms akin to the rational Jordan form were investigated already by Frobenius (1911) and 
the underlying decomposition of the vector space is described by Gantmacher (1959, Chapter VII). A 
detailed discussion of rational normal forms can be found in Lüneburg (1987, Chapter 6).

Let A be a square matrix with entries in F. We factor the minimal polynomial of A over F com-
pletely and obtain minpoly(A) = uk1

1 · · · ukt
t ∈ F[y] with t pairwise distinct monic irreducible ui ∈ F[y]

and ki > 0 for 1 ≤ i ≤ t . We call ui an eigenfactor of A and ker(ui(A)) its eigenspace.
For any u = ∑

0≤i≤m ai yi ∈ F[y] with am = 1, we have the companion matrix

Cu =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 −a0

1
. . . −a1

0
. . .

. . .
...

. . .
. . . 0

...

0 1 −am−1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
∈ Fm×m

with minpoly(Cu) = u. The rational Jordan block of order 	 > 0 for u is

J (	)
u =

⎛⎜⎜⎜⎜⎝
Cu Im

Cu
. . .

. . . Im

Cu

⎞⎟⎟⎟⎟⎠ ∈ F(	m)×(	m),

where Im is the m × m identity matrix. For linear u = y − a ∈ F[y], we have Cu = (a) and the rational 
Jordan blocks are the Jordan blocks of the usual Jordan form. The arrangement of rational Jordan blocks 
along the main diagonal gives a rational Jordan form.

Definition 3.1. A rational Jordan matrix over F is a matrix of the shape

A = diag( J (	11)
u1 , . . . , J

(	1s1 )

u1 , . . . , J (	t1)
ut , . . . , J

(	tst )
ut ) (3.2)

with t ≥ 1, pairwise distinct monic irreducible u1, . . . , ut ∈ F[y], si ≥ 1, and 	i1 ≥ 	i2 ≥ · · · ≥ 	isi for 
1 ≤ i ≤ t .

Giesbrecht (1995, Lemma 8.1) shows that minpoly( J (	)
u ) = u	 , and thus minpoly(A) = u	i1

1 · · · u	t1
t . 

Every matrix over F is similar to a rational Jordan matrix over F, see, e.g., Giesbrecht (1995, Theo-
rem 8.3), which we call the rational Jordan form of the matrix. The eigenvalues and their multiplicities 
are preserved by this similarity transformation and the rational Jordan form is unique up to per-
mutation of the rational Jordan blocks. Giesbrecht (1995, Corollary 8.6) shows how to transform an 
n × n matrix over F into rational Jordan form using O ∼(nω + n log r) field operations, where ω is 
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the exponent of square matrix multiplication over F. This matches the lower bound �(nω) for this 
problem up to polylogarithmic factors. The “textbook” method gives ω ≤ 3 and Le Gall (2014) shows 
ω < 2.3728639.

We extract the purely combinatorial data from a rational Jordan form A ∈ Fn×n as in (3.2). For 
1 ≤ i ≤ t and 1 ≤ j ≤ 	i1, let λi j denote the number of rational Jordan blocks of order j for the 
eigenfactor ui . The formulae for λi j over the algebraic closure, see, e.g., Gantmacher (1959, p. 155), 
generalize as

λi j · deg ui = rk(u j−1
i (A)) − 2rk(u j

i (A)) + rk(u j+1
i (A))

= 2nul(u j
i (A)) − nul(u j−1

i (A)) − nul(u j+1
i (A)), (3.3)

Table 3.4 All similarity classes of rational Jordan forms A ∈ F3×3, where a, b, c ∈ F are pairwise distinct eigenvalues and the 
eigenfactors y2 − b1 y − b0 and y3 − c2 y2 − c1 y − c0 are irreducible over F.
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Table 3.4 (continued)

where u0
i (A) = In and nulB = n − rk B is the nullity of B for any B ∈ Fn×n . The vector λ(ui) =

(deg ui; λi1, λi2, . . . , λi	i1 ) of positive integers is the species of ui (in A). This abstracts away the ar-
rangement of the rational Jordan blocks as well as the actual factors ui . The multiset of all the species 
of eigenfactors in A is then called the species λ(A) of A. This notion was introduced by Kung (1981)
over the algebraic closure and generalized to finite fields by Fripertinger (2011).

Table 3.4 gives all similarity classes of rational Jordan forms A in F3×3 and their species. The 
notation 3 × (1; 1) indicates that the species (1; 1) occurs three times in the multiset. We also list, 
for every species, the lattice L(A) of A-invariant subspaces in a 3-dimensional F-vector space, the 
number #L1(A) of 1-dimensional A-invariant subspaces, and the number #chains(A) of maximal A-
invariant subspace chains (3.6).

In the next subsection, we derive the latter from the species. In Section 4, we show how to 
compute the rational Jordan form of the Frobenius automorphism on the root space of an additive 
polynomial without the (costly) computation of a basis.
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3.1. The number of invariant subspaces

Let r be a power of the prime p and A ∈ Fn×n
r be a rational Jordan matrix as in (3.2) with 

minpoly(A) = uk1
1 · · · ukt

t , where u1, . . . , ut ∈ Fr[y] are pairwise distinct monic irreducible, and ki > 0
for 1 ≤ i ≤ t . A operates on every n-dimensional Fr -vector space V and we have the corresponding 
primary vector space decomposition

V = V 1 ⊕ V 2 ⊕ · · · ⊕ Vt, (3.5)

where V i = ker(uki
i (A)) is the generalized eigenspace of ui for 1 ≤ i ≤ t .

We ask two counting questions, motivated by the connection to decomposition.

(i) What is the number #Ld(A) of d-dimensional A-invariant subspaces of V for a given d?
(ii) What is the number #chains(A) of maximal chains

{0} = U0 � U1 � · · · � Ue = V (3.6)

of A-invariant subspaces U j for 0 ≤ j ≤ e, where e is the Krull dimension of V ?

The A-invariant subspaces of V constitute the complete lattice L(A) with minimum {0} and max-
imum V . In this lattice’s Hasse diagrams, question (i) asks for the number of nodes of a given 
dimension and question (ii) asks for the number of paths from the minimum to the maximum.

First, we discuss question (i). Let g(A) = ∑
0≤d≤n gdzd ∈ Z≥0[z] be the generating function for the 

number gd = #Ld(A) of d-dimensional A-invariant subspaces of V . The A-invariant subspace lattice 
L(A) is self-dual, see Brickman and Fillmore (1967, Theorem 3), and thus the generating function is 
symmetric with gd = gn−d for all 0 ≤ d ≤ n.

Let Ai denote the restriction of A to V i as in (3.5), and L(Ai) and g(Ai) be the lattice and 
generating function of the Ai -invariant subspaces of V i , respectively. Brickman and Fillmore (1967, 
Theorem 1) show that

L(A) =
∏

1≤i≤t

L(Ai) and thus g(A) =
∏

1≤i≤t

g(Ai). (3.7)

Thus it suffices to study A-primary vector spaces, where minpoly(A) = uk is the kth power of an ir-
reducible polynomial u of some degree m. If an n-dimensional A-primary vector space has species 
λ(A) = {(m, λ1, λ2, . . . , λk)}, then there is a rational Jordan form B ∈ Fn/m×n/m

r with species λ(B) =
{(1, λ1, λ2, . . . , λk)} and

L(A) ∼= L(B) and g(A) = g(B) ◦ zm. (3.8)

It is therefore enough to study A-primary vector spaces, where minpoly(A) is the power of a linear 
polynomial. In this situation, we now compute g1(A).

From the theory of q-series, we use the q-bracket (also q-number)

[n]q = qn − 1

q − 1

of an integer n.

Lemma 3.9. Let A ∈ Fn×n
r be a rational Jordan form as in (3.2) with minpoly(A) = uk for some linear 

u ∈ Fr[y], k > 0, and species λ(A) = {(1; λ1, λ2, . . . , λk)}. Then the number of A-invariant lines in an n-
dimensional Fr -vector space V is

g1(A) = [s]r, (3.10)

where s = ∑
1≤ j≤k λ j .
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Proof. For v ∈ V {0}, the following are equivalent for the line 〈v〉:

• 〈v〉 is A-invariant.
• 〈v〉 is in the eigenspace of the linear eigenfactor u (a factor of A’s minimal polynomial).

For a linear eigenfactor u, the eigenspace has dimension dim(ker(u(A))) = ∑
1≤ j≤k λ j = s and thus 

contains (rs − 1)/(r − 1) lines. �
With g0 = 1, (3.7), and (3.8), we now compute g1 for a rational Jordan form A with arbitrary 

minimal polynomial.

Proposition 3.11. Let A ∈ Fn×n
r be in rational Jordan form as in (3.2) with species λ(A) = {(deg ui; λi1, λi2,

. . . , λi	i1) : 1 ≤ i ≤ t}. Then the number of A-invariant lines in Fn
r is

g1(A) =
∑

1≤i≤t
deg ui=1

[si]r, (3.12)

where si = ∑
1≤ j≤	i1

λi j for 1 ≤ i ≤ t.

This answers question (i) for d = 1. For d > 1, the number gd of d-dimensional A-invariant sub-
spaces can be derived from the species with the formulas of Fripertinger (2011). We make them 
available through the SageMath-package accompanying this paper.

For perspective, formula (3.12) allows us to determine exactly the possible values for the number 
of right components of an additive polynomial that have exponent 1. By Fact 2.11, this is equivalent 
to finding the possible number of roots of certain projective polynomials. Let

Mq,r,n,1 = {#H1( f ) : f ∈ Fq[x; r]n} (3.13)

be the set of possible numbers of right components of exponent 1 for monic squarefree r-additive 
polynomials of exponent n over Fq .

For a positive integer m, let 
m be the set of unordered partitions (multisets) π = {π1, . . . , πk} of 
m with positive integers πi and π1 + · · · + πk = m. For any partition π ∈ 
m , we define the r-bracket 
[π ]r = [π1]r + [π2]r + · · · + [πk]r . Then (3.12) yields the following theorem.

Theorem 3.14. Let Mn = Mq,r,n,1 be as in (3.13) and define

M̂0 = {0},
M̂i = M̂i−1 ∪ {[π ]r : π ∈ 
m}

for 1 ≤ i ≤ n. Then Mn ⊆ M̂n.

Generally, Mn = M̂q,r,n,1 for all but a few triples (q, r, n), especially over small fields Fq where not 
all possible (similarity classes of) Jordan forms may occur. As an example, for q = r = n = 2, we have 
merely two monic squarefree polynomials under consideration. That is simply not enough to cover all 
four cases in M̂2. A list of the first seven values follows.

M̂0 = {0},
M̂1 = M̂0 ∪ {[1]r} = {0,1},
M̂2 = M̂1 ∪ {2[1]r, [2]r} = {0,1,2, r + 1}, (consistent with Bluher (2004b))

M̂3 = M̂2 ∪ {3, [2]r + 1, [3]r}
= {0,1,2,3, r + 1, r + 2, r2 + r + 1},
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M̂4 = M̂3 ∪ {4, [2]r + 2,2[2]r, [3]r + 1, [4]r}
= {0,1,2,3,4, r + 1, r + 2, r + 3,2r + 2, r2 + r + 1, r2 + r + 2,

r3 + r2 + r + 1},
M̂5 = M̂4 ∪ {5, [2]r + 3,2[2]r + 1, [3]r + 2, [3]r + [2]r, [4]r + 1, [5]r}

= {0,1,2,3,4,5, r + 1, r + 2, r + 3, r + 4,2r + 2,2r + 3,

r2 + r + 1, r2 + r + 2, r2 + r + 3, r2 + 2r + 2,

r3 + r2 + r + 1, r3 + r2 + r + 2, r4 + r3 + r2 + r + 1},
M̂6 = M̂5 ∪ {6, [2]r + 4,2[2]r + 2,3[2]r, [3]r + 3, [3]r + [2]r + 1,2[3]r,

[4]r + 2, [4]r + [2]r, [5]r + 1, [6]r}
= {0,1,2,3,4,5,6, r + 1, r + 2, r + 3, r + 4, r + 5,2r + 2,2r + 3,2r + 4,3r + 3,

r2 + r + 1, r2 + r + 2, r2 + r + 3, r2 + r + 4, r2 + 2r + 2, r2 + 2r + 3,

2r2 + 2r + 2, r3 + r2 + r + 1, r3 + r2 + r + 2, r3 + r2 + r + 3,

r3 + r2 + 2r + 2, r4 + r3 + r2 + r + 1, r4 + r3 + r2 + r + 2,

r5 + r4 + r3 + r2 + r + 1}.
The size of M̂n equals 

∑
0≤k≤n p(k), where p(k) is the number of additive partitions of k. For n → ∞, 

p(n) grows exponentially as exp(π
√

2n/3)/(4n
√

3) (Hardy and Ramanujan, 1918), but is still surpris-
ingly small considering the generality of the polynomials involved.

Concerning question (ii), we recall that all maximal chains (3.6) have equal length by the Krull-
Schmidt Theorem. Let A ∈ Fn×n

r be in rational Jordan form on V and let #chains(A) denote the 
number of all maximal A-invariant chains (3.6). If the lattice is a grid, these are the binomial coeffi-
cients.

The number of A-invariant chains depends only on the species λ(A) and we write #chains(λ(A)) =
#chains(A). For every minimal nonzero A-invariant subspace U , there is a canonical bijection – given 
by /U and ⊕U – between the chains for V that start with U1 = U and chains for V /U . Thus, we 
have the recursion formula

#chains(λ(A)) =
∑

minimal, nonzero
A-invariant U ⊆ V

#chains(λ(A|V /U )), (3.15)

where A|V /U is A taken as a linear transformation on the quotient vector space V /U , of dimension 
n − dim(U ).

We now have two tasks.

• Find all minimal nonzero A-invariant U ⊂ V .
• Derive λ(A|V /U ) for each such U .

Every minimal nonzero A-invariant subspace U ⊆ V is contained in the eigenspace V i =
ker(uki

i (A)) for a unique i ≤ t and we can partition the formula (3.15) in the light of the vector 
space decomposition (3.5) as

#chains(λ(A)) =
∑

eigenfactors ui

∑
minimal, nonzero

A-invariant U ⊆ V i

#chains(λ(A|V /U )). (3.16)

As for question (i) above, we make two simplifications. First, it is sufficient to study A where 
minpoly(A) = uk1

1 · · · ukt
t is the product of linear ui by (3.7) and (3.8). Second, we will deal only with 

primary vector spaces, i.e. a single eigenfactor ui , and thus only the inner sum in (3.16).
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Example 3.17. We have the following base case. If A = ( J (	)
u ) consists only of a single Jordan block, 

i.e. λ = {(1; 0, . . . , 0, λ	 = 1)}, we have a unique maximal chain of A-invariant subspaces

0 � 〈e1〉 � 〈e1, e2〉 � · · ·� V

and #chains(A) = 1. For completeness, we note that U = 〈e1〉 is the unique minimal nonzero A-
invariant subspace, A|V /U = ( J (	−1)

u ), and λ(A|V /U ) = {(1; 0, . . . , 0, λ	−1 = 1)}.

For λ(A) = {(1; λ1, . . . , λk)}, we already know that the number of minimal nonzero A-invariant 
subspaces is [∑1≤i≤k λi]r from (3.8) and (3.10). We need to scrutinize them further. For

A = diag( J (	1)
u , J (	2)

u , . . . , J (	s)
u )

with u = y − a, 	1 ≥ · · · ≥ 	s , minpoly(A) = u	1 , s = ∑
λ j , and λ j′ = #{	 j = j′ : 1 ≤ j ≤ s}, we re-index 

the basis of V as

e11, . . . , e1	1 , e21, . . . , e2	2 , . . . , es1, . . . , es	s . (3.18)

The d-dimensional eigenspace is ker u(A) = 〈e11, e21, . . . , es1〉 and contains [s]r lines, that is, 1-
dimensional subspaces, and these are the only minimal non-zero subspaces.

Let U be an A-invariant subspace. We define its support supp(U ) (in the basis (3.18)) as the set of 
all base vectors for which ei j · U �= 0. For a minimal, that is, 1-dimensional, U , we have j = 1 for all 
ei j in its support, since these are the base vectors that span the eigenspace.

The support links the subspace U to the Jordan blocks that act non-trivially on U . Of particular 
interest are the Jordan blocks of minimal size that act non-trivially on U . We define

depth(U ) = min{	 j : e j1 ∈ supp(U )}.
Note that there may be several Jordan blocks of size depth(U ) acting on the support of U .

Example 3.19. For A =
⎛⎝a 1

a
a

⎞⎠, we have 〈e1〉 of depth 2 and 〈e1 + αe3〉 for α ∈ Fr of depth 1. 

And these are all r + 1 nonzero minimal A-invariant subspaces.

To make (3.15) applicable, we now determine the number of minimal nonzero A-invariant sub-
spaces of depth j for 1 ≤ j ≤ k. Let λ = (1; λ1, . . . , λk) be the species of the eigenvalue under consid-
eration. The possible values for the depth of a nonzero minimal A-invariant subspace range from 1 to 
k, where k = max 	 j and the following counting formula follows easily by inclusion-exclusion.

Proposition 3.20. Let A be primary on V , with species λ(A) = {(1; λ1, . . . , λk)}.

(i) The number of A-invariant subspaces with depth i is

#depth(λ, i) = rλi+1+···+λk [λi]r .

(ii) Let U be an A-invariant subspace with depth i. Then A is well-defined on V /U and has species

λ(A|V /U ) = λî =
{

(1;λ1 − 1, λ2, . . . , λk) if i = 1,

(1;λ1, . . . , λi−1 + 1, λi − 1, . . . , λk) otherwise.

(iii) The number of maximal A-invariant chains is given by the recursion

#chains({(1;1)}) = 1,

#chains(λ(A)) =
∑

1≤ j≤k

#depth(λ, j) · #chains(λ ĵ).
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Proof. (i) For i = k, we have [λk]r eigenspaces of depth k. For i < k, we have [λi + λi+1 + · · · + λk]r

eigenspaces of depth at least i and we find by direct computation

#depth(λ, i) = [λi + λi+1 + · · · + λk]r − [λi+1 + · · · + λk]r

= rλi+λi+1+···+λk − 1

r − 1
− rλi+1+···+λk − 1

r − 1

= rλi+1+···+λk · [λi]r,

as claimed.
(ii) We dealt with the base case in Example 3.17.

Without loss of generality, we assume that e11 is in the support of U and that the corre-
sponding first Jordan block has size equal to the depth of U . We have

U = 〈e11 + α2e21 + · · · + αses1〉
for some α j ∈ Fr and α j �= 0 only if the corresponding Jordan block is larger than the first one. 
We turn (3.18) into the following basis for V /U :

e12 + α2e22 + · · · + αses2 + U ,

e13 + α2e23 + · · · + αses3 + U ,

...

e1	1 + α2e2	1 + · · · + αses	1 + U ,

e21 + U , . . . , e2	2 + U ,

...

es1 + U , . . . , es	s + U .

In other words, we drop the projection of the first base vector (due to the linear dependence 
introduced by U ) and modify the base vectors for the first Jordan block. A direct computation 
shows that A|V /U is in rational Jordan form, its first Jordan block is equal to the first Jordan 
block of A reduced by size 1, and all other Jordan blocks “remained” unchanged.

(iii) This follows from (3.16) using (i) and (iii). �
In the general case of several eigenfactors we obtain #chains(A) by (3.16) using the formulae in 

Proposition 3.20 (iii) for each eigenfactor.

4. The Frobenius automorphism on the root space

In this section, we present an efficient algorithm to compute the rational Jordan form of the Frobe-
nius automorphism on the root space of a squarefree monic additive polynomial f . With the results 
of Subsection 3.1, this yields the number of right components of f of a given degree. The straightfor-
ward approach suffers from possibly exponential costs for the description of the root space V f , see 
Example 4.12.

The centre of the Ore ring Fq[x; r] will be a useful tool. For q a power of r, so that Fr ⊆ Fq , it 
equals

Fr[x;q] = { ∑
0≤i≤n

ai x
qi : n ∈ Z≥0, a0, . . . ,an ∈ Fr

} ⊆ Fq[x; r],

see, e.g., Giesbrecht (1998, Section 3). Every element f ∈ Fq[x; r] has a unique minimal central left 
component f ∗ ∈ Fr[x;q], the unique monic polynomial in Fr[x;q] of minimal degree such that f ∗ =
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g ◦ f for some nonzero g ∈ Fq[x; r]. For squarefree f , it is the monic generator of the largest two-
sided ideal I( f ) contained in the left ideal generated by f . The ideal I( f ) is then known as the bound
of f , see Jacobson (1943, page 83).

Fact 4.1 (Giesbrecht 1998, Lemma 4.2). Let r be a power of a prime p and q = rd. For f ∈ Fq[x; r] of expo-
nent n, we can find its minimal central left component f ∗ ∈ Fr[x;q] with O (n3dM(d) + n2d2M(d) log d) ⊆
O ∼(n3d2 + n2d3) operations in Fr , where M(d) is the number of operations to multiply two polynomials over 
Fr with degree at most d each.

The “schoolbook” method gives M(d) = O (d2) and Harvey and van der Hoeven (2019a) show 
M(d) = O (d log d 4log∗ d). The recent, as yet unpublished, preprint of Harvey and van der Hoeven 
(2019b) claims M(d) = O (d log d), which many consider to be the best achievable asymptotic bound.

Le Borgne (2012, Theorem II.3.2) gives an algorithm for f ∗ with O ∼(nωdω + n2d2 log r) operations 
in Fr , where d and n are as above and ω is an exponent of square matrix multiplication over Fr .

The centre Fr[x; q] is a commutative subring of Fq[x; r] and isomorphic to Fr[y] with the usual 
addition and multiplication via

τ :
Fr[x;q] → Fr[y],

f =
∑

0≤i≤n

ai x
qi �→ τ ( f ) =

∑
0≤i≤n

ai yi,

see McDonald (1974, pages 24–25). The isomorphic image Fr [y] is a unique factorization domain and 
factorizations in Fr[y] are in one-to-one correspondence with decompositions in Fr [x; q] into central 
components. The following main theorem shows the close relationship between the minimal central 
left component of an additive polynomial and the minimal polynomial of the Frobenius automorphism 
on its root space.

Theorem 4.2. Let r be a power of a prime p and q a power of r. Let f ∈ Fq[x; r]n be monic squarefree of 
exponent n with root space V f ⊆ Fq and minimal central left component f ∗ ∈ Fr[x; q]. Then the image 
τ ( f ∗) ∈ Fr[y] is the minimal polynomial of the qth power Frobenius automorphism σq on the Fr -vector 
space V f .

Proof. For a central g = ∑
0≤i≤m gi xqi ∈ Fr[x; q], we have τ (g) = ∑

0≤i≤m gi yi ∈ Fr[y] and (τ (g))×
(σq) = g , and the following are equivalent:

• g is a right or left component of f ;
• g(α) = 0 for all α ∈ V f ;
• (τ (g)(σq))(α) = 0 for all α ∈ V f .

The first two items are equivalent by (2.1) and the squarefreeness of f and since g is central. The last 
two items are equivalent since τ (g)(σq) = g .

Thus, g is a central left component of f if and only if τ (g) annihilates σq on V f . Since f ∗ and the 
minimal polynomial of σq are the unique monic polynomials of minimal degree with these properties, 
respectively, we have the claimed equality. �

It is useful to recall a little more about the ring Fq[x; r]. Ore (1933) shows that for any f , g ∈
Fq[x; r], there exists a unique monic h ∈ Fq[x; r] of maximal degree, called the greatest common right 
component (gcrc) of f and g , such that f = u ◦ h and g = v ◦ h for some u, v ∈ Fq[x; r]. Also, h =
gcrc( f , g) = gcd( f , g), and the roots of h are those in the intersection of the roots of f and g , in 
other words V gcrc( f ,g) = V f ∩ V g . In fact, there is an efficient Euclidean-like algorithm for computing 
the gcrc; see Ore (1933) and Giesbrecht (1998) for an analysis. The usual Euclidean algorithm for 
gcd( f , g) is insufficient, since the degrees of f and g may be exponential in their exponents.
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Fact 4.3 (Giesbrecht 1998, Lemma 2.1). Let r be a power of a prime p and q = rd. For f , g ∈ Fq[x; r] of exponent 
n, we can find gcrc( f , g) ∈ Fq[x; r] with O (n2M(d)d log d) ⊆ O ∼(n2d2) operations in Fr , where M(d) is as in 
Fact 4.1.

4.1. A fast algorithm for the rational Jordan form of σq on V f

We now determine the rational Jordan form of the Frobenius automorphism on the root space of 
an additive polynomial. We begin with a factorization of the minimal polynomial and then compute 
every eigenfactor’s species independently. The following proposition deals with the base case, where 
the minimal polynomial is the power of an irreducible polynomial.

Proposition 4.4. Let r be a power of a prime p, q a power of r, f ∈ Fq[x; r]n monic squarefree of exponent n
with minimal central left component f ∗ ∈ Fr[x; q], and σq the qth power Frobenius automorphism on V f . If 
τ ( f ∗) = uk for an irreducible u ∈Fr[y] and k > 0, then

τ−1(u j)) = u j(σq), (4.5)

ker(u j(σq)) = V gcrc( f ,τ−1(u j)), (4.6)∏
α∈ker(u j(σq))

(x − α) = gcrc( f , τ−1(u j)) (4.7)

for all j with 0 ≤ j ≤ k + 1, where u0(σq) is the identity on V f .

Proof. Let 0 ≤ j ≤ k + 1. If we write u j = ∑
i wi yi with all wi ∈ Fr , then τ−1(u j) = ∑

i wi xqi =
u j(σq), which is (4.5). The kernels of these two maps on V f form the same subset of V f , so that 
Vτ−1(u j) ∩ V f = V gcrc( f ,τ−1(u j)) . This shows (4.6).

Furthermore, the bijection ϕdim(ker(u j(σq))) from (2.3) maps the left and right hand sides of (4.6) to 
the left and right hand sides of (4.7), respectively. �
Corollary 4.8. In the notation and under the assumption of Proposition 4.4, let u be irreducible of degree m
and ν j = expn(gcrc( f , τ−1(u j))) for 0 ≤ j ≤ k + 1. Then the species of the rational Jordan form of σq on V f

is {(m; λ1, λ2, . . . , λk)}, where

λ j = (2ν j − ν j−1 − ν j+1)/m, (4.9)

for 1 ≤ j ≤ k.

Proof. For monic squarefree g ∈ Fq[x; r], we have expn g = dim V g due to the bijection (2.2). For 
0 ≤ j ≤ k + 1, gcrc( f , τ−1(u j)) is monic squarefree and thus

ν j = dim(V gcrc( f ,τ−1(u j))) = dim(ker(u j(σq))) = nul(u j(S))

by (4.6). The claim follows from (3.3). �
In the case of a minimal polynomial with arbitrary factorization, we treat every eigenfactor sepa-

rately with Corollary 4.8, see Giesbrecht (1998, Theorem 4.1). The result is Algorithm 4.10. It computes 
the rational Jordan form of the Frobenius automorphism on the root space of a given f ∈ Fq[x; r]n .

Theorem 4.11. Algorithm 4.10 works correctly as specified and takes an expected number of O ∼(n3d4) field 
operations in Fr .

Proof. The notation in the algorithm corresponds to that of the rational Jordan form (3.2) and Corol-
lary 4.8. In Step 1, we know from Theorem 4.2 that f ∗ is the minimal polynomial of S . Therefore all 
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Algorithm 4.10: RationalJordanForm

Input: r-additive monic squarefree f ∈ Fq[x; r]n of exponent n, where q = rd and r is a power of a prime p
Output: rational Jordan form S ∈ Fn×n

r as in (3.2) of the qth power Frobenius automorphism on V f

1 f ∗ ← minimal central left component of f

2 uk1
1 uk2

2 · · · ukt
t ← factorization of τ ( f ∗) into pairwise distinct monic irreducible ui ∈ Fr [y] with ki > 0 for 1 ≤ i ≤ t

3 S ←∅ // initialize “empty matrix”
4 for i ← 1 to t do

// determine the species of ui

5 for j ← 0 to ki + 1 do

6 h j ← gcrc( f , τ−1(u j
i ))

7 ν j ← expnh j // equal to nul(u j
i (S))

8 m ← degy ui

9 for j ← 1 to ki do
10 λ j ← (2ν j − ν j−1 − ν j+1)/m // employ (4.9)

11 S ← diag(S, J ( j)
ui

, . . . , J ( j)
ui︸ ︷︷ ︸

λ j -times

) // append Jordan blocks

12 return S

rational Jordan blocks correspond to factors of f ∗ (determined in Step 2) and we only need to figure 
out every eigenfactor’s species. By Giesbrecht (1998, Theorem 4.1), we can treat every eigenfactor sep-
arately (Steps 4–11) and align the resulting rational Jordan blocks along the main diagonal (Step 11, 
initialized in Step 3).

For every eigenfactor ui the first inner loop (Steps 5–7) determines ν j as defined in Corollary 4.8
for 0 ≤ j ≤ ki + 1. The second inner loop (Steps 9–11) derives the number λ j of rational Jordan 
blocks of order j for ui (Step 10) via formula (4.9) and extends S along its main diagonal accordingly 
(Step 11).

Doing this for all eigenfactors and all possible orders returns the specified output in Step 12.
We assume that the isomorphism τ and its inverse are free operations. If the polynomials are 

stored as vectors of coefficients, these operations merely change the way this information is inter-
preted. We also take for granted a free operation to determine the exponent of an additive and the 
degree of an “ordinary” polynomial in Steps 7 and 8, respectively. Finally, we neglect the (cheap) 
integer arithmetic in Step 10.

Step 1 uses O ∼(n3d2 + n2d3) field operations in Fr , see Fact 4.1. We have expn f ∗ ≤ dn and 
thus degy τ ( f ∗) ≤ n. The factorization in Step 2 can be done in random polynomial time with 
O ∼(n2 + n log r) field operations in Fr , see, e.g. von zur Gathen and Gerhard (2013, Corollary 14.30). 
The worst case occurs when τ ( f ∗) is the nth power of a linear eigenfactor u. The n + 2 powers of u
can be obtained with O ∼(n2) field operations in Fr . The additive polynomial τ−1(u j) has exponent dj
and each gcrc in Step 6 requires O ∼(max(n, dj)2d2) ⊆ O ∼(n2d4) field operations in Fr , see Step 4.3. 
The complete inner loop thus requires O ∼(n3d4) field operations which dominates the costs of the 
previous steps. �

Only the distinct-degree factorization in Step 2 requires randomization. But this granularity is nec-
essary for our approach as the following example shows. Let

A =
( a

a
a

b

)
, B =

( a
a

b
b

)
∈ F4×4

r ,

with distinct nonzero a, b ∈ Fr . Then A and B are two rational Jordan forms with distinct species 
{(1; 3), (1; 1)} and {2 × (1; 2)}, respectively, but equal minimal polynomial u = (y − a)(y − b). 
The single equal-degree factor has multiplicity 1 and yields only the information dim ker u(A) =
dim ker u(B) = 4, that is the sum of orders of blocks corresponding to eigenfactors of degree 1.

Caruso and Le Borgne (2017) give an algorithm for the species of the Frobenius operator on the 
n-dimensional module Fq[x; r]/(Fq[x; r] · f ), as in von zur Gathen et al. (2010), and count complete 
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f ∈ Fq[x; r]

V f ⊆ Fq

f ∗ ∈ Fr [x;q] ∼= Fr [y] � τ ( f ∗)

⎛⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎠ ∈ Fn×n
r

σq on V f

∗
gcrc( f , ·)

Fig. 4.13. Algorithm 4.10 computes the rational Jordan form of the Frobenius automorphism on the root space V f of f while 
avoiding the expensive computation (dashed) of and on the root space itself.

decompositions, as in Fripertinger (2011). Related counting problems are also considered in Le Borgne 
(2012).

The costs of Algorithm 4.10 are only polynomial in expn f and log q, despite the fact that the 
actual roots of f may lie in an extension of exponential degree over Fq as illustrated in the following 
example and Fig. 4.13 .

Example 4.12. Let q = r and f ∈ Fq[y] be primitive of degree n. Its additive q-associate τ−1( f ) fac-
tors into x and the irreducible τ−1( f )/x of degree qn − 1 over Fq , see Lidl and Niederreiter (1997, 
Theorem 3.63). Thus, the splitting field of the additive τ−1( f ) is an extension of Fq of degree qn − 1.

Together with the results of Subsection 3.1, we can now count the number of irreducible right 
components of degree r of any r-additive polynomial f ∈ Fq[x; r] of exponent n. This also yields 
a fast algorithm to compute the number of certain factors and right components of projective and 
subadditive polynomials as described in Subsection 2.3.

Example 4.14. Boucher and Ulmer (2014) build self-dual codes from factorizations of xrn − ax beating 
previously known minimal distances. Over F4[x; 2], they exhibit 3, 15, 90, and 543 complete decom-
positions for x22 + x, x24 + x, x26 + x, and x28 + x, respectively.

In this section, we assume the field size q to be a power of the parameter r. As in Bluher’s (2004b)
work, our methods go through for the general situation, where q = pd and r = pe are independent 
powers of the characteristic. Then Fq ∩ Fr = Fs for s = pgcd(d,e) and the centre of Fq[x; r] is Fs[x; t]
for t = plcm(d,e) .
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5. Conclusion and open questions

We investigated the structure and number of all right components of an additive polynomial. This 
involved three steps:

• a bijective correspondence between decompositions of an additive polynomial f and Frobenius-
invariant subspaces of its root space V f in an algebraic closure of F (Section 2),

• a description of the A-invariant subspaces of an F -vector space for a rational Jordan form A ∈ F n×n

(Section 3), and
• an efficient algorithm for the rational Jordan form of the Frobenius automorphism on V f (Sec-

tion 4). Its runtime is polynomial in logp(deg f ).

A combinatorial result of Fripertinger (2011) counts the relevant Frobenius-invariant subspaces of 
V f and thus our decompositions (Subsection 3.1). We also count the number of maximal chains of 
Frobenius-invariant subspaces and thus the complete decompositions.

In Theorem 3.14, we describe the small set of possible values for the number of right components 
of exponent r of a given additive polynomial. The natural “inverse” question asks for the number of 
additive polynomials that admit a given number of right components.

The root space V f has exponentially (in the exponent of f ) many elements, and the field over 
which it is defined may have exponential degree. The efficiency of our algorithms in Section 4 is 
mainly achieved by avoiding any direct computation with V f .
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